簡易檢索 / 詳目顯示

研究生: 吳晉安
Jin-An Wu
論文名稱: 新型高分子電解質之合成、性質探討與其高溫質子交換膜燃料電池之應用
Synthesis and Characterization of Novel Polyelectrolytes and Their Applications on High Temperature Proton Exchange Membrane Fuel Cell
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 劉貴生
Guey-Sheng Liou
蕭勝輝
Sheng-Huei Hsiao
王立義
Lee-Yih Wang
王建隆
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 215
中文關鍵詞: 聚醯亞胺溶解度苯基化咪唑離子磷酸質子交換膜燃料電池高分子電解質離子液體
外文關鍵詞: polyimides, solubility, phenylated, imidazolium, phosphoric acid, proton exchange membrane, fuel cell, polyelectrolyte, ionic liquid
相關次數: 點閱:462下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為三大部分,第一部分為“由2,2',6,6'-tetraphenyl-4,4'-oxydianiline合成可溶性聚醯亞胺及其性質探討”。第二部分為“含咪唑離子基團之新型聚醯亞胺的合成、性質探討與其質子交換膜燃料電池之應用”。第三部分為“含新型高分子電解質與離子液體之電解質膜的合成、性質探討與其質子交換膜燃料電池之應用”。
    第一部分中,以4,4'-oxydianiline (4,4'-ODA)為起始物,經過氧化、控制溴化劑N-bromosuccinamide (NBS)的當量進行溴化與還原後,得到新型具對稱結構的芳香族二胺2,2',6,6'-tetraphenyl-4,4'-oxydianiline (4PhODA)。將4PhODA與六種二酸酐以一步法合成新型芳香族聚醯亞胺(PI61a-f)。這些新型聚醯亞胺的固有黏度(inherent viscosity)約為0.33-0.91 dL g-1 (0.5 g dL-1, in NMP or m-cresol, 30 °C)。由此新型二胺與BPDA、6FDA、ODPA以及DSDA所形成的聚醯亞胺展現出良好的溶解性,在濃度為20 mg mL-1時,可在室溫下溶於一般的有機溶劑,諸如NMP、DMAc與chloroform。其中,含剛硬結構(PMDA)的聚醯亞胺PI61a也可在室溫下溶於NMP、DMAc甚至chloroform (60 °C)之中。這是由於2,2’,6,6’位置上巨大的苯環取代基,使高分子鏈堆排較為不易進而提升其溶解度。這些聚醯亞胺也展現出良好的熱穩定性,其玻璃轉移溫度(Tg)由熱機械分析儀(TMA)測得,除了PI61a (> 350 °C)之外,其餘介於298-340 °C之間。而熱裂解溫度(Td5%)由熱重分析儀(TGA)測得,介於506-542 °C之間。這些優異的性質使其新型聚醯亞胺可以進一步的將苯基官能化,並應用於後續質子交換膜燃料電池的應用中。
    第二部分中,以上述的PI61c為起始物進行後續的氯甲基化後,再與甲基咪唑進行四級胺化反應,成功開發接有咪唑離子基團(imidazolium group)之新型聚醯亞胺(ImPI)。另外,許多能影響氯甲基化的反應條件,例如:反應時間、反應試劑與催化劑濃度等被深入探討。而不同的氯甲基化程度是透過核磁共振氫譜(1H NMR)來計算每重複單元上所接有的氯甲基個數。一系列具有不同改質程度的ImPI皆展現優於市售聚苯并咪唑(m-PBI)的氧化穩定性。而帶有鹼性咪唑離子基團的ImPI薄膜可進一步摻雜磷酸,其磷酸摻雜量隨著改質程度的增加而上升(34-159 %)。一系列摻雜磷酸後的ImPI薄膜仍可保持不錯的機械特性與熱穩定性,且在160 °C下進行半電池的量測,其質子傳導率介於0.008-0.057 S cm-1。全電池性能測試是以氫氣與氧氣作為兩極端的氣體並在160 °C下進行,所測得的電池功率介於247-551 mW cm-2之間。ImPI薄膜的微相結構由原子力顯微鏡(AFM)量測,可發現薄膜表面具有明顯親疏水區的相分離,而高改質率的ImPI-1.51薄膜更有連續性的離子通道之形成,此離子通道使ImPI薄膜在較低的磷酸摻雜量下能有較高的質子傳導率與全電池性能。
    第三部分中,新型高分子電解質(P-Cl)已被成功開發,P-Cl進一步進行陰離子置換反應,得到一系列帶有疏水性陰離子的高分子電解質。這些高分子展現出良好的溶解性,同時也展現出不錯的熱穩定性。這些高分子塗佈成薄膜後進行半電池的量測,高分子電解質與離子液體進行不同比例的混摻,並成功塗佈成含有離子液體的高分子電解質膜。此新型電解質膜展現出不錯的離子傳導率。


    This dissertation includes three parts. The first part is “Highly Phenylated Polyimides Containing 4,4'-Diphenylether Moiety”. The second part is “Synthesis and Characterization of Novel Imidazolium-Functionalized Polyimides for High Temperature Proton Exchange Membrane Fuel Cells”. The third part is “Synthesis and Characterization of Novel Electrolyte Membranes Based on Imidazolium- Containing Polyelectrolytes and Ionic Liquid for High Temperature Proton Exchange Membrane Fuel Cells”.
    In the first part, a new aromatic diamine, 2,2',6,6'-tetraphenyl-4,4'-oxydianiline, has been synthesized by oxidation, bromination, Suzuki coupling and reduction of 4,4'-oxydianiline (4,4'-ODA). Highly phenylated polyimides (PI61a-f) were prepared from new aromatic diamine and six commercially available aromatic dianhydrides by one-step method. The inherent viscosity of these polyimides ranged from 0.33 to 0.91 dL g-1, measured in a 0.5 g dL-1 of NMP or m-cresol solution at 30 °C. These highly phenylated polyimides showed excellent solubility. Especially, polyimides (PI61a-f) derived from the rigid pyromellitic dianhydride (PMDA) was soluble in DMAc, NMP at room temperature, and in DMF, chloroform, and m-cresol at 60 °C. Transparent, flexible and tough membranes can be obtained by casting from their NMP or m-cresol solutions. They exhibited good thermal stability, except PI61a containing pyromellitic diimide and PI61f containing nathphalenic diimide (Tg > 350 °C), their glass transition temperatures measured by thermal mechanical analysis (TMA) ranged from 298 to 340 °C. The decomposition temperatures at 5 % weight loss under nitrogen were 506-542 °C. They also showed excellent mechanical properties. The enhanced solubility combined with good thermal stability could allow these phenylated polyimides to be further functionalized by various aromatic electrophilic substitutions on four phenyl rings for polyelectrolyte applications.
