簡易檢索 / 詳目顯示

研究生: 謝在軒
Tsai-Hsuan Hsieh
論文名稱: 高溫型質子交換膜燃料電池有機/無機質子傳導混成薄膜之合成與鑑定
Preparation and characterization of proton conducting organic/inorganic hybrid membrane for high temperature PEMFC
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 林智汶
Chi-Wen Lin
陳文正
Wen-Cheng Chen
陳崇賢
Chorng-Shyan Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 146
中文關鍵詞: 高溫型質子交換燃料電池有機/無機混成薄膜磷矽酸鹽玻璃聚亞醯胺高分子溶膠-凝膠法
外文關鍵詞: High temperature proton exchange membrane fuel c, organic/inorganic hybrid membrane, Phosphor-silicate glass, Polyimide, sol-gel method
相關次數: 點閱:355下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究之目的是著重於高溫型質子交換膜燃料電池(High temperature proton exchange membrane fuel cell, HT-PEMFC)電解質薄膜之開發。利用4,4'-二氨基二苯醚(4,4’-Oxydianiline, ODA)與4,4'-氧雙鄰苯二甲酸酐(4,4’-Oxydiphthalic anhydride, ODPA)合成之聚亞醯胺酸(Polyamic acid)作為有機之前驅物;將磷酸三甲酯(Trimethyl phosphate, TMP) 與四乙基矽酸鹽(Tetraethyl orthosilicate, TEOS)經由適當的水解反應,得到無機相前驅物。均勻混合有機與無機之前驅物後,利用溶膠-凝膠(sol-gel)法合成出含磷矽酸鹽 (Phosphor-silicate)與線性芳香族聚亞醯胺(Polyimide)之有機/無機質子傳導混成薄膜。藉由有機/無機混成薄膜結構與反應機制的瞭解,來改善成有機/無機薄膜之成膜製程;並探討不同磷-矽組成之有機/無機薄膜對熱性質、含水率、甲醇滲透、化學穩定性及質子傳導度之性質分析。
由in-situ FTIR研究顯示,ODA與ODPA在30 oC需要一天才能使形成PAA之反應趨於完成;藉由NMR圖譜得知,TMP在室溫下之水解反應性極低,而TMP在60 oC反應溫度下能有較佳之水解反應。在成膜溫度120 oC下所合成之有機/無機混成薄膜(有機:無機重量比=5:5),其結構經由FTIR與NMR可知,富有機相為PAA/PI與富無機相為H3PO4/SiO2之結構,而有機/無機間的介面則有氫鍵與共價鍵。
由TGA/DTA得知有機/無機膜擁有良好的熱性質,其最大熱裂解溫度皆在600 oC左右;而有機/無機薄膜之抗張應力皆高於423 kgf/cm2。甲醇滲透度則以O5-P5Si5表現最佳,約為11.92 × 10-9 cm2/s比商業化Nafion 低兩個階層,擁有最佳的化學穩定性,而其質子傳導度在30 oC、相對濕度100 %環境下有9.53× 10-6 S/cm。利用水-蒸汽管理系統處理之薄膜,其導電度明顯提升,其中TO5-P10Si0在溫度110 oC、濕度100 %的環境下為1.99 × 10-3 S/cm。


The main objective of this study is to synthesize the organic/inorganic hybrid membranes for high temperature proton exchange membrane (HT-PEMFC) applications. 4,4’-Oxydianiline (ODA) and 4,4’-Oxydiphthalic anhydride (ODPA) were chosen in order to synthesize the organic component Polyamic acid (PAA). The PAA was then reacted with the inorganic precursors TMP (Trimethyl phosphate) and TEOS (Tetraethyl orthosilicate) to form the organic/inorganic hybrid membrane by a sol-gel method. The resultant membranes have proton conductivity contributed from inorganic structure and good flexibility from organic component. Various analytical techniques were used to characterize the structure and proton conduction mechanism, and to discuss the effect of different phosphorus-silicon molar content on water uptake, methanol permeability, mechanical properties, thermal- properties, chemical stability, and proton conductivity.
