簡易檢索 / 詳目顯示

研究生: 魏德禎
De-Jhen Wei
論文名稱: 岩石斜向剪切試驗暨其聲光非破壞檢測之佐驗
Inclined Shear Tests for Rock with Acoustic and Optical Nondestructive Measurements
指導教授: 陳堯中
Yao-Chung Chen
口試委員: 陳立憲
none
陳志南
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 129
中文關鍵詞: 石膏砂漿石膏電子斑紋干涉技術聲射法斜向剪切儀
外文關鍵詞: inclined shear test, electronic speckle pattern interferometry (ESPI), acoustic emission (AE), gypsum, gypsum-sand mixture
相關次數: 點閱:341下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論 文 摘 要
    岩石開裂之基本受力行為以張力破壞及剪力破壞居多,惟現行岩石力學之研討主題,大多致力於量測巨觀行為,對岩石材料受力過程中所衍生之微觀裂縫演化機制,則甚少鑽研之。
    有鑑於此,本研究以自行研發之斜向剪切儀模擬直接剪力破壞試驗,且結合兩種以上之非破壞檢測技術(nondestructive technique),並以石膏與石膏砂漿模擬類岩材料,研析岩石受剪應力作用下之微觀破壞機制,探尋岩石材料於剪力作用時之破壞行為與歷程關係。
    於實驗室建構二維平面純剪問題為研究主題,藉由改變:(1)剪切角度;(2)預裂有無;(3)粒料有無等變數;採位移控制求得完整之加載歷程,並以非破壞之聲射(acoustic emission, AE)技術觀察微震裂源(microseismic locations),與電子斑紋干涉法(electronic speckle pattern interferometry, ESPI)相互比對,進行一系列之斜剪試驗。
    從斜剪破壞過程之峰前行為得知,相同之材料隨著剪切角度愈大其尖峰剪應力越小,主要係對應之正向應力較小所致。其初始裂縫產生位置均為端點,初裂行為皆不受剪切角度改變之影響。
    由加載歷程之峰後的裂衍路徑觀之,純石膏之巨觀裂縫為張力破壞,屬於斜張裂縫;石膏砂漿破壞型態屬於剪力破壞,兩者皆隨剪切角度θ越大,裂縫偏斜角隨之越小。
    峰前微觀行為得知,沿剪切方向某長度位置有AE事件之發生,可初步斷定其初始微震裂源位於剪裂面之中央位置處,AE微裂之叢聚產生於中央剪裂區,其現象與裂縫延展趨勢頗為一致。
    再從耦合聲光之非破壞檢測之互相比對得知,以聲射定位探求微震裂源叢聚之範圍,與光學結果比較,二者一致性頗佳。並經與文獻之數值分析比對,得到一致性之趨勢,可印証斜剪儀器之研製與相關探討之適確性。


    ABSTRACT
    Tension and shear failures are the major failure modes for rock fracture. Current research topics on rock mechanics focus mostly on the macro behavior, the behavior of microcracks evolution for rock during the loading process is rarely studied.
    In view of this, a set of inclined shear test device was designed and built to couple the nondestructive technique of ESPI and AE during the shearing process. Gypsum and gypsum-sand mixture were used to prepare the specimens. The evolution of microcracks and the behavior of specimen under shearing were investigated.
    This research focused on the problems of two dimensional shear tests. The following factors were studied: (1) shear angle, (2) with or without pre-cracks, (3) particle size. The complete loading curves were obtained by stroke-controlled loading process. The micro behavior of specimens was monitored by nondestructive technique of ESPI and AE.
    From the results of inclined shear tests, the peak shear stresses decreased with increasing shear angle due to decrease of normal stresses. The cracks initiated from the boundaries of specimens and were not influenced by the variation of shear angle.
    The macrocracks of the specimens were tension cracks for gypsum, and shear cracks for gypsum-sand mixture, the crack angles decreased with increasing shear angle. The initial position and localization of microcracks occurred at the central portion of specimen, which was consistent with the development of macrocracks.
    By comparing the results of ESPI and AE, the distribution of microcracks by AE measurement was consistent with the results of ESPI. The correctness and suitability of the inclined shear test device was approved.