    In the second part, novel imidazolium-functionalized polyimides (ImPI-x) were successfully synthesized from polyimides containing trifluoromethyl groups, ether linkages and four phenyl substituents (4PhODA/PI) via chloromethylation followed by quaternization with 1-methylimidazole. The cleavage of ether linkage and crosslinking during chloromethylation can be circumvented by carrying out this reaction at 60 °C with suitable concentrations of chloromethylation reagents, catalyst and polyimides. The degree of substitution (DS) ranging from 0.15 to 2.17 per repeating unit can be achieved without polymer degradation and crosslinking. The pendent imidazolium groups provided the base sites for phosphoric acid (PA) doping by acid-base interaction. PA uptakes of ImPI-x ranged from 34 to 159 % and increased with the increased DS values. ImPI-x membranes also exhibited good thermal stability and mechanical properties in both their dry and PA doped states. The proton conductivity of ImPI-x membranes with PA uptakes of 84 to 159 % were from 0.008 to 0.057 S cm-1 at 160 °C under anhydrous conditions. ImPI-1.51 had the higher proton conductivity of 0.057 S cm-1 than m-PBI (0.046 S cm-1) even though it had a lower PA uptake (159 %). Single fuel cell based on ImPI-1.51 membrane with a PA uptake of 159 % exhibited the peak power density of 551 mW cm-2 with H2/O2 under anhydrous conditions at 160 °C, which was higher than that of m-PBI (419 mW cm-2) with a PA uptake of 216 %. From AFM phase images of ImPI-x, nanophase separation that might be resulted from hydrophobic trifluoromethyl groups and hydrophilic imidazolium groups can be observed. The nanophase separation might facilitate the formation of ionic channels and the transport of protons.
    In the third part, a novel polyelectrolyte (P-Cl) was prepared. The inherent viscosity of P-Cl was measured in a 0.5 g dL-1 of DMSO solution at 30 °C. The chloride counterions of P-Cl were exhaustively metathesized with different anions to form new hydrophobic polyelectrolytes. These polyelectrolytes exhibited low ionic conductivities due to their high Tgs. In order to increase the ionic conductivity, a series of IL-based membranes were prepared by mixing polyelectrolyte with the different amount of ionic liquid. The ionic conductivity of IL-based membranes increased with increasing ionic liquid content.

    Abstract (Chinese)..........................................................................................................I Abstract (English)........................................................................................................III Acknowledgements......................................................................................................VI Content.......................................................................................................................VII List of Figure................................................................................................................XI List of Scheme...........................................................................................................XIV List of Table................................................................................................................XV Preface.......................................................................................................................XVI Part 1 Highly Phenylated Polyimides Containing 4,4'-Diphenylether Moiety.......1 Abstract..........................................................................................................................2 Chapter I Introduction....................................................................................................3 Chapter II Literature reviews.........................................................................................5 2.1 General background.........................................................................................5 2.2 Synthesis of polyimides...................................................................................6 2.3 Approaches to improve the solubility of polyimides.......................................8 2.4 Research objectives........................................................................................24 Chapter III Experimental............................................................................................26 3.1 Measurements.................................................................................................26 3.2 Reagents and solvents....................................................................................27 3.3 Monomer synthesis........................................................................................29 3.4 Polyimide synthesis........................................................................................33 3.5 Preparation of polyimide membranes............................................................33 Chapter IV Results and discussion...............................................................................34 4.1 Monomer synthesis.........................................................................................34 4.2 Polyimide synthesis........................................................................................41 4.3 Properties of polyimides.................................................................................44 Chapter V Conclusions.................................................................................................51 Part 2 Synthesis and characterization of novel imidazolium-functionalized polyimides for high temperature proton exchange membrane fuel cells..............52 Abstract........................................................................................................................53 Chapter I Introduction..................................................................................................54 Chapter II Literature reviews.......................................................................................57 2.1 General background.......................................................................................57 2.2 PEM based on perfluorosulfonic acid ionomer..............................................59 2.3 Alternative PEM material: sulfonated polymers............................................64 2.4 Alternative PEM material: polybenzimidazoles (PBI)...................................74 2.5 Alternative PEM material: quaternized polymers..........................................84 2.6 Research objectives........................................................................................87 Chapter III Experimental..............................................................................................88 3.1 Measurements.................................................................................................88 3.2 Reagents and solvents....................................................................................89 3.3 Polyimide Modification..................................................................................90 3.4 Proton conductivity........................................................................................92 3.5 Membrane electrode assembly (MEA) fabrication and polarization test.......92 Chapter IV Results and discussion...............................................................................94 4.1 Synthesis of chloromethylated polyimides (CMPI-x)....................................94 4.2 The effect of reaction parameters on DS of CMPI-x.....................................98 4.3 The effect of reaction parameters on molecular weight and polydisposity of CMPI-x...............................................................................................................101 4.4 Synthesis of imidazolium-functionalized polyimides (ImPI-x)...................104 4.5 Thermal stability...........................................................................................104 4.6 Oxidative stability........................................................................................107 4.7 Phosphorous acid (PA) uptakes....................................................................108 4.8 Dimensional stability and mechanical properties.........................................110 4.9 Proton conductivity.......................................................................................111 4.10 Fuel cell performance.................................................................................113 4.11 SEM, EDX and AFM morphology.............................................................115 4.12 Long-term stability test on proton conductivity and molecular weight.....119 Chapter V Conclusions...............................................................................................121 Part 3 Synthesis and characterization of novel composite membranes based on imidazolium-containing polyelectrolyte and ionic liquid for high temperature proton exchange membrane fuel cells....................................................................122 Abstract......................................................................................................................123 Chapter I Introduction................................................................................................124 Chapter II Literature reviews.....................................................................................127 2.1 General background.............................................................................................127 2.2 The preparation and property of ionic liquids......................................................128 2.3 The method for preparing IL-based polyelectrolyte membranes.........................131 2.4 Aromatic polymer containing IL for use of polyelectrolyte.................................137 2.5 Research objectives..............................................................................................141 Chapter III Experimental............................................................................................142 3.1 Measurements.......................................................................................................142 3.2 Reagents and solvents..........................................................................................143 3.3 Monomer synthesis..............................................................................................145 3.4 Ionic liquid synthesis............................................................................................147 3.5 Synthesis of imidazolium-containing polyelectrolyte (P-Cl)...............................148 3.6 Anion exchange of imidazolium-containing polyelectrolyte...............................149 3.7 Preparation of polyelectrolyte membranes and the IL-based membranes...........150 3.8 Ionic conductivity.................................................................................................150 Chapter IV Results and discussion.............................................................................151 4.1 Monomer and polyelectrolytes synthesis.............................................................151 4.2 Ionic liquid synthesis............................................................................................160 4.3 Preparation of the IL-based membranes...............................................................162 4.4 Properties of polyelectrolytes and IL-based membranes.....................................164 4.5 Ionic conductivity.................................................................................................172 4.6 AFM morphology.................................................................................................173 Chapter V Conclusions...............................................................................................177 Future work..............................................................................................................178