The in-situ FTIR spectral results revealed that the highest PAA formation was achieved once the reaction between ODA and ODPA at 30 oC was allowed for one day. It was observed that TMP can be hydrolyzed at 60 oC for 1 day to form the PO(OH)3 completely. At the curing temperature of 120 oC, the organic-rich region and inorganic-rich region of the organic/inorganic hybrid membrane (weight ratio=5:5) were found to be PAA/PI and H3PO4/SiO2, respectively. The interface of organic and inorganic-region formed both hydrogen and covalent bonds.
From the TGA/DTA results, it was observed that the highest decomposition of organic/inorganic hybrid membrane with different P and Si content was occurred at 600 oC. From the mechanical analysis, it was found that the organic/inorganic hybrid membrane possessed the lowest stress about 423 kgf/cm2. This value is higher than that of the operating press during the fabrication of membrane electrode assembly (MEA). It indicates that this series of membranes were suitable for making MEA. Among the hybrid membrane, the O5-P5Si5 had lower methanol permeability about 2 order when compared to that of the commercial Nafion 117 membrane. The methanol permeability of O5-P5Si5 membrane was found to be 11.92 × 10-9 cm2/s and the conductivity was found to be 9.53× 10-6 S/cm at 110 oC, related humidity 100 %. It was also exhibited promising chemical stability. There was a clear increase in the proton conductivity of the organic/inorganic hybrid membrane by using water/vapor management. The TO5-P10Si0 membrane showed the best proton conductivity of about 1.99×10-3 S/cm at 110 oC, related humidity 100%.

中文摘要 I 英文摘要 III 致謝 V 目錄 VI 圖目錄 XI 表目錄 XVI 符號表 XVIII 第一章 緒論 1 1.1 前言 1 1.2 燃料電池的發展簡介 2 1.3 燃料電池的種類 4 1.3.1 質子交換膜燃料電池(PEMFC) 6 1.3.2 直接甲醇燃料電池(DMFC) 6 1.3.3 熔融碳酸鹽型燃料電池(MCFC) 7 1.3.4 固態氧化物型燃料電池(SOFC) 8 1.4 質子交換膜燃料電池(PEMFC)之工作原理 8 1.4.1 陽極觸媒材料與其發展概況 10 1.4.2 電解質材料與其發展概況 10 1.4.3 陰極觸媒材料與其發展概況 12 1.5 研究動機與目的 13 1.6 研究架構 14 第二章 文獻回顧 16 2.1 質子交換膜內之氫離子傳導機制 16 2.2 質子交換膜的研究及發展現況 21 2.2.1 Nafion 膜之簡介 21 2.2.2 電解質薄膜之分類 23 2.2.2.1 Nafion膜及Nafion膜之改質系列 24 2.2.2.2 有機高分子電解質膜材系列 25 2.2.2.3 有機/無機混成之電解質薄膜 31 2.2.3 高溫型質子傳導膜 33 第三章 實驗藥品、設備、步驟與原理 38 3.1 實驗藥品與設備 38 3.1.1 