簡易檢索 / 詳目顯示

研究生: 吳冠宏
Kuan-Hung Wu
論文名稱: 交流發光二極體驅動電路之分析與設計
Analysis and Design for AC-LED Drivers
指導教授: 邱煌仁
Huang-Jen Chiu
羅有綱
Yu-Kang Lo
口試委員: 陳建富
J. F. Chen
梁從主
T. J. Liang
劉添華
Tian-Hua Liu
劉益華
Yi-Hua Liu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 110
中文關鍵詞: 交流發光二極體固定截止時間脈衝寬度調變諧波電流圖騰柱無橋升壓式功率因數修正器半橋逆變器.
外文關鍵詞: Alternating-current light-emitting diode, fixed off-time pulse-width modulation, current harmonics, totem-pole bridgeless power-factor correction bo, half-bridge inverter.
相關次數: 點閱:783下載:33
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出兩種不同額定功率的交流發光二極體驅動電路以提高交流發光二極體的性能,且保持其優點,並以較少元件組成此兩種交流發光二極體驅動電路。其一為橋式整流型式的發光二極體串聯濾波電感與一串發光二極體,此串發光二極體被一開關分成可控制與不可控制部份。脈衝寬度調變為採用固定截止時間型式。論文首先討論在橋式整流裡的發光二極體數量與其反向峰值電壓與輸入電流命令的影響,並詳細分析電感和最大輸入電流漣波之間的關係,且針對開關額定電壓、輸入功率因數、諧波電流和轉換效率與發光二極體的串聯數量間的關係進行研究。其二為以高頻交流方波電流驅動交流發光二極體,其擁有高功率因數特性,符合IEC 61000-3-2 Class C電流諧波標準,具有好的輸出電流調節及高效率優點。電路架構採用圖騰柱無橋升壓式功率因數修正器與半橋逆變器的單級整合,具有較少的元件數量和較簡易的控制方式。
    兩種被提出的交流發光二極體驅動電路的模擬和實驗結果被展示以證明其可行性。它們的功率損耗亦被計算,並與它們的實驗結果印證。最後,兩種提出的驅動電路與傳統的交流發光二極體燈之間做出一些比較,以驗證其實用性和突出的性能改進。


    This dissertation proposes two AC-LED drivers for different power ratings with minimal additional components in order to improve the performance of the AC-LED lamp while maintaining the benefits. Method I consists of an AC-LED bridge rectifier, a filter inductor and an LED string which is divided into controlled and uncontrolled parts by a MOSFET. The fixed off-time pulse-width modulation (FOT-PWM) is adopted. The influences of the number of LEDs in a bridge rectifier on the peak reverse voltage of the LED and the input current command are investigated. The relationship between the inductance and the maximum input-current ripple is studied. In addition, the effects of the number of LEDs in a series string on the switch voltage rating, input PF, current harmonics, and conversion efficiency are presented.
    Method II is a high-frequency square-wave current driver. The high PF, meeting requirements of the harmonic current standard IEC 61000-3-2 Class C, accurate output-current regulation, and high efficiency are achieved. The topology is a single-stage, which can be considered as a totem-pole bridgeless PFC boost rectifier combined with a half-bridge inverter. A single-stage topology is proposed for reducing quantity of components and simplifying the control method.
    The simulation and experimental results of the two proposed AC-LED drivers are demonstrated. The estimated power losses of both methods are then calculated and confirmed with experimental results. Finally, contrast among the two methods and the conventional AC-LED lamp will be stated to verify the practicality of each approach and highlight the improved nuances of each design.

    摘要 I Abstract II Acknowledgements IV Table of Contents VI List of Symbols VIII List of Figures XII List of Tables XVI Chapter 1 Introduction 1 1.1 Research background 1 1.2 Conventional AC-LED lamp 6 1.3 Performance indicators: efficiency, power factor, and harmonics 10 1.4 Research motivations and objectives 12 1.5 Dissertation outline 13 Chapter 2 A Increased-PF AC-LED Driver 14 2.1 Introduction 14 2.2 Operating principles of the increased-PF AC-LED driver 17 2.3 The influence of the LED-bridge rectifier 20 2.4 The influence of the filter inductor 23 2.5 The influence of distributing the controlled and uncontrolled part of LED string 27 2.6 TRIAC dimmer 29 2.7 Power-loss analysis of the increased-PF AC-LED driver 30 2.8 Summary 34 Chapter 3 Simulation and Experimental Results of A Increased-PF AC-LED Driver 35 3.1 Introduction 35 3.2 Simulation and experimental results 36 3.3 Power-loss analysis 46 3.4 Comparison with the conventional AC-LED lamp 50 3.5 Summary 54 Chapter 4 A Single-Stage Bridgeless AC-LED Driver 55 4.1 Introduction 55 4.2 Operating principles of the single-stage bridgeless AC-LED driver 57 4.3 Single-stage bridgeless square-wave inverter for AC-LED use 65 4.4 Circuit analysis of the single-stage bridgeless AC-LED driver 69 4.5 Power-loss analysis of the single-stage bridgeless AC-LED driver 74 4.6 Summary 79 Chapter 5 Simulation and Experimental Results of A Single-Stage Bridgeless AC-LED Driver 81 5.1 Introduction 81 5.2 Simulation and experimental results 82 5.3 Power-loss analysis 94 5.4 Comparison with the conventional AC-LED lamp 98 5.5 Summary 102 Chapter 6 Conclusion and Future Works 103 6.1 Summary and major contributions 103 6.2 Future works 105 References 106 Biography of the Author 110