    1. M. K. Ghosh, K. L. Mittal, Polyimides: Fundamentals and Applications, Marce Dekker, New York, 1996.
    2. B. Kraftschik, W. J. Koros, J. R. Johnson, O. Karvan, J. Membr. Sci. 428, 2013, 608.
    3. K. Chen, X. Chen, K. Yaguchi, N. Endo, M. Higa, K.I. Okamoto, Polymer 50, 2009, 510.
    4. D. J. Liaw, K. L. Wang, Y. C. Huang, K. R. Lee, J. Y. Lai, C.S. Ha, Prog. Polym. Sci. 37, 2012, 907.
    5. M. Hasegawa, K. Horie, Prog. Polym. Sci. 26, 2001, 259.
    6. S. H. Cheng, S. H. Hsiao, T. H. Su, G. S. Liou, Macromolecules 38, 2005, 307.
    7. F. W. Harris, S. L. C. Hsu, High. Perform. Polym. 1, 1989, 3.
    8. Y. T. Chern, H. C. Shiue, Macromolecules 30, 1997, 4646.
    9. F. W. Harris, Y. Sakaguchi, M. Shibata, S. Z. D. Cheng, High. Perform. Polym. 9, 1997, 251.
    10. W. Anannarukan, S. Tantayannon, D. Zhang, E. A. Aleman, E. A. Modareli, F. W. Harris, Polymer 47, 2006, 4936.
    11. G. S. Liou, S. H. Hsiao, M. Ishida, M. Kakimoto, Y. Imai, J. Polym. Sci. A: Polym. Chem. 40, 2002, 3815.
    12. S. H. Hsiao, Y. M. Chang, H. W. Chen, G. S. Liou, J. Polym. Sci. A: Polym. Chem. 44, 2006, 4579.
    13. G. S. Liou, Y. L. Yang, Y. O. Su, J. Polym. Sci. A: Polym. Chem. 44, 2006, 2587.
    14. Y. Imai, High Perform. Polym. 7, 1995, 337.
    15. C. P. Yang, Y. Y. Su, S. H. Hsiao, J. Polym. Sci. A: Polym. Chem. 44, 2006, 5909.
    16. S. H. Lin, F. Li, S. Z. D. Cheng, F. W. Harris, Macromolecules 31, 1998, 2080.
    17. F. Li, J. J. Ge, P. S. Honigfort, S. Fang, J. C. Chen, F. W. Harris, et al., Polymer 40, 1999, 4987.
    18. F. Li, S. Fang, J. J. Ge, F. S. Honigfort, J. C. Chen, F. W. Harris, et al., Polymer 40, 1999, 4571.
    19. C. P. Yang, S. H. Hsiao, C. L. Chung, Polym. Int. 54, 2005, 716.
    20. C. L. Chung, T. W. Tzu, S. H. Hsiao, J. Polym. Res. 13, 2006, 495.
    21. Y. T. Chern, J. T. Twu, J. C. Chen, Eur. Polym. J. 45, 2009, 1127.
    22. Z. Y. Wang, Y. Qi, Macromolecules 27, 1994, 625.
    23. F. W. Harris, S. H. Lin, F. Li, S. Z. D. Cheng, Polymer 37, 1996, 5049.
    24. A. Morikawa, T. A. Furukawa, Y. Moriyama, Polym. J. 37, 2005, 759.
    25. F. W. Harris, W. A. Feld, L. H. Lanier, J. Polym. Sci. C: Polym. Lett. 13, 1975, 283.
    26. J. C. Chen, Y. T. Liu, C. M. Leu, H. Y. Liao, W .C. Lee, T. M. Lee, J. Appl. Polym. Sci. 117, 2010, 1144.
    27. J. C. Chen, K. Rajendran, Y. H. Chang, S. W. Huang, Y. T. Chern, J. Appl. Polym. Sci. 120, 2011, 3159.
    28. J. C. Chen, J. A. Wu, H. W. Chang, C. Y. Lee, Polym. Int. 63, 2014, 352.
    29. T. M. Bogert, R. R. Renshaw, J. Am. Chem. Soc. 30, 1908, 1135.
    30. W. M. Edward, I. M. Robinson, U. S. Patent 2 710 853, 1955.
    31. A. L. Endrey, U. S. Patent 3 179 630, 1965; 3 179 631, 1965; 3 179 633, 1965; 3 179 635, 1965.
    32. W. M. Edward, U. S. Patent 3 179 614, 1965; 3 179 634, 1965.
    33. S. V. Vinogradova, Ya. S. Vygodskii, V. V. Korshak, Polym. Sci. U. S. S. R. 12, 1970, 2254.
    34. G. W. Bower, L. Frost, J. Polym. Sci. A 1, 1963, 3135.
    35. R. A. Dine-Hart, W. W. Wright, J. Appl. Polym. Sci. 11, 1967, 609.
    36. J. I. Jones, F. W. Ochynski, F. A. Rackly, Chem. Ind 1962, 1686.
    37. L. W. Frost, J. Kesse, J. Appl. Polym. Sci. 8, 1964, 1039.
    38. C. E. Sroog, A. L. Endry, S. V. Abramo, C. E. Berr, W. W. Edwards, K. L. Olivier, J. Polym. Sci. A 3, 1965, 1373.
    39. N. A. Adrova, M. M. Koton, Em. M. Moskvina, Dokl. Akad. Nauk. U. S .S. R. (Engl. Transl.) 165, 1965, 1171; Chem. Abstr. 64, 1966, 12815b.