實驗藥品 38 3.1.2 實驗設備與器材 39 3.2 聚亞醯胺-磷矽酸鹽玻璃之有機無機薄膜製備原理 39 3.2.1 聚亞醯胺(Polyimide) 39 3.2.1.1 聚亞醯胺之簡介 39 3.2.1.2 聚亞醯胺的種類 40 3.2.1.3 聚亞醯胺酸之合成與亞醯胺化 41 3.2.2 矽磷酸鹽玻璃 43 3.2.2.1 矽磷酸鹽玻璃之簡介 43 3.2.2.2 溶膠-凝膠法(Sol-gel method) 45 3.2.3 有機無機膜之合成方法 47 3.3 實驗方法與步驟 49 3.3.1 不同有機/無機反應溫度之薄膜製備方式 49 3.3.2 不同磷-矽組成之有機/無機混成薄膜製備方式 51 3.4 實驗原理 53 3.4.1 有機無機薄膜結構鑑定 53 3.4.1.1 傅力葉轉換紅外光譜儀(FTIR) 53 3.4.1.2 固態核磁共振光譜儀(Solid-State NMR) 54 3.4.2 熱性質分析 58 3.4.2.1 熱重分析(TGA/DTA) 58 3.4.3 物理性質分析 59 3.4.3.1 薄膜澎潤度測試 59 3.4.3.2 甲醇滲透率的量測 60 3.4.3.3 化學穩定度的測試 61 3.4.3.4 機械性質的測試 62 3.4.4 電化學性質分析 63 3.4.4.1 交流阻抗電化學特性分析(AC- Impedance) 63 第四章 實驗結果 73 4.1 有機/無機混成薄膜之結構鑑定 73 4.1.1 臨場傅力葉轉換紅外線光譜對PAA與PI成長之分析 73 4.1.2 TMP之Sol-gel反應機制 79 4.1.3 PI/H3PO4-SiO2之結構鑑定 85 4.1.3.1 傅立業紅外光光譜圖(FTIR) 85 4.1.3.1 固態核磁共振儀(Solid state NMR) 89 4.2 有機/無機混成薄膜之熱性質分析 91 4.2.1 不同溶膠凝膠反應溫度與時間之熱性質探討探討 93 4.2.2不同磷-矽組成之有機無機混成薄膜熱性質探討探討 95 4.3 有機/無機混成薄膜之物理性質分析 101 4.3.1 薄膜之含水率測試 101 4.3.2 薄膜之甲醇滲透率測試 102 4.3.3 薄膜之化學穩定度測試 106 4.3.4 機械性質測試 108 4.4 有機/無機混成薄膜之型態學分析 110 4.4.1 有機/無機混成薄膜之表面型態與組成分析 110 4.4.2 不同後處理方法對於有機/無機混成薄膜結構之影響 119 4.4.3 水-蒸汽管理系統處理之有機/無機混成薄膜組成探討 121 4.5 有機/無機混成薄膜之電化學分析 123 4.5.1 不同磷矽組成之有機無機混成薄膜之導電度測試 123 4.5.2水-蒸汽管理系統處理之有機/無機混成薄膜之導電度測試 125 第五章 綜合討論 127 5.1 影響有機/無機薄膜之結構的主要原因 127 5.1.1 聚合反應 127 5.1.2 溶膠-凝膠反應 127 5.2 有機/無機薄膜之質子傳導度之探討 129 第六章 結論 131 第七章 參考文獻 134

[1] 衣寶廉, 燃料電池, 五南圖書出版公司, 2003.
[2] 董士平, "含磷矽酸鹽玻璃於直接甲醇燃料電池之應用", 台灣科技大學化工系, 2006.
[3] 吳滄琪, "磺酸化高分子於燃料電池質子交換膜製備之應用", 元智大學化工系, 2003.
[4] 鄭耀宗,徐耀昇," 燃料電池技術進展的現況", 燃料電池論文集, 1999, pp. 15.
[5] A. J. Apleby, F. R. Folkes, Fuel Cell Handbook, 1989.
[6] L. J. M. J. Bolmen, M. N. Megerwa, Fuel Cell Systems, 1993.
[7] A. Heinzel, R. Nolte, K. Ledjeff-Hey, M. Zedda," Membrane fuel cells-concepts and system design", Electrochim. Acta Vol. 43, 1998, pp. 3817.
[8] 李國霖, "熔融碳酸鹽燃料電池的研發", 能源季刊, 1997.
[9] W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, Q. Xin," Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells", J. Phys. Chem. B Vol. 107, 2003, pp. 6292.
[10] H. A. Gasteiger, N. Markvoic, N. Philip, P. N. Ross," H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru Rotating Disk Electrode Studies of the Pure Gases Including Temperature Effects", J. Phys. Chem. Vol. 99, 1995, pp. 8290.
