簡易檢索 / 詳目顯示

研究生: KARTHIKEYAN MANIVANNAN
KARTHIKEYAN MANIVANNAN
論文名稱: Hybrid Core-Shell Micro-Nanospheres for Sensing, Bioimaging and Photothermal Therapy Applications
Hybrid Core-Shell Micro-Nanospheres for Sensing, Bioimaging and Photothermal Therapy Applications
指導教授: 陳建光
Jem-Kun Chen
口試委員: 蔡協致
Hsieh-Chih Tsai
鄭智嘉
Chih-Chia Cheng
許蕙玲
Hui-Ling Hsu
游佳欣
Jia Youxin
李愛薇
Ai-Wei Lee
黃啟賢
Chi-Hsien Huang
陳建光
Jem-Kun Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 149
中文關鍵詞: 核-殼二氧化矽微球型態結構色光子晶體聚合生 物感測器生物影像光熱治療
外文關鍵詞: Core-shell, SiO2 microsphere, Structural color, Photonic crystals, PNIPAM@SiO2 microspheres, Biosensors, Ag@SiO2@Agseed, Ag@SiO2@AgNPs, Nanosphere
相關次數: 點閱:302下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今核-殼材料成為研究人員所關注的材料之一,是因為在尺寸及形狀的可控性。
    核-殼結構存在有像是球狀、星狀、螺旋狀、偏心圓、管狀等等,但以球狀最為廣泛應用,
    其中包含光子晶體、感測器、生物影像及光熱療法,是由於核-殼結構在膠體狀態中有好
    的遷移率及好的分散性質,高的堆積密度和表面具有低的光散射性質。本篇論文以球狀核
    -殼材料二氧化矽-聚(N-異丙基丙烯醯胺) (PNIPAM)和 Ag@SiO2@Ag 奈米粒子為基礎進行
    三個研究方向及應用。
    第一部分為利用均一尺寸的二氧化矽微球和微米矽球接枝上熱響應的 PNIPAM 高
    分子刷並探討其光子晶體行為。藉由表面原子自由基轉移聚合法 (ATRP),利用
    CuBr1/CuBr2/1,1,4,7,7-pentamethyldiethylenetriamine (PMDETA)作為催化系統,將異丙基丙
    烯醯胺包覆在矽球表面。在矽球表面接枝的厚度由 FTIR、TGA、SEM、TEM 鑑定。
    SiO2@PNIPAM 核-殼材料會和周圍的微米矽球會形成如光子晶體般緊密堆積。此外,樣
    品通過用綠色激光指示器處理來評估。
    在第二部份我們著重於利用無機矽球表面接枝 poly(N-isopropylacrylamide) (PNIPAM)
    有機高分子刷之核-殼結構。先利用表面起始之原子自由基轉移聚合法將異丙基丙烯醯胺
    聚合於矽球表面我們先將異丙基丙烯醯胺、甲醇和純水以一定比例混和,再加入含有
    CuBr1/CuBr2/1,1,4,7,7-pentamethyldiethylenetriamine (PMDETA)之催化系統中,以此得到表
    面接枝 NIPAM 高分子刷的微米矽球。所得到之 PNIPAM@SiO2 微球會再以 FTIR, TGA,
    XPS, SEM, TEM 等儀器分析其性質。固定化血紅蛋白( Hb)具有生物電活性,並且在電
    化學實驗中藉由經修飾之電極測定固定化血紅蛋白時,觀察到一個明確的-0.38V 電位的
    氧化還原峰。經修飾電極展現出很廣的線性檢測範圍,從 0.1μM 到 333μM, 限制極限為
    0.07μM。 因此,修飾電極在檢測生物電活性中的 H2O2與以酶為基材的生物傳感器應用中
    具有很高的潛在應用價值。
    在第三部分裡,我們做出了 Ag@SiO2@Agseed 和 Ag@SiO2@AgNPs核-殼粒子應用在
    生物顯影與光熱治療癌症上,我們使用了較環保合成的方式合成兩種不同的奈米複合粒子,
    利用表面改質技術將矽殼層包覆在奈米銀表面粒子上控制其晶核成長。我們也使用了
    ii
    NaBH4 來當做還原劑並包覆在表面奈米銀複合粒子的銀奈米粒子上。我們對核-殼粒子做
    了定型分析如:UV、PL、SEM、TEM 與 STEM 做表面型態的分析。可以藉由 UV 吸收特
    定可見光波長的特性應用在生醫領域與光熱治療上,進而有效率的造成較大細胞如海拉細
    胞凋亡達到治療的目的。在現今的研究中,我們用體外實驗研究發現了特有的多樣性與生
    物相容性應用在癌症光熱治療與生物顯影,我們相信這樣的奈米材料未來在癌症治療上有
    良好的前景


    This PhD research mainly focused on the spherical-shape core-shell SiO2-poly(N
    isopropylacrylamide) (PNIPAM) and Ag@SiO2@Ag micro-nanosphere hybrid core-shell micronanospheres for sensing, biomedical applications due to its attracting physicochemical property.
    due to high mobility and good dispersion properties in paste state, high packing density and low
    light scattering, high surface area, good biocompatibility.These doctoral studies divided in to
    three applications such as photonic crystals (PCs), sensor and bioimaging (BI), Photothermal
    therapy (PTT). From our results, we validate that.
    1. In summary, a core-shell structure comprising a silica microsphere core and a
    PNIPAM grafted shell. Because of their micro scale, the real-time packing behavior of
    these particles in solution could be observed by OM. The visual red-to-blue color
    