    40. A. Ya. Ardashnikov, I. Ye. Kardash, A. N. Pravednikov, Polym. Sci. U. S. S. R. 13, 1971, 2092.
    41. A. N. Pravednikov, I. Ye. Kardash, N. P. Glukhoyedov, A. Ya. Ardashnikov, Polym. Sci. U. S. S. R. 15, 1973, 399.
    42. Beck & Co., French Patent 1 373 383, 1964; Chem. Abstr. 62, 1965, 10636.
    43. S. V. Vinogradova, G. L. Slonimskii, S. Ya. Vygodakii, A. A. Askadskii, A. I. Mzhel'skii, N. A. Churochkina, V. V. Korshak, Polym. Sci. U. S. S. R. 11, 1969, 3098.
    44. S. V. Vinogradova, S. Ya. Vygodakii, V. V. Korshak, Polym. Sci. U. S. S. R. 12, 1970, 2254.
    45. Y. Sasaki, et al. U. S. Patent 4 290 936, 1981.
    46. F. W. Harris, S. O. Norris, L. H. Lanier, B. A. Renhardt, R. D. Case, S. Varaprath, S. M. Padaki, M. Torres, W. A. Feld, In Polyimides: Synthesis, Characterization and Applications; K. L. Mittal, Ed.; Plenum, New York, 1984; Vol. 1, pp 3-14.
    47. J. Malinge, J. Garapon, B. Sillion, Brit. Polym. J. 20, 1988, 431.
    48. W. S. Kim, D. K. Ahn, M. W. Kim, Macromol. Chem. Phys. 205, 2004, 1932.
    49. Y. Tsuda, K. Etou, N. Hiyoshi, M. Nishikawa, Y. Matsuki, N. Bessho, Polymer Journal 30, 1998, 222.
    50. W. J. Farrissey, P. S. Andrew, U. S. Patant 3 787 367, 1974; U. S. Patant 3 870 674, 1975.
    51. W. J. Farrissey, K. W. Ransch, U. S. Patant 3 870 674, 1975.
    52. J. P. Critchley, Prog. Polym. Sci. 2, 1970, 51.
    53. V. V. Korshak, S. V. Vinogradova, S. Ya. Vygodakii, J. Macromol. Sci., Rev. Macromol. Chem. C11, 1974, 45.
    54. S. V. Vinogradova, V. V. Korshak, S. Ya. Vygodakii, Polym. Sci. U. S. S. R. 8, 1966, 888.
    55. S. V. Vinogradova, S. A. Pavlova, V. V. Korshak, S. Ya. Vygodakii, L. V. Boiko, N. A. Golubeva, Vysokomol. Soedin. B(10), 1968, 398; Chem. Adstr. 69, 1968, 52546b.
    56. Y. L. Liu, C. Y. Hsu, C. S. Wu, J. Appl. Polym. Sci. 89, 2003, 791.
    57. F. W. Harris, W. A. Feld, L. H. Lanier, Appl. Polym. Sympos. 26, 1975, 421.
    58. F. W. Harris, Y. Sakaguchi, Proc. Polym. Mater. Sci. Eng. 60, 1989, 187.
    59. Y. T. Chern, H. C. Shiue, Macromolecules 30, 1997, 4646.
    60. Y. Oishi, M. Ishida, M. A. Kakimoto, Y. Imai, T. Kurosaki, J. Polym. Sci. Polym. Chem. Ed. 30, 1992, 1027.
    61. G. S. Liou, S. H. Hsiao, M. Ishida, M. Kakimoto, Y. Imai, J. Polym. Sci. Polym. Chem. Ed. 40, 2002, 3815.
    62. S. H. Cheng, S. H. Hsiao, T. H. Su, G. S. Liou, Macromolecules 38, 2005, 307.
    63. V. V. Korshak, A. L. Rusanov, R. D. Katsarava, F. F. Niyazi, Polym. Sci. U. S. S. R. 15, 1973, 3000.
    64. O. Ya. Fedotova, V. I. Gorokhov, O. I. Paresishvili, G. S. Karetnikov, G. S. Kolesnikov, Polym. Sci. U. S. S. R. 14, 1972, 1404.
    65. T. Takekoshi, J. G. Wirth, D. R. Heath, J. E. Kochanowski, J. S. Manello, M. J. Webber, J. Polym. Sci. Polym. Chem. Ed. 18, 1980, 3069.
    66. C. J. Lee, U. S. Patent 4 829 131, 1989.
    67. C. A. Arnold, J. D. Summers, R. H. Bott, C. T. Tayor, T. C. Ward, J. E. McGrath, Pro. 32nd Int. SAMPE Sympos. 1987, 586.