[11] E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel, C. M. Lukehart," A Pt-Ru/Graphitic Carbon Nanofiber Nanocomposite Exhibiting High Relative Performance as a Direct-Methanol Fuel Cell Anode Catalyst", J. Phys. Chem. B Vol. 105, 2001, pp. 8097.
[12] G. T. Burstein, C. J. Barnett, A. R. Kucernak, K. R. Williams," Aspects of the anodic oxidation of methanol", Catal. Today Vol. 28, 1997, pp. 425.
[13] 高志勇, "磺酸化磷睛環聚合物電解質之合成及其性質之研究", 2003.
[14] 許義政, "磺酸化聚二醚酮奈米複合質子交換膜之研究", 長庚大學化學與材料工程所, 2004.
[15] J. Shim, D. Y. Yoo, J. S. Lee," Characteristics for electrocatalytic properties and hydrogen-oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell", Electrochim. Acta Vol. 45, 2000, pp. 1943.
[16] 陳竣明, "直接甲醇燃料電池陽極奈米合金觸媒之製備與鑑定", 台灣科技大學化工系, 2004.
[17] X. Ren, T. A. Zawadzinski, F. Uribe, H. Dai, S. Gottesfeld," Methanol cross-over in direct methanol fuel cells", Electrochem. Soc. Proc. Vol. 95, 1995, pp. 284.
[18] M. Eikerling, A. A. Kornyshev, A. M. Kunetsov, J. Ulstrup, S. Walbran," Mechanisms of proton conductance in polymer electrolyte membranes", J. Phys. Chem. B Vol. 105, 2001, pp. 3646.
[19] E. Spohr, P. Commer, A. A. Kornyshev," Enhancing proton mobility in polymer electrolyte membrane: lessons from molecular dynamics simulations", J. Phys. Chem. B Vol. 106, 2002, pp. 10560.
[20] A. A. Kornyshev, A. M. Kuznetsov, E. Spohr, J. Ulstrup," Kinetics of proton transport in water", J. Phys. Chem. B Vol. 107, 2003, pp. 3351.
[21] S. P. Tung, B. J. Hwang," Synthesis and characterization of xP2O5-(100-x)SiO2 glass electrolytes prepared by accelerated sol-gel process with water/vapor management", J. Membr. Sci. Vol. 241, 2004, pp. 315.
[22] 邱志豪, "聚苯咪唑合成及薄膜性質", 元智大學化工系, 2004.
[23] T. Schultz, S. Zhou, K. Sundmacher," Review: Current status of and recent developments in the direct methanol fuel cell", Chem. Eng. Technol. Vol. 24, 2001, pp. 12.
[24] Y. Higuchi, N. Terada, H. Shimoda, S. U. S. Hommura, "Patent application", 2001.
[25] M. Watanabe, H. Uchida, Y. Seki, M. Emori, "V94-2, Abstract No. 606, Electrochemical Society: Pennington", The Electrochemical Society Meeting, 1994, pp. 946.
[26] P. L. Antonucci, A. S. Arico, P. Creti, E. Ramunni, V. Antonucci," Synthesis of organic nanocomposites protonic conducting membrane through sol-gel processes", Solid State Ionics Vol. 125, 1999, pp. 431.
[27] P. S. Kauranen, E. Skou," Methanol permeability in perfluorsulfonate proton exchange membranes at elevated temperatures", J. Appl. Electrochem. Vol. 26, 1996, pp. 909.
[28] S. R. Narayanan, A. Kindler, B. Jeffries-Nakamura, W. Chum, H. Frank, M. Smart, T. L. Valdez, S. Surampudi, G. Halpert, Annu. Battery Conf. Appl. Adv., 1996, pp. 113.
[29] D. H. Jung, C. H. Lee, C. S. Kim, D. R. Shin," Performance of a direct methanol polymer electrolyte fuel cell", J. Power Sources Vol. 71, 1998, pp. 169.
[30] K. A. Mauritz, " Organic-inorganic hybrid materials: Perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides", Mater. Sci. Eng. Vol. C6, 1998, pp. 121.
