簡易檢索 / 詳目顯示

研究生: 黃雅琪
Ya-Chi Huang
論文名稱: 具有超晶格鰭片絕緣核心之奈米級鰭式場效電晶體
Nano-scale FINFET with superlattice fin core insulator
指導教授: 莊敏宏
Miin-Horng Juang
口試委員: 張勝良
Sheng-Lyang Jang
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 50
中文關鍵詞: 鰭式場效電晶體超晶格核心
外文關鍵詞: FinFET, Superlattice fin core insulator
相關次數: 點閱:163下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鰭式場效電晶體在目前半導體產業有非常重要的地位,其比傳統平面式金氧半場效電晶體更有可以縮小 的 特性,除了使佈局的面積縮小以外,其電特性也比傳統平面式金氧半場效電晶體更優秀,提供更好的閘極控制 能力。然而,在元件微縮過程中,發現更窄的鰭片在實際製程中會容易斷裂,所以本論文提出加入超晶格鰭片核心絕緣體去改善這項問題。此外模擬了元件微縮的過程去評估元件的結構參數如何影響元件。
本篇論文使用 Sentaurus TCAD 元件模擬軟體進行模擬分析,發現加入超晶格鰭片核心絕緣體的鰭式場效電晶體,在與傳統平面式 金氧半場效電晶體 具有相同鰭片寬度時,雖然通道的總載子數量較傳統鰭式場效電晶體少,但其表現更好的電特性,並且可以提高鰭片在製程中減少斷裂的能力,此提供鰭式場效電晶體在製程中之良率改善及特性提升。


FinFET plays a very important role in the current semiconductor industry, which has better electrical characteristics than MOSFET. Additionally, it provides superior gate control capabilities and enabling smaller layout areas. Nonetheless, narrower fins tend to collapse during the manufacturing process. For alleviating this problem, in this thesis, a superlattice fin core insulator is proposed, and the resultant FinFET with fin core insulator are characterized. In addition, various simulation parameters were conducted to evaluate their effects.
This thesis uses Sentaurus TCAD device simulation software to analyze and compare the performance of Fin Field-Effect Transistors (FinFETs) with and without the use of a superlattice fin core insulator. With the same fin width, the total amount of carrier in the FinFET with a superlattice fin core insulator is smaller than that in a conventional FinFET. However, the FinFET with core insulator can result in better electrical characteristics and also provides better protection against potential fin collapse during the manufacturing process.

摘要 i Abstract ii Acknowledgment iii Contents iv List of Figures v List of Tables vii Chapter 1 Introduction 1 1.1. Motivation 1 1.2. Overview of device 2 1.2.1. Overview of FinFET 2 1.2.2. Nano-scale FinFET with superlattice fin core insulator 4 1.3. Device physical mechanism 5 1.4. TCAD simulation introduction 7 Chapter 2 Device Fabrication 8 2.1. FinFET 8 2.2. Nano-scale FinFET with superlattice fin core insulator 12 Chapter 3 Results and Discussion 16 3.1. FinFET 16 3.1.1. Device scale down 16 3.1.2. Effect of series resistance 22 3.2. Nano-Scale FinFET with superlattice fin core insulator 27 3.2.1. Comparation of two structures 27 3.2.2. Effect of series resistance 32 Chapter 4 Conclusion 35 References 36