    68. F. E. Rogers, U. S. Patent 3 356 648, 1967.
    69. Z. Y. Wang, Y. Qi, Macromolecules 27, 1994, 625.
    70. L. C. Hsu, Ph. D. Sissertation, University of Akron, 1991.
    71. J. C. Chen, Ph. D. Dissertation, the University of Akron. 1996.
    72. K. Xie, J. G. Liu, H. W. Zhou, S. Y. Zhang, M. H. He, S. Y. Yang, Polymer 42, 2001, 7267.
    73. H. S. Kim, Y. H. Kim, S. K. Ahn, S. K. Kwon, Macromolecules 36, 2003, 2327.
    74. Y. H. Kim, H. S. Kim, S. K. Kwon, Macromolecules 38, 2005, 7950.
    75. P. A. Falcigno, S. Janse, M. King, J. Polym. Sci. Polym. Chem. Ed. 30, 1992, 1433.
    76. H. Choi, I. S. Chung, K. Hong, C. E. Park, S. Y. Kim, Polymer 49, 2008, 2644.
    77. Y. T. Chern, J. Y. Tsai, Macromolecules 41, 2008, 9556.
    78. D. Teclechiel, A. Christiansson, A. Bergman, G. Marsh, Environ. Sci. Technol. 41, 2007, 7459.
    79. A. R. Martine, Y. Yang, Acta. Chem. Scand. 47, 1993, 221.
    80. J. K. Stille, Angew. Chem. 25, 1986, 508.
    81. Z. Hu, Y. Yin, K. I. Okamoto, Y. Moriyama, A. Morikawa, J. Membr. Sci. 329, 2009, 146.
    82. C. P. Yang, Y. Y. Su, Polymer 44, 2003, 6311.
    83. F. Basset, A. Lefrant, T. Pascal, B. Gallot, B. Sillion, Polym. Adv. Technol. 9, 1998, 202.
    84. P. S. Ho, J. Leu, J. Phys. Chem. Solids 55, 1994, 1115.
    85. R. F. Saraf, H. M. Tong, T. W. Poon, B. D. Silverman, P. S. Ho, A. R. Rossi, J. Appl. Polym. Sci. 46, 1992, 1329.
    86. Q. Li, E. He, J. O. Jensen. N. J. Bjerrum, Chem. Mater. 15, 2003, 4896.
    87. A. Kuver, I. Vogel, W. Vielstich, J. Power Sources 52, 1994, 77.
    88. P. Costamagna, S. Srinivasan, J. Power Sources 102, 2001, 242.
    89. S. Bose, T. Kuila, T. X. Hien Nguyen, N. H. Kim, K. Lau, J. H. Lee, Prog. Polym. Sci. 36, 2011, 813.
    90. Q. Li, J. O. Jensen, R. F. Savinell, N. J. Bjerrum, Prog. Polym. Sci. 34, 2009, 449.
    91. J. A. Asensio, E. M. Sánchez, P. Gómez-Romero, Chem. Soc. Rev. 39, 2010, 3210.
    92. M. Schuster, T. Rager, A. Noda, K. D. Kreuer, J. Maier, Fuel Cells 5, 2005, 355.
    93. S. J. Paddison, K. D. Kreuer, J. Maier, Phys. Chem. Chem. Phys. 8, 2006, 4530.
    94. M. Geormezi, V. Deimede, N. Gourdoupi, N. Triantafyllopoulos, S. Neophytides, J. K. Kallitsis, Macromolecules 41, 2008, 9051.
    95. M. Geormezi, C. L. Chochos, N. Gourdoupi, S. G. Neophytides, J. K. Kallitsis, J. Power Sources 196, 2011, 9382.
    96. C. H. Shen, S. L. C. Hsu, E. Bulycheva, N. Belomoina, J. Mater. Chem. 22, 2012, 19269.
    97. K. D. Papadimitriou, M. Geormezi, S. G. Neophytides, J. K. Kallitsis, J. Membr. Sci. 433, 2013, 1.
    98. D. W. Seo, Y. D. Lim, S. H. Lee, H. H. Jang, S. Y. Choi, Y. T. Jeon, H. Ju, W. G. Kim, Int. J. Hydrog. Energy 38, 2013, 6261.
    99. S. Yuan, X. Guo, D. Aili, C. Pan, Q. Li, J. Fang, J. Membr. Sci. 454, 2014, 351.
    100. N. Gourdoupi, A. K. Andreopoulou, V. Deimede, J. K. Kallitsis, Chem. Mater. 15, 2003, 5044.
    101. E. K. Pefkianakis, V. Deimede, M. K. Daletou, N. Gourdoupi, J. K. Kallitsis, Macromol. Rapid Commun. 26, 2005, 1724.
    102. J. K. Kallitsis, M. Geormezi, S. G. Neophytides, Polym. Int. 58, 2009, 1226.
    103. J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell, M. Litt, J. Electrochem. Soc. 142, 1995, L121.
    104. M. Litt, R. Ameri, Y. Wang, R. Savinell, J. Wainwright, Mater. Res. Soc. Symp. Proc. 548, 1999, 313.
    105. J. S. Wainright, M. Litt, R. F. Savinell, Handbook of Fuel Cells: Fundamentals, Technology, and Applications, Vol. 3, John Wiley and Sons, New York, vol. 3, 2003, p. 438.
    106. A. Y. Leykin, A. I. Fomekov, E. G. Galpern, I. V. Stankevich, A. L. Rusanov, Polymer 51, 2010, 4053.
    107. M. Li, H. Zhang, Z. G. Shao, Electrochem. Solid State Lett. 9, 2006, A60.
    108. M. Li, K. Scott, X. Wu, J. Power Sources 194, 2009, 811.
    109. X. Wang, C. Xu, B. T. Golding, M. Sadeghi, Y. Cao, K. Scott, Int. J. Hydrog. Energy 36, 2011, 8550.
    110. J. Yang, Q. Li, J. O. Jensen, C. Pan, L. N. Cleemann, N. J. Bjerrum, R. He, J. Power Sources 205, 2012, 114.
    111. W. Ma, C. Zhao, H. Lin, G. Zhang, J. Ni, J. Wang, S. Wang, H. Na, J. Power Sources 196, 2011, 9331.
    112. W. Ma, C. Zhao, J. Yang, J. Ni, S. Wang, N. Zhang, H. Lin, J. Wang, G. Zhang, Q. Li, H. Na, Energy Environ. Sci. 5, 2012, 7617.