    目錄 論 文 摘 要I ABSTRACTIII 誌謝V 目錄VI 表目錄IX 圖目錄X 符號對照表XIII 第一章、緒 論1 1.1背景與動機1 1.2研究目的2 1.3範圍與方法3 1.4 論文內容5 第二章、文獻回顧8 2.1斜向剪切試驗之沿革與創新8 2.2 斜向剪切破裂之論述-直剪強度與剪力變形行為10 2.2.1 岩體延性與脆性破壞準則10 2.2.2 直剪強度12 2.2.3 剪力變形行為12 2.3 線彈性破壞力學扼述15 2.4 非破壞檢測-聲射技術之發展17 2.4.1 聲射定位原理18 2.4.2 聲射定位準則21 2.5 非破壞檢測-電子斑紋干涉術之沿革與創新23 2.6 直剪試驗之數值模擬27 第三章、試驗架構與執行36 3.1 試驗材料37 3.1.1 試體準備程序與製作步驟38 3.1.2 基本力學試驗及結果39 3.2 試驗設備建置42 3.2.1斜剪試驗設備42 3.2.2 聲射(AE)儀設44 3.2.3 電子斑紋干涉技術(ESPI)儀設46 3.3 方法與流程49 3.3.1 校正檢驗49 3.3.2 不同剪切角度之斜剪破裂試驗步驟53 3.4 試驗參數說明57 第四章、試驗結果與分析77 4.1 剪切角度與幾何形狀對巨觀破壞行為之影響79 4.1.2 剪切角度對加載歷程最大剪應力之影響80 4.1.3 預裂有無對加載歷程最大剪應力之影響82 4.1.4 剪切角度之於類岩材料之裂衍特徵83 4.1.5 斜向剪切試驗之膨脹角(Dilatancy angle,ψ)85 4.2 剪切角度與幾何形狀效應對微觀破壞行為之影響86 4.2.1 剪切角度對微震裂源與加載歷程之關係86 4.2.2 幾何形狀對微震裂源與加載歷程之關係88 4.2.3 聲射位源之分佈帶寬反應材料之特徵長度89 4.3 非破壞耦合檢測之成果研析91 4.3.1 微裂源叢聚與尖峰狀態之比對91 4.4 試驗值與數值解之驗證93 第五章 結論與建議115 5.1 結論115 5.1.1 斜向剪切儀之適用性115 5.1.2 剪切角度之影響115 5.1.3 預裂有無之效應116 5.1.4 非破壞檢測之耦合117 5.2 建議118 5.2.1 試驗材料之建議118 5.2.2 破壞性試驗之建議118 5.2.3 非破壞檢測之建議119 參 考 文 獻120 附 錄123