[1] Y.H. Lee, J.H. Lee, Y.F. Wang, R. Hsieh, Y.S. Tsai and K. Huang, "Consideration of BTI Variability and Product Level Reliability to Expedite Advanced FinFET Process Development", IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, pp. 15.2.1-15.2.4, Dec. 2016, DOI: 10.1109/IEDM.2016.7838421.
[2] W.Y. Chien, T.M. Wang, Y.D. Chih, J. Chang, C.J. Lin and Y.C. King, "Mode NV Logic Gates for High-Speed Computing System on 16nm FINFET CMOS Logic Process", IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, pp. 12.1.1-12.1.4, Dec. 2017, DOI: 10.1109/IEDM.2017.8268375.
[3] X. He et al., "Impact of aggressive fin width scaling on FinFET device characteristics", IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, pp. 20.2.1-20.2.4, Dec. 2017, DOI: 10.1109/IEDM.2017.8268427.
[4] L. Donetti, C. Sampedro, F. G. Ruiz, A. Godoy and F. Gámiz, "Three-dimensional multi-subband simulation of scaled FinFETs", European Solid-State Device Research Conference (ESSDERC), Leuven, Belgium, pp. 180-183, Sep. 2017, DOI: 10.1109/ESSDERC.2017.8066621.
[5] S. M. Nawaz, S. Dutta and A. Mallik, "Comparison of Gate-Metal Work Function Variability Between Ge and Si p-Channel FinFETs", IEEE Transactions on Electron Devices, vol. 62, no. 12, pp. 3951-3956, Dec. 2015, DOI: 10.1109/TED.2015.2488101.
[6] T. Funaki, "A study on gate voltage fluctuation of MOSFET induced by switching operation of adjacent MOSFET in high voltage power conversion circuit", International Workshop on Electromagnetic Compatibility of Integrated Circuits (EMC Compo), Nara, Japan, pp. 113-118, Dec. 2013, DOI: 10.1109/EMCCompo.2013.6735183.
[7] Khanna, V.K., "Short-Channel Effects in MOSFETs", Integrated Nanoelectronics, NanoScience and Technology, Springer, New Delhi, pp. 73-93, Sep. 2016. [Online]. Available: https://doi.org/10.1007/978-81-322-3625-2_5.
[8] A. Chaudhry and M.J. Kumar, "Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review", IEEE Transactions on Device and Materials Reliability, vol. 4, no. 1, pp. 99-109, March 2004, DOI: 10.1109/TDMR.2004.824359.
[9] Nguyen Dang Chien, Chun Hsing Shih, "Short-channel effect and device design of extremely scaled tunnel field-effect transistors", Microelectronics Reliability, vol. 55, issue 1, pp. 31-37, Jan. 2015. [Online]. Available: https://doi.org/10.1016/j.microrel.2014.09.028.
[10] A. Sudarsanan and K. Nayak, "TCAD-Based Investigation of Statistical Variability Immunity in U-Channel FDSOI n-MOSFET for Sub-7-nm Technology", IEEE Transactions on Electron Devices, vol. 68, no. 6, pp. 2611-2617, June 2021, DOI: 10.1109/TED.2021.3074116.
[11] N.G. Tarr, D.J. Walkey, M.B. Rowlandson, S.B. Hewitt, T.W. MacElwee, “Short-channel effects on MOSFET subthreshold swing”, Solid-State Electronics, vol. 38, issue 3, pp. 697-701, Mar. 1995. [Online]. Available: https://doi.org/10.1016/0038-1101(94)00147-8.
[12] N.G. Tarr, D.J. Walkey, M.B. Rowlandson, S.B. Hewitt, T.W. MacElwee, "Short-channel effects on MOSFET subthreshold swing", Solid-Stare Electronics, vol. 38. no. 3, pp. 697-701, Mar. 1995. [Online]. Available: https://doi.org/10.1016/0038-1101(94)00147-8.
[13] E.P. Vandamme, P. Jansen and L. Deferm, "Modeling the subthreshold swing in MOSFET's", in IEEE Electron Device Letters, vol. 18, no. 8, pp. 369-371, Aug. 1997, DOI: 10.1109/55.605442.
[14] M.C. Wang, Z.Y. Rao, H.Y. Liu, F.Y. Tuan, W.S. Liao and W.H. Lan, "DIBL effect gauging the integrity of nano-node n-channel FinFETs”, International Symposium on Next Generation Electronics (ISNE), Keelung, Taiwan, pp. 1-2, May. 2017, DOI: 10.1109/ISNE.2017.7968704.
[15] M.F. Al-Mistarihi, A. Rjoub and N.R. Al-Taradeh, "Drain induced barrier lowering (DIBL) accurate model for nanoscale Si-MOSFET transistor”, International Conference on Microelectronics (ICM), Beirut, Lebanon, pp. 1-4, Dec. 2013, DOI: 10.1109/ICM.2013.6735011.
[16] A.S. Shruthi, A.M. Archna, M.Ponni and P. Vaya, "Study of device physics in impact ionisation MOSFET using synopsys TCAD tools", International Conference on Advances in Electronics Computers and Communications, Bangalore, India, pp. 1-6, Oct. 2014, DOI: 10.1109/ICAECC.2014.7002450.
[17] I. Avci et al., "Three-dimensional TCAD Process and Device Simulations", Biennial University/Government/Industry Microelectronics Symposium, San Jose, CA, USA, pp. 41-46, July. 2006, DOI: 10.1109/UGIM.2006.4286350.
[18] Ric Borges , Terry Ma, Wei-Choon Ng, Sathya Krishnamurthy, Lars Bomholt, "Implementation of TCAD-for-Manufacturing Methodology using Process Compact Models", International Conference on Solid-State and Integrated Circuit Technology Proceedings, Shanghai, China, pp. 1853-1856, Oct. 2006, DOI: 10.1109/ICSICT.2006.306487.
[19] D.Y. Chen, D.Y. Wei, J. Xu, P.G. Han, X. Wang, Z.Y. Ma, K.J. Chen, W.H. Shi and Q.M. Wang, "Enhancement of electroluminescence in p–i–n structures with nano-crystalline Si/SiO2 multilayers", Semiconductor Science and Technology, vol. 23, no. 1, Dec. 2007, DOI: 10.1088/0268-1242/23/1/015013.
[20] I.P. Lisovskyy, V.G. Litovchenko, D.O. Mazunov, S. Kaschieva, J. Koprinarova, S. N. Dmitriev, "Infrared spectroscopy study of Si-SiO2 structures irradiated with high-energy electrons", Journal of Optoelectronics and Advanced Materials, vol. 7, no. 1, pp. 325 – 328, Feb. 2005.

QR CODE