    113. N. Zhang, B. Wang, C. Zhao, S. Wang, Y. Zhang, F. Bu, Y. Cui, X. Li, H. Na, J. Mater. Chem. A 2, 2014, 13996.
    114. C. Xu, K. Scott, Q. Li, J. Yang, X. Wu, Fuel Cells 13, 2013, 118.
    115. X. Sun, Y. K. Yang, F. Lu, Macromol. Chem. Phys. 198, 1997, 833.
    116. K. Sopian, A. H. Shamsuddin, T. N. Veziroglu, UKM, Bangi 1995, 209.
    117. D. Anne-Claire, Prog. Mat. Sci. 56, 2011, 289.
    118. K. Kordesch, G. Simader, Fuel Cell and Their Application, VCH publishers, New York 1996.
    119. M. Rikukawa, K. Sanui, Prog. Polym. Sci. 25, 2000, 1463.
    120. M. Eikerling, A. A. Kornyshev, U. Stimming, J. Phys. Chem. B 101, 1997, 10807.
    121. Y. S. Yang, A. Siu, T. J. Peckham, S. Holdcroft, Fuel Cells 215, 2008, 55.
    122. G. Gebel, Polymer 41, 2000, 5829.
    123. K. D. Kreuer, A. Rabenau, W. Weppner, Angew. Chem. Int. Ed. 21, 1982, 208.
    124. J. M. Bockris, A. K. N. Reddy, Modern Electrochemistry, Plenum Press, New York 1990, 461.
    125. P. Regis, R. Benoit, Biophys. J. 71, 1996, 19.
    126. A. J. Appleby, F. R. Foulkes, Fuel Cell Handbook, Van Nostrand Reinhold, New York, 1989.
    127. O. Savadogo, J. New Mater. Electrochem. Syst. 1, 1998, 47.
    128. T. Kobayashi, M. Rikukawa, K. Sanui, N. Ogata, Solid State Ion. 106, 1998, 219.
    129. H. T. Pu , L. Qiao, Q. Z. Liu, Z. L. Yang, Eur. Polym. J. 41, 2005, 2505.
    130. B. Bae, K. Miyatake, M. Watanabe, Macromolecules 42, 2009, 1873.
    131. P. Genova-Dimitrova, B. Baradie, D. Foscallo, C. Poinsignon, J. Y. Sanchez, J. Membr. Sci. 185, 2001, 59.
    132. N. Intaraprasit, P. Kongkachuichay, J. Taiwan Inst. Chem. Eng. 42, 2011, 190.
    133. L. Nie, J. Wang, T. Xu, H. Dong, H. Wu, Z. Jiang, J. Power Sources 213, 2012, 1.
    134. P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, K. Wang, S. Kaliaguine, J. Membr. Sci. 229, 2004, 95.
    135. I. H. Sung, D. M. Yu, Y. J. Yoon, T. H. Kim, J. Y. Lee, S. K. Hong, Y. T. Hong, Macromol. Res. 21, 2013, 1138.
    136. Z. Qi, M. C. Lefebvre, P. G. Pickup, J. Electroanal. Chem. 459, 1998, 9.
    137. X. Glipa, M. El Haddad, D. J. Jones, J. Roziere, Solid State Ion. 97, 1997, 323.
    138. J. Jouanneau, R. Mercier, L. Gonon, G. Gebel, Macromolecules 40, 2007, 983.
    139. D. Zhao, J. Li, M. K. Song, B. Yi, H. Zhang, M. Liu, Adv. Energy Mater. 1, 2011, 203.
    140. S. H. Tian, D. Shu, Y. L. Chen, M. Xiao, Y. Z. Meng, J. Power Sources 158, 2006, 88.
    141. X. X. Guo, J. H. Fang, T. Watari, K. Tanaka, H. Kita, K. I. Okamoto, Macromolecules 35, 2002, 6707.
    142. N. Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida, M. Watanabe, J. Am. Chem. Soc. 128, 2006, 1762.
    143. Y. Yin, O. Yamada, K. Tanaka, K. I. Okamoto, Polymer 38, 2006, 197.
    144. A. Noshay, L. M. Robeson, J. Appl. Polym. Sci. 20, 1976, 1885.
    145. J. Y. Jeon, B. S. Shim, J. Appl. Polym. Sci. 85, 2002, 1881.
    146. I. C. Kim, K. H. Lee, T. M. Tak, J. Appl. Polym. Sci. 89, 2003, 2483.
    147. Y. He, C. Tong, L. Geng, L. Liu, C. Lü, J. Membr. Sci. 458, 2014, 36.
    148. W. Jang, C. Lee, S. Sundar, Y. G. Shul, H. Han, Polym. Degrad. Stab. 90, 2005, 431.
    149. M. Aoki, N. Asano, K. Miyatake, H. Uchid, M. Watanabe, J. Electrochem. Soc. 153, 2006, A1154.
    150. X. Chen, K. Chen, P. Chen, M. Higa, K. I. Okamoto, T. Hirano, J. Polym. Sci., Part A: Polym. Chem. 48, 2010, 905.
    151. J. Yan, C. Liu, Z. Wang, W. Xing, M. Ding, Polymer 48, 2007, 6210.
    152. C. Geniès, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel, M. Pineri, Polymer 42, 2001, 5097.
    153. C. Lee, S. Sundar, J. Kwon, H. Han, J. Polym. Sci. A Polym. Chem. 42, 2004, 3621.
    154. H. J. Kim, M. H. Litt, S. Y. Nam, E. M. Shin, Macromol. Res. 11, 2003, 458.
    155. S. Chen, Y. Yin, K. Tanaka, H. Kita, K. I. Okamoto, High. Perform. Polym. 18, 2006, 637.
    156. N. Li, Z. Cui, S. Zhang, S. Li, F. Zhang, J. Power Sources 172, 2007, 511.
    157. Y. Zhang, M. Litt, R. F. Savinell, J. S. Wainrigth, Polym. Prepr. 40, 1999, 480.
    158. C. Geniès, R. Mercier, B. Sillion, N. Cornet, G. Gebel, M. Pineri, Polymer 42, 2001, 359.
    159. M. Rodgers, Y. Yang, S. Holdcroft, Eur. Polym. J. 42, 2006, 1075.
    160. N. Asano, K. Miyatake, M. Watanabe, Chem. Mater. 16, 2004, 2841.
    161. G. Meyer, G. Gebel, L. Gonon, P. Capron, D. Marsacq, R. Mercier, J. Power Sources 157, 2006, 293.
    162. C. Marestin, G. Gebel, O. Diat, R. Mercier, Adv. Polym. Sci. 216, 2008, 185.
    163. K. Miyatake, T. Yasuda, M. Watanabe, J. Polym. Sci., Part A: Polym. Chem. 46, 2008, 4469.
    164. Y. H. Li, R. Z. Jin, Z. M. Cui, Z. Wang, W. Xing, X. P. Qiu, X. L. Ji, L. X. Gao, Polymer 48, 2007, 2280.
    165. Z. X. Hu, Y. Yin, H. Kita, K. I. Okamoto, Y. Suto, H. G. Wang, H. Kawasato, Polymer 48, 2007, 1962.
    166. C. H. Lee, C. H. Park, Y. M. Lee, J. Membr. Sci. 313, 2008, 199.
    167. Y. Sutou, Y. Yin, Z. Hu, S. Chen, H. Kita, K. Okamoto, H. Wang, H. Kawasato, J. Polym. Sci., Part A: Polym. Chem. 47, 2009, 1463.
    168. O. Savard, T. J. Peckham, Y. Yang, S. Holdcroft, Polymer 49, 2008, 4949.
    169. X. L. Zhu, H. Y. Pan, Y. F. Liang, X. G. Jian, Eur. Polym. J. 44, 2008, 3782.
    170. Y. Alvarez-Gallego, B. Ruffmann, V. Silva, H. Silva, A. E. Lozano, J. G. de la Carnpa, S. P. Nunes, J. de Abajo, Polymer 49, 2008, 3875.