[31] N. Miyake, J. S. Wainwright, R. F. Savinell," Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Polymer Electrolyte Membrane Fuel Cell Applications: II. Methanol Uptake and Methanol Permeability", J. Electrochem. Soc. Vol. 8, 2001, pp. 148.
[32] M. Rikukawa, K. Sanui," Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Polym. Sci. Vol. 25, 2000, pp. 1463.
[33] F. Donoso, W. Gorecki., C. Berthier," NMR, conductivity and neutron scattering investigation of ionic dynamics in the anhydrous polymer protonic conductor PEO (H3PO4)x", Solid State Ionics Vol. 28, 1988, pp. 969.
[34] M. F. Daniel, B. Desbat, F. Cruege, O. Trinquet, J. C. Lassegues," Solid state protonic conductors: poly (ethylene imine)sulfates and phosphates", Solid State Ionics Vol. 28, 1988, pp. 637.
[35] J. C. Lassegues, D. Scoolmann, O. Trinquet," Proton conducting acid/polymer blends", Solid State Ionics Vol. 51, 1992, pp. 443.
[36] R. Tanaka, H. Yamamoto., S. Kawamura, T. Iwase," Proton Conducting behavior of Poly (etheylenimine)-H3PO4 System", Electrochimica Acta Vol. 40, 1995, pp. 2421.
[37] G. K. R. Senadeera, M. A. Careem, S. Skaarup, K. West," Enhance ionic conductivity of poly(ethylene imine) Phosphate", Solid State Ionics Vol. 85, 1996, pp. 37.
[38] D. Rodriguez, C. Jegat, O. Trinquet, J. Grondin, J. C. Lassegues," Proton conduction in poly(acrylamide)-acid blends", Solid State Ionics Vol. 61, 1993, pp. 195.
[39] P. N. Gupta, K. P. Singh," Characterization of H3PO4 based PVA complex system", Solid State Ionics Vol. 86, 1996, pp. 319.
[40] M. A. Vargas, R. A.Vargas, B. Mellander," More studies on the PVA+H3PO2+H2O proton conductor gels", Electrochimica Acta Vol. 45, 2000, pp. 1399.
[41] H. Wu, Y. Wang," A methanol barrier polymer electrolyte membrane in direct methanol fuel cells", J. New. Mat. Electrochem. Systems Vol. 5, 2002, pp. 251.
[42] C. C. Yang," Chemical composition and XRD analyses for alkaline composite PVA polymer electrolyte", Materials Letter Vol. 58, 2003, pp. 33.
[43] W. Xu, C. Liu," New proton exchange membranes based on poly (vinyl alcohol) for DMFCs", Solid State Ionics Vol. 171, 2004, pp. 121.
[44] J. W. Rhima, H. B. Park," Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes", J. Membr. Sci. Vol. 238, 2004, pp. 143.
[45] J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell, M. Litt," Acid-doped polybenzimidazoles: A New polymer electrolyte", J. Electrochem. Soc. Vol. 142, 1995, pp. L121.
[46] J. T. Wang, S. Wasmus, R. F. Savinell," Real-time spectrometric study of the methanol crossover in a direct methanol fuel cell", J. Electrochem. Soc. Vol. 143, 1996, pp. 1233.
[47] S. Wasmus, A. Kuver," Methanol oxidation and direct methanol fuel cells: a selective review", J. Electroanal. Chem. Vol. 461, 1999, pp. 14.
[48] A. Heinzel, V. M. Barragan," A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells", J. Power Sources Vol. 84, 1999, pp. 70.
[49] M. Kawahara, J. Morita, M. Rikukawa, K. Sanui, N. Ogata," Synthesis and proton conductivity of thermally stable polymer electrolyte: poly (benzimidazole) complexes with strong acid molecules", Electrochimica Acta Vol. 45, 2000, pp. 1395.