    [1] N. Zheludev, “The life and times of the LED — a 100-year history,” nature photonics, vol. 1, pp. 189-192, Apr. 2007.
    [2] R. Braunstein, “Radiative transitions in semiconductors,” Phys. Rev., vol. 99 issue 6, pp. 1892-1893, Jul. 1955.
    [3] S. Nakamura, T. Mukai, and N. Iwasa, “Light-emitting gallium nitride-based compound semiconductor device,” U.S. Patent 5 578 839, Nov. 26, 1996.
    [4] C. H. Lin, “Digital-dimming controller with current spikes elimination technique for LCD backlight electronic ballast,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1881-1888, Dec. 2006.
    [5] H. J. Chiu and S. J. Cheng “LED backlight driving system for large-scale of LCD panels”, IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2751-2760, Oct. 2007.
    [6] H. M. Huang, S. H. Twu, S. J. Cheng, and H. J. Chiu, “A single-stage SEPIC PFC converter for multiple lighting LED lamps,” the 4th IEEE International Symposium on Electronic Design, Test and Applications, Jan. 2008, pp. 15-19.
    [7] H. J. Chiu, H. M. Huang, H. T. Yang, and S. J. Cheng “An improved single-stage flyback PFC converter for high-luminance lighting LED lamps,” International Journal of Circuit Theory and Applications, vol. 32, no. 2, pp. 205-210, Mar. 2008.
    [8] C. Y. Wu, T. F. Wu, J. R. Tsai, Y. M. Chen, and C. C. Chen, “Multistring LED backlight driving system for LCD panels with color sequential display and area control,” IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3791-3800, Oct. 2008.
    [9] Y. K. Lo, K. H. Wu, K. J. Pai, and H. J. Chiu, “Design and implementation of RGB LED drivers for LCD backlight modules,” IEEE Trans. Ind. Electron., vol. 56, no. 12, pp. 4862-4871, Dec. 2009.
    [10] Y. Okuno, “Light-emitting diode display,” U.S. Patent 4 298 869, Nov. 3, 1981.
    [11] J. Cho, J. Jung, J. H. Chae, H. Kim, H. Kim, J. W. Lee, S. Yoon, C. Sone, T. Jang, Y. Park, and E. Yoon, “Alternating-current light emitting diodes with a diode bridge circuitry, ” Jap. J. Appl. Phys., vol. 46, no. 48, pp. L1194-L1196, Dec. 2007.
    [12] G. A. Onushkin, Y. J. Lee, J. J. Yang, H. K. Kim, J. K. Son, G. H. Park, and Y. J. Park, “Efficient alternating current operated white light-emitting diode chip, ” IEEE Photonics Technol. Lett., vol. 21, no. 1, pp. 33-35, Jan. 2009.
    [13] M. T. Lin, H. H. Yen, W. Y. Yeh, M. Y. Lin, and S. P. Huang, “Alternating current light-emitting device,” U.S. Patent 7 544 524 B2, Jun. 9, 2009.
    [14] R. L. Lin, and Y. F. Chen, “Equivalent circuit model of light-emitting-diode for system analyses of lighting drivers,” in IEEE Ind. Applicat. Soc. Annual Meeting, Houston, TX, 2009, pp. 1-5.
    [15] T. J. Liang, W. C. Tseng, and J. F. Chen, “LED driver device,” U.S. Patent 2011/0273099 A1, Nov. 10, 2011.
    [16] C. C. Cheng, and W. H. Chien, “Light emitting diode (LED) driver and associated LED driving method,” U.S. Patent 2011/0025216 A1, Feb. 3, 2011.
    [17] A. Shteynberg, D. Zhou, H. Rodriguez, M. Eason, B. M. Lehman, S. F. Dreyer, and T. J. Riordan, “Apparatus, method and system for providing AC line power to lighting devices,” U.S. Patent 2010/0308739 A1, Dec. 9, 2010.
    [18] S. Huynh, “AC LED lamp involving an LED string having separately shortable sections,” U.S. Patent 2011/0227484 A1, Sep. 22, 2011.
    [19] S. W. Hong, “LED lamp with adjustable illumination intensity based on AC voltage amplitude,” U.S. Patent 2011/0273103 A1, Nov. 10, 2011.
    [20] S. Cha, D. Park, Y. Lee, C. Lee, J. Choi, J. Lee, and H. Lee, “AC/DC converter free LED driver for lightings,” ICCE 2012: IEEE international conf. on consumer electron., Jan. 2012, pp. 706-708.