    171. H. Wei, X. Fang, Polymer 52, 2011, 2735.
    172. F. Zhang, N. Li, S. Zhang, S. Li, J. Power Sources 195, 2010, 2159.
    173. Q. Li, R. He, J. A. Gao, J. O. Jensen, N. J. Bjerrum, J. Electrochem. Soc. 150, 2003, A1608.
    174. S. J. Hamrock, M. A. Yandrasits, Polym. Rev. 46, 2006, 219.
    175. M. Mamlouk, K. Scott, Int. J. Energy Res. 35, 2011, 507.
    176. J. C. Lassegues, J. Grondin, M. Hernandez, B. Maree, Solid State Ion. 145, 2001, 37.
    177. T. S. Chung, J. Macromol. Sci. C37, 1997, 277.
    178. T. Vogel, C. S. Marvel, J. Polym. Sci. 50, 1961, 511.
    179. Y. Iwakura, Y. Imai, K. Uno, J. Polym. Sci. 2A, 1964, 2605.
    180. F. L. Hedberg, C. S. Marvel, J. Polym. Sci. 12, 1974, 1823.
    181. P. E. Eaton, G. R. Carlson, J. T. Lee, J. Org. Chem. 38, 1973, 4071.
    182. D. Hoel, E. Grunwald, J. Phys. Chem. 81, 1977, 2135.
    183. B. Xing, O. Savadogo, J. New Mater. Electrochem. Syst. 2, 1999, 95.
    184. T. Yamamoto, WO Patent, 0 039 202, 2000.
    185. R. Bouchet, E. Siebert, Solid State Ion. 118, 1999, 287.
    186. R. He, Q. Li, J. O. Jensen, N. J. Bjerrum, J. Polym. Sci., Part A: Polym. Chem. 45, 2007, 2989.
    187. A. Schechter, R. F. Savinell, Solid State Ion. 147, 2002, 181.
    188. C. E. Hughes, S. Haufe, B. Angerstein, R. Kalim, A. Reiche, M. Baldus, J. Phys. Chem. B 108, 2004, 13626.
    189. Y. L. Ma, J. S. Wainright, M. H. Litt, R. F. Savinell, J. Electrochem. Soc. 151, 2004, A8.
    190. J. Mader, L. Xiao, T. J. Schmidt, B. C. Benicewicz, Fuel Cells II, Book Series: Advances in Polymer Science, vol. 216, 2007, p. 63.
    191. L. X. Xiao, H. F. Zhang, E. Scanlon, L. S. Ramanathan, E. W. Choe, D. Rogers, et al. Chem. Mater. 17, 2005, 5328.
    192. X. Lin, X. Chen, B. C. Benicewicz, J. Power Source 243, 2013, 796.
    193. Q. Li, L. Liu, S. Liang, Q. Li, B. Jin, R. Bai, Polym. Chem. 5, 2014, 2425.
    194. E. Avram, E. Butuc, C. Luca, J. Macromol. Sci. Part A: Pure Appl. Chem. 34, 1997, 1701.
    195. J. C. Chen, J. A. Wu, S. W. Li, S. C. Chou, React. Funct. Polym. 78, 2014, 23.
    196. J. Lobato, P. Cañizares, M. A. Rodrigo, J. J. Linares, F. J. Pinar, Int. J. Hydrog. Energy 35, 2010, 1347.
    197. C. Lü, B. Gao, Q. Liu, C. Qi, Colloid Polym. Sci. 286, 2008, 553.
    198. J. Wang, S. Li, S. Zhang, Macromolecules 43, 2010, 3890.
    199. O. J. Plante, S. L. Buchwald, P. H. Seeberger, J. Am. Chem. Soc. 122, 2000, 7148.
    200. G. V. Madhava Sharma, Ch. G. Reddy, P. R. Krishna, J. Org. Chem. 68, 2003, 4574.
    201. L. Robert, Jr. Burwell, Chem. Rev. 54, 1954, 615.
    202. G. A. Olah, S. C. Narang, B. G. B. Gupta, R. Malhotra, J. Org. Chem. 44, 1979, 1247.
    203. M. E. Jung, M. A. Lyster, J. Org. Chem. 42, 1977, 1977.
    204. T. H. Kim, S. K. Kim, T. W. Lim, J. C. Lee, J. Membr. Sci. 323, 2008, 362.
    205. S. J. Hamrock, M. A. Yandrasits, Polym. Rev. 46, 2006, 219.
    206. A. Schechter, R. F. Savinell, Solid State Ion. 147, 2002, 181.
    207. C. E. Hughes, S. Haufe, B. Angerstein, R. Kalim, A. Reiche, M. Baldus, J. Phys. Chem. B 108, 2004, 13626.
    208. Y. L. Ma, J. S. Wainright, M. H. Litt, R. F. Savinell, J. Electrochem. Soc. 151, 2004, A8.
    209. J. C. Chen, J. A. Wu, C. Y. Lee, M. C. Tsai, K. H. Chen, J. Membr. Sci. 483, 2015, 144.
    210. R. S. McLean, M. Doyle, B. B. Sauer, Macromolecules 33, 2000, 6541.
    211. S. Yu, L. Xiao, B. C. Benicewicz, Fuel Cells 8, 2008, 165.
    212. M. A. Molleo, X. Chen, H. J. Ploehn, B. C. Benicewicz, Fuel Cells 14, 2014, 16.
    213. R. Deiasi, J. Russell, J. Appl. Polym. Sci. 15, 1971, 2965.
    214. J. S. Lee, T. Nohira, R. Hagiwara, J. Power Sources 171, 2007, 535.
    215. E. Quartarone, A. Magistris, P. Mustarelli, S. Grandi, A. Carollo, G. Z. Zukowska, J. E. Garbarczyk, J. L. Nowinski, C. Gerbaldi, S. Bodoardo, Fuel Cells 9, 2009, 349.
    216. H. Zhang, P. K. Shen, Chem. Rev. 112, 2012, 2780.
    217. U. A. Rana, M. Forsyth, D. R. MacFarlane, J. M. Pringle, Electrochim. Acta 84, 2012, 213.
    218. F. Yan, S. Yu, X. Zhang, L. Qiu, F. Chu, J. You, J. Lu, Chem. Mater. 21, 2009, 1480.
    219. S. S. Sekhon, P. Krishnan, B. Singh, K. Yamada, C. S. Kim, Electrochim.Acta 52, 2006, 1639.
    220. T. Welton, Chem. Rev. 99, 1999, 2071.
    221. B. H. Susan, A. Noda, S. Mitsushima, M. Watanabe, Chem. Commun. 2003, 938.
    222. J. T. Wang, S. L. Hsu, Electrochim. Acta 56, 2011, 2842.
    223. A. Fernicola, S. Panero, B. Scrosati, J. Power Sources 178, 2008, 591.
    224. J. Xiang, R. Chen, F. Wu, L. Li, S. Chen, Q. Zou, Electrochim. Acta 56, 2011, 7503.
    225. H. Ye, J. Huang, J. J. Xu, N. K. A. C. Kodiweera, J. R. P. Jayakody, S. G. Greenbaum, J. Power Sources 178, 2008, 651.