[50] K. Tsuruhara, M. Rikukawa, K. Sanui, N. Ogata, Y.Nagasaki, M. Kato," Synthesis of proton conducting polymer basedon Poly(silamine)", Electrochimica Acta Vol. 45, 2000, pp. 1391.
[51] F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodinski, J. E. McGrath," Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes", J. Membr. Sci. Vol. 197, 2002, pp. 231.
[52] M. Hogarth, X. Glipa, "High temperature membranes for sold polymer fuel cells", 2001.
[53] 吳千舜, "新穎質子交換膜", 中央大學化學研究所, 2004.
[54] U. Tadashi, O. Kenji, M. Hiroshi, M. Takashi," Structure and permeation characterisics of an aqueous ethanol solution of organic-inorgaic hybrid membranes composed of poly(vinyl alcohol) and tetraethoxysiliane", Macromolecules Vol. 35, 2002, pp. 9156.
[55] S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, K. Richau," Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells", J. Membr. Sci. Vol. 203, 2003, pp. 215.
[56] Q. Li, R. He, J. O. Jensen, J. J. Bjerrum," Approaches and recent development of polymer electrolyte membranes for fuel cells operating", Chem. Mater. Vol. 15, 2003, pp. 4896.
[57] R. Savinell, E. Yearher, D. Tryk, U. Landau, J. Wainright, D. Weng, K. Lux, M. Litt, C. Rogers," A polymer electrolyte for operation at temperatures up to 200 oC", J. Electrochem. Soc. Vol. 141, 1994, pp. L46.
[58] M. Doyle, S. K. Choi, G. Proulx," High-temperature proton conducting membranes based on perfluorinated ionomer membrane ionic liquid composites", J. Electrochem. Soc. Vol. 147, 2000, pp. 34.
[59] R. A. Zoppi, I. V. P. Yoshida, S. P. Nunes," Hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol–gel reaction from solution. Morphology and thermal analysis", Polymer Vol. 39, 1997, pp. 1309.
[60] R. A. Zoppi, S. P. Nunes," Hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol–gel reaction from solution. Electrochemical impedance spectroscopy studies", J. Electroanal. Chem. Vol. 445, 1998, pp. 39.
[61] K. T. Adjemian, S. J. Lee, S. Srinivasan, J. Benziger, A. B. Bocarsly," Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell. Operation at 80-140 degrees C." J. Electrochem. Soc. Vol. 149, 2002, pp. A256.
[62] P. Staiti, A. S. Arico, V. Baglio, F. Lufrano, E. Passalacqua, V. Antonucci," Solid state protonic conductors, present main applications and future prospects", Solid State Ionics Vol. 145, 2001, pp. 101.
[63] P. L. Antonucci, A. S. Arico', P. Creti, E. Ramunni, V. Antonucci," Investigation of a direct methanol fuel cell based on a composite Nafion-silica electrolyte for high temperature operation", Solid State Ionics Vol. 125, 1999, pp. 431.
[64] H. Wang, B. A. Holmberg, L. Huang, Z. Wang, A. Mitra, J. M. Norbeck, Y. J. Yan," Nafion-Bifunctional Silica Composite Proton Conductive Membranes", Mater. Chem. Vol. 12, 2002, pp. 834.
[65] Y. I. Park, J. D. Kim, M. Nagai," Increase of proton conductiveity in amorphous phosphate-Nafion membranes", J. Mater. Sci. Lett. Vol. 19, 2000, pp. 1621.
[66] Y. I. Park, J. D. Kim, M. Nagai, In Materials Research Society Symposium Proceedings.
[67] P. Dimitrova, K. A. Friedrich, U. Stimming, B. Vogt," Modified Nafion®-based membranes for use in direct methanol fuel cells", Solid State Ionics Vol. 150, 2002, pp. 115.
[68] M. T. Bogert, R. R. Renshaw," 4-Amino-o-phthalic Acid and some of Its Derivatives", J. Am. Chem. Soc. Vol. 20, 1908, pp. 1135.