    參 考 文 獻
    1.小林英男,「破壞力學」,龍璟文化,台北 (2002)。
    2.李昶佑,「應用電子點紋干涉術探討岩石貫切過程之破壞演化及破裂特徵」,碩士論文,國立台北科技大學土木工程系,台北 (2006)。
    3.李佳龍,「音洩定位法於岩石材料之應用」,碩士論文,國立成功大學資源工程學系,台南 (2003)。
    4.林雍勝,「岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化」,碩士論文,國立台灣科技大學營建工程系,台北 (2006)。
    5.胡光宇,「複合式非破壞檢測佐探類岩材料於單刀與雙刀貫切之破壞機制」,碩士論文,國立台北科技大學土木工程系,台北 (2007)。
    6.陳家豪,「巴西試驗之音射定位分析研究」,岩盤工程研討會論文集 (2004)。
    7.洪啟德,「岩石之模擬材料與其直接剪力破壞模式之研究」,碩士論文,國立台
    灣大學土木工程學系,台北 (1989)。
    8.張健峰,「黑色片岩預應力室內試驗推估方法之研究」,碩士論文,國立成功大學土木工程系,台南 (2007)。
    9.楊長義,模擬規則節理面岩體強度與變形性之研究,博士論文,國立台灣大學土木工程研究所,台北 (1992)。
    10.廖志信,「岩石材料中音射發生源之位置探測研究」,碩士論文,國立成功大學土木工程系,台南 (1993)。
    11.劉信良,「複合式非破壞檢測於類岩斜剪過程之巨微觀破壞演化」,碩士論文,國立台灣科技大學營建工程系,台北 (2008)。
    12.劉峵瑋,「以非破壞耦合試驗研探類岩材料受楔形貫切破壞之側向自由邊界效應」,碩士論文,國立台灣科技大學營建工程系,台北 (2007)。
    13.蔡昇哲,「應用非破壞檢測之聲射法於岩石貫切破壞試驗之探討」,碩士論文,國立台灣科技大學營建工程系,台北 (2005)。
    14.應傳智,「人工軟弱岩石之研究」,碩士論文,國立台灣大學土木工程系,台北(1995)。
    15.Butters, J. N. and Leendertz, J. A., "Holographic and Video Techniques Applied to Engineering Measurements," Transactions of the Institute of Measurement and Control, Vol. 4, p 349-354 (1971).
    16.Bray, D. E. and McBride, D., "Acoustic Emission Technology." Nondestructive Testing Techniques, New York, p 345-377, John Wiley & Sons Inc. (1992).
    17.Berthelot, J. M., "Frequency Analysis of Acoustic Emission Signals in Concrete," Journal of Acoustic Emission, Vol. 11, No. 1, p 11-18 (1993).
    18.Butters, J. N. and Leendertz, J. A., “Holographic and video techniques applied to engineering mesurements,” Transactions of the Institute of Measurement and Control, Vol. 4, pp.349-354 (1971).
    19.Chen, L. H., “Failure of Rock Under Normal Wedge Indentation,” Ph. D. Thesis, University of Minnesota, USA (2002).
    20.Chen, L. H. and Labuz, J. F., "Indentation of Rock Failure by Wedge-Shaped Tools,", International Journal of Rock Mechanics and Mining Sciences. Vol. 43, p1023-1033 (2006).
    21.Detournay, E., Fairhurst, C. and Labuz, J. F., "A Model of Tensile Failure Initiation under an Indentor," In P. Rossmanith (Ed.), Proc. 2nd Int. Conf. On Mechanics of Jointed and Faulted Rock (MJFR-S), Vienna, Austria (1995).
    22.Fowler, T. J., "Acoustic Emission of Fiber Reinforced Plastics," Journal of the Technical Councils of ASCE, Proceedings of the ASCE, Vol. 105, No. 2, p 281-289 (1979).
    23.Gabor, D., “A new microscopic principle,” Nature, Vol. 161, pp.777-778 (1948).
    24.Griffith, A. A., “The phenomena of Rupture and Flow in Solids,” Philosophical Transactions of the Royal Society. London A221, Vol. 221, p 163-197 (1921).
    25.Hertz, H. H., Hertz's Miscellaneous papers, London: Macmillan. (1896).
    26.Holcomb, D. J. and Costin L. S.,. "Detecting Damage Surface in Brittle Materials Using Acoustic Emission," ASME, Journal of Applied Mechanics. Vol. 53,
    p 536-544 (1986).
    27.Irwin, G. R., “Analysis of stresses and strain near the end of a crack,” Trans. ASME, Journal of Applied Mechanics., Vol. 24, pp.361-364 (1957).
    28.James, D. L., "Acoustic Emission Investigation into Some Concrete Construction Problems," Journal of Acoustic Emission, Vol. 8, No. 1-2, p s322-s325. World Meeting on Acoustic Emission. (1989).
    29.Johnson, K. L.,. "Contact Mechanics," Cambridge University Press. (1987).
    30.Kaiser, J., "Undersuchungen Uber Das Aufrterten Geraucchen Beim Zevgersuch," Ph.D Thesis, Technische Hochschule, Munich, German. (1953).
    31.Leith, E. N. and Upatnieks, J., “Reconstructed Wavefronts and Communication Theory,” Journal of the Optical Society of America., Vol. 52, p 1123-1130 (1962).
    32.Lajtai, E.Z., ”Mechanics of Second Order Faults and Tension Gashes,” Geological Society of America Bulletin. Vol. 80, p 225-227 (1969).
    33.Landis, C., "Automated Determination of First P-wave Arrival and Acoustic Emission Source Location," Journal of Acoustic Emission, Vol. 10, No. 1-2,
    p s97-s103 (1991/1992).
    34.Leith, E. N. and Upatnieks, J., “Reconstructed wavefronts and
    communication theory,” Journal of the Optical Society of America., Vol. 52, pp.1123-1130 (1962).
    35.Lin, S. T., Hsieh, C. T. and Hu, C. P., "Two holographic blind-hole methods for measuring residual stress." Exp. Mech., Vol. 34, p 141-147 (1994).
    36.Maji, A. K., "Acoustic Emissions from Reinforced Concrete," Experimental Mechanics, Vol. 34, No. 4, p 379-388 (1994).
    37.Maji, A. K., Wang, J. L. and Lovato, J., "Electronic Speckle Pattern Interferometry for Fracture Mechanics Testing," Experimental Techniques, Vol. 15, No. 3, p 19-23 (1991).
    38.Mishnaevsky(Jr.), L. L., "Physical Mechanisms of Hard Rock Fragmentation under Mechanical Loading: A Review," International Journal of Rock Mechanics and Mining Sciences. & Geomech. Abstr., Vol. 32, No. 8, p 763-766 (1995).
    39.Mohr, O., “Welche Umstande Bedingen Die Elastizitatsgrenze Und Den Bruch Eines Materiales,” Zeitschrift des Vereines Deutscher Ingenieure, Vol. 44, p 1524-1530 (1900).
    40.Ohtsu, M., "Acoustic Emission Characteristics of Concrete and Fundamental Mechanisms," Ph. D. Thesis, Kyoto University, Japan. (1982).
    41.Rowe, P. W., Barden, I. and Lee, I. K., ”Energy Components During the Triaxial Cell and Direct Shear Test,” Geotechnique, Vol. 14, p 247-261 (1964).
    42.Stimpson B., ”Modeling for Engineering Rock Mechanics,” International Journal of Rock Mechanics and Mining Sciences. Vol. 7, p 77-121 (1970).
    43.Timoshenko, S. P. and Goodier. J. N., "Theory of Elasticity,”3rd ed., New York, McGraw-Hill.
    44.Yang, Z. Y., “Qualitative Study on the Regularly Stick-Slip Shear Behavior of Ellipitical Particles,” Tamkang Journal of Science and Engineering, Vol. 1, No. 1, p 14-19 (1998).

    QR CODE