    226. J. L. Bideau, L. Viau, A. Vioux, Chem. Soc. Rev. 40, 2011, 907.
    227. P. Snedden, A. I. Cooper, K. Scott, N. Winterton, Macromolecules 36, 2003, 4549.
    228. H. Zhang, W. Wu, J. Wang, T. Zhang, B. Shi, J. Liu, S. Cao, J. Membr. Sci. 476, 2015, 136.
    229. R. S. Malik, S. N. Tripathi, D. Gupta, V. Choudhary, Int. J. Hydrog. Energy 39, 2014, 12826.
    230. P. R. Jothi, S. Dharmalingam, J. Membr. Sci. 450, 2014, 389.
    231. S. Y. Lee, A. Ogawa, M. Kanno, H. Nakamoto, T. Yasuda, M. Watanabe, J. Am. Chem. Soc. 132, 2010, 9764.
    232. C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, A. B. Bocarsly, J. Power Sources 103, 2001, 1.
    233. W. Jang, S. Choi, S. Lee, Y. Shul, H. Han, Polym. Degrad. Stabil. 92, 2007, 1289.
    234. S. C. Kumbharkar, M. N. Islam, R. A. Potrekar, U. K. Kharul, Polymer 50, 2009, 1403.
    235. A. Nishimoto, K. Agehara, N. Furuya, T. Watanabe, M. Watanabe, Macromolecules 32, 1999, 1541.
    236. Y. Wang, Sol. Energy Mater. Sol. Cells 93, 2009, 1167.
    237. M. J. Park, I. Choi, J. Hong, O. Kim, J. Appl. Polym. Sci. 129, 2013, 2363.
    238. Y. S. Ye, J. Rick, B. J. Hwang, J. Mater. Chem. A 1, 2013, 2719.
    239. A. Fernicola, B. Scrosati, H. Ohno, Ionics 12, 2006, 95.
    240. M. Galiński, A. Lewandowski, I. Stępniak, Electrochim. Acta 51, 2006, 5567.
    241. Y. S. Yun, J. H. Kim, S. Y. Lee, E. G. Shim, D. W. Kim, J. Power Sources 196, 2011, 6750.
    242. M. Doyle, S. K. Choi, G. Proulx, J. Electrochem. Soc. 147, 2000, 34.
    243. M. D. Bennett, D. J. Leo, G. L. Wilkes, F. L. Beyer, T. W. Pechar, Polymer 47, 2006, 6782.
    244. M. K. Mistry, S. Subianto, N. R. Choudhury, N. K. Dutta, Langmuir 25, 2009, 9240.
    245. A. Noda, M. Watanabe, Electrochim. Acta 45, 2000, 1265.
    246. M. A. B. H. Susan, T. Kaneko, A. Noda, M. Watanabe, J. Am. Chem. Soc. 127, 2005, 4976.
    247. T. Ueki, M. Watanabe, Macromolecules 41, 2008, 3739.
    248. K. Matsumoto, T. Endo, Macromolecules 42, 2009, 4580.
    249. K. Matsumoto, T. Endo, Macromolecules 41, 2009, 6981.
    250. M. Hirao, K. Ito, H. Ohno, Electrochim. Acta 45, 2000, 1291.
    251. W. Ogihara, S. Washiro, H. Nakajima, H. Ohno, Electrochim. Acta 51, 2006, 2614.
    252. M. Yoshizawa, W. Ogihara, H. Ohno, Polym. Adv. Technol. 13, 2002, 589.
    253. H. Ohno, Macromol. Symp. 551, 2007, 249.
    254. M. Yoshizawa, M. Hirao, K. Ito-Akita, H. Ohno, J. Mater. Chem. 11, 2001, 1057.
    255. H. Nakajima, H. Ohno, Polymer 46, 2005, 11499.
    256. J. Yuan, M. Antonietti, Polymer 52, 2011, 1469.
    257. Q. Che, B. Sun, R. He, Electrochim. Acta 53, 2008, 4428.
    258. A. N. Mondal, B. P. Tripathi, V. K. Shahi, J. Mater. Chem. 21, 2011, 4117.
    259. E. Cho, J. S. Park, S. S. Sekhon, G. G. Park, T. H. Yang, W. Y. Lee, C. S. Kim, S. B. Park, J. Electrochem. Soc. 156, 2009, B197.
    260. T. Yasuda,S. I. Nakamura,Y. Honda, K. Kinugawa, S. Y. Lee, M. Watanabe, ACS Appl. Mater. Interfaces 4, 2012, 1783.
    261. S. Y. Lee, T. Yasuda, M. Watanabe, J. Power Sources 195, 2010, 5909.
    262. T. Yasuda, M. Watanabe, MRS Bull. 38, 2013, 560.
    263. D. Mecerreyes, Prog. Polym. Sci. 36, 2011, 1629.
    264. B. Lin, L. Qiu, B. Qiu, Y. Peng, F. Yan, Macromolecules 44, 2011, 9642.
    265. P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. Desouza, J. Dupont, Polyhedron 15, 1996, 1217.
    266. P. Y. Pennarun, P. Jannasch, Solid State Ion. 176, 2005, 1849.
    267. C. C. weber, A. F. Masters, T. Maschmeyer, Angew. Chem. Int. Ed. 51, 2012, 11483.
    268. X. Hu, Y. Li, D. Cui, B. Chen, J. Chem. Eng. Data 53, 2008, 427.
    269. R. S. Bhavsar, S. C. Kumbharkar, A. S. Rewar, U. K. Kharul, Polym. Chem. 5, 2014, 4083
    270. P. K. Bhowmik, H. Han, J. J. Cebe, R. A. Burchett, A. M. Sarker, J. Polym. Sci. Pol. Chem. 40, 2002, 659.
    271. L. Chen, S. Yu, Y. Kagami, J. Gong, Y. Osada, Macromolecules 31, 1998, 787.
    272. A. I. Abdulahad, C. Jangu, S. T. Hemp, T. E. Long, Macromol. Symp. 342, 2014, 56.
    273. A. Kütt, T. Rodima, J. Saame, E. Raamat, V. Mäemets, et al. J. Org. Chem. 76, 2011, 391.

    QR CODE