[69] C. L. Chiang, C. C. M. Ma," Synthesis, Characterization, and Properties of Novel Ladderlike Phosphorus-Containing Polysilsesquioxanes", J. Polym. Sci.: Part A Vol. 41, 2003, pp. 1371.
[70] J. Preston, " Polyimide – a new class of thermally stable polymers", J. Polym. Sci.: Part B Vol. 9, 1971, pp. 230.
[71] X. Q. Liu, M. Jikei, M. A. Kakimoto," Synthesis and Properties of AB-Type Semicrystalline Polyimides Prepared from Polyamic Acid Ethyl Ester Precursors", Macromolecules Vol. 34, 2001, pp. 3146.
[72] G. D. Khune, " Preparation and Properties of Polyimides from. Diisocyanates", J. Macromol. Sci. Chem. Vol. 5, 1980, pp. 687.
[73] M. L. Bender, Y. L. Chow, F. Chloupek," Intramolecular Catalysis of Hydrolytic Reactions. II. The Hydrolysis of Phthalamic Acid", J. Am. Chem. Soc. Vol. 80, 1985, pp. 5380.
[74] J. A. Kreuz, A. L. Endrey, F. P. Gay, C. E. Sroog," Studies of thermal cyclizations of polyamic acids and tertiary amine salts", J. Polym. Sci.:Part A Vol. 4, 1966, pp. 2607.
[75] C. P. Yang, S. H. Hsiao, K. L. Wu," Organosoluble and light-colored fluorinated polyimides derived from 2,3-bis(4-amino-2-trifluoromethylphenoxy) naphthalene and aromatic dianhydrides", Polymer Vol. 44, 2003, pp. 7067.
[76] Y. Abe, H. Shimakawa, L. L. Hench," Protonic conduction in alkaline earth metaphosphate glasses containing water", J. Non-Cryst. Solids. Vol. 51, 1982, pp. 357.
[77] Y. Abe, H. Hosono, Y. Ohta, L. L. Hench," Protonic conduction in oxide glasses: simple relations between electrical conductivity, activation energy, and O-H bonding state", Phys. Rev. B. Vol. 38, 1988, pp. 10166.
[78] G. Li, M. Nogami, Y. Abe," Influence of heat treatment and humidity on protonic conduction in sol-gel derived amorphous phosphate films", Solid State Ionics Vol. 83, 1996, pp. 209.
[79] Y. Abe, H. Hosono, O. Okita, L. L. Hench," Protonic conduction phosphate glasses", J. Electrochem. Soc. Vol. 141, 1994, pp. L64.
[80] Y. Abe, H. Hosono, W. H. Lee, T. Kasuga," Electrical conduction due to protons and alkai-metal ions in oxide glasses", Phys. Rev. B. Vol. 48, 1993, pp. 15621.
[81] M. Kotama, H. Hosono, Y. Abe, L. L. Hench," Evidence for protonic conduction in barium phosphate glasses", J. Electrochem. Soc. Vol. 138, 1991, pp. 2928.
[82] M. Nagami, Y. Abe," Evidence of water-cooperative proton conduction in silica glasses", Phys. Rev. B. Vol. 55, 1997, pp. 12108.
[83] C. Wang, M. Nogami, Y. Abe," Protonic conduction in P2O5-SiO2 glasses prepared by sol-gel method", J. Sol-Gel Sci. Technol. Vol. 14, 1999, pp. 273.
[84] C. Wang, M. Nogami," Effect of formamide additive on protonic conduction of P2O5-SiO2 glasses prepared by sol-gel method", Materials Letters. Vol. 42, 2000, pp. 225.
[85] S. P. Tung, B. J. Hwang," High Proton Conductive Glass Electrolyte Synthesized by an Accelerated Sol-gel Process with Water/Vaper Management", J. Membrane Sci. Vol. 241, 2004, pp. 315.
[86] S. P. Tung, B. J. Hwang," Synthesis and characterization of hydrated phosphor-silicate glass membrane prepared by an acclerated sol-gel process with water/vapor management", J. Mater. Chem. Vol. 15, 2005, pp. 3532.