    [21] J. A. Villarejo, J. Sebastian, F. Soto, and E. de Jodar, “Optimizing the design of single-stage power-factor correctors,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1472-1482 , Jun. 2007
    [22] G. Moschopoulos and P. Jain, “Single-phase single-stage power-factor-corrected converter topologies,” IEEE Trans. Ind. Electron., Vol. 52, Issue 1, pp.23–35, Feb. 2005
    [23] J. Zhang, D. D. C. Lu, and T. Sun, “Flyback-based single-stage power-factor-correction scheme with time-multiplexing control,” IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 1041-1049, Mar. 2010.
    [24] International standard, IEC 61000-3-2, 2005.
    [25] C. Adragna, and G. Gattavari, “Device for the correction of the power factor in forced switching power supplies,” U.S. Patent 7 279 876 B2, Oct. 9, 2007.
    [26] M. R. Spiegel, and J. Liu, “Schaum's mathematical handbook of formulas and tables,” 2nd, McGraw-Hill, 1998, pp. 32.
    [27] D. Rand, B. Lehman, A. Shteynberg, “Issues, models and solutions for triac modulated phase dimming of LED lamps,” in Power Electron. Specialists Conf., US, 2007, pp. 1398–1404.
    [28] C. W. T. McLyman, “Transformer and inductor design handbook,” 3rd, New York, NY, Marcel Dekker, 2004, pp. 10.5-10.8.
    [29] C. L. Kuo, T. J. Liang, K. H. Chen, and J. F. Chen, “Design and implementation of high frequency AC-LED driver with digital dimming,” in 2010 IEEE Int. Symposium on Circuits and Systems, Paris, France, pp. 3713-3716.
    [30] J. C. Salmon, “Circuit topologies for pwm boost rectifiers operated from 1-phase and 3-phase ac supplies and using either single or split dc rail voltage outputs,” in Applied Power Electronics Conf. and Exposition, Dallas, TX, 1995, pp. 437-479.
    [31] L. Huber, Y. Jang, and M. M. Jovanovic’, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, May. 2008.
    [32] T. Shimizu, O. Hashimoto, and G. Kimura, “A novel high-performance utility-interactive photovoltaic inverter system,” IEEE Trans. Power Electron., vol. 18, no. 2, pp. 704-711, Mar. 2003.
    [33] Z. Yao, L. Xiao, and Y. Yan, “Dual-buck full-bridge inverter with hysteresis current control,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3153-3160, Aug. 2009.
    [34] J. Zhang, J. Wang, and X. Wu, “A capacitor-isolated LED driver with inherent current balance capability,” IEEE Trans. Ind. Electron., vol. 59, no. 4, pp. 1708-1716, Apr. 2012.
    [35] W. Y. Choi1, W. S. Yu, and J. S. Lai, “A novel bridgeless single-stage half-bridge AC/DC converter,” in Applied Power Electronics Conf. and Exposition, Palm Springs, CA, 2010, pp. 42-46.
    [36] T. J. Liang, S. C. Kang, C. A. Cheng, R. L. Lin, J. F. Chen, “Analysis and design of single-stage electronic ballast with bridgeless PFC configuration,” in IEEE Ind. Electron. Soc., Roanoke, VA, 2003, pp. 502-508.
    [37] K. Taniguchi and Y. Nakaya, “Analysis and improvement of input current waveforms for discontinuous-mode boost converter with unity power factor,” in Proc. Power Conversion Conf., Nagaoka, 1997, vol. 1, pp. 399–404.
    [38] J. Lazar and S. Cuk, “Open loop control of a unity power factor, discontinuous conduction mode boost rectifier,” in Proc. Int. Telecom. Energy Conf., pp. 671–677, 1995.
    [39] K. H. Liu and Y. L. Lin, “Current waveform distortion in power factor correction circuits employing discontinuous-mode boost converters,” in IEEE Power Electron. Specialists Conf., Milwaukee, WI, 1989, pp. 825-829.
    [40] D. S. L. Simonetti, J. L. F. Vieira, and G. C. D. Sousa, “Modeling of the high-power-factor discontinuous boost rectifiers,” IEEE Trans. Ind. Electron., vol. 46, no. 4, pp. 788-795, Aug. 1999.
    [41] D. Simonetti, J. L. F. Vieira, and G. C. D. Sousa, “Simplifying the design of a DCM boost PFP,” in Proc. IEEE CIEP’ 96, Cuernavaca, MEXICO, pp. 138-141.

    QR CODE