[87] S. P. Tung, B. J. Hwang," Preparation and Characterization of Nafion/Hydrated Phosphor-silicate Hybrid Membranes for Direct Methanol Fuel Cell", Fuel Cells Vol. 1, 2007, pp. 32.
[88] 黃立寧, "PTFE/Nafion-TEOS 複合膜的製備及性能研究", 元智大學化學工程系, 2003.
[89] J. Wen, E. M. James," Sol-Gel Preparation of Composites of Poly(dimethylsiloxane) with SiO2/TiO2, and Their Mechanical Properties", Polymer J. Vol. 27, 1995, pp. 492.
[90] 陳坤玉, "聚醯亞胺/二氧化矽奈米複合材料之製備與性質研究",中央大學化學研究所, 2002.
[91] 王龍華, "聚甲基丙烯酸甲酯之有機-無機混成材料製備與特性研究", 勤益技術學院材料與化學工程研究所, 2005.
[92] C. J. T. Landry, B. K. Coltrain, B. K. Brady," Situ polymerization of tetraethoxysilane in poly(methyl methacrylate) : Morphology and dynamic mechanical properties", Polymer Vol. 33, 1992, pp. 1486.
[93] P. Judeinstein, C. Sanchez," Hybrid organic-inorganic materials: a land of multidisciplinarity", J. Mater. Chem. Vol. 6, 1996, pp. 511.
[94] E. J. A. Pope, M. Asami, J. D. Mackemzie," Transparent Silica Gel-PMMA Composites", J. Mater. Res Vol. 4, 1989, pp. 1018.
[95] K. Sakurai, E. Douglas, W. J. Macknight," Spectroscopic study of an ionic blend made from the acid form of sulfonated polystyrene and poly[ethyl acrylate-co-(4-vinylpyridine)]", Macromolecules Vol. 25, 1992, pp. 4506.
[96] R. Glaser, G. L. Wilkes, C. E. Bronnimann," Solid-state 29Si NMR of TEOS-based multifunctional sol-gel materials", J. Non-crystalline solids Vol. 113, 1989, pp. 73.
[97] J. Livage, P. Barboux, M. T. Vandenborre, C. Schmutz, F. Taulelle," Sol-gel synthesis of phosphates", J. Non-crystalline solids Vol. 147, 1992, pp. 18.
[98] J. Tanninen, S. Platt, A. Weis, M. Nystrum," Long-term acid resistance and selectivity of NF membranes in very acidic conditions", J. Memb. Sci. Vol. 240, 2004, pp. 37.
[99] Y. W. Chang, E. Wang, G. Shin, J. E. Han," Poly(vinyl alcohol) (PVA)/sulfonated polyhedral oligosilsesquioxane (sPOSS) hybrid membranes for direct methanol fuel cell applications", Polym. Adv. Technol. Vol. 18, 2007, pp. 535.
[100] S. Lee, W. Jang, S. Choi, Y. Shul, H. Han," Sulfonated Polyimide and Poly(ethylene glycol) diacrylate based Semi-Interpenetrating Polymer Network Membranes for Fuel Cells", J. Appl. Polym. Sci. Vol. 104, 2007, pp. 2965.
[101] E. Sacher, " Dielectric properties of Polyimide film II. DC properteies", IEEE Trans. Electr. Insul Vol. 2, 1979, pp. 85.
[102] G. Alberti, M. Casciola, L. Massinelli, B. Bauer," Polymeric proton conducting membranes for medium temperature fuel cells (110–160 oC)", J. Membr. Sci. Vol. 185, 2001, pp. 73.
[103] R. He, Q. Li, G. Xiao, N. J. Bjerrum," Effect of free volume and sorption on membrane gas transport", J. Membr. Sci. Vol. 226, 2003, pp. 169.
[104] P. Staiti, M. Minutoli, S. Hocevar," Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application", J. Power Sources Vol. 90, 2000, pp. 231.

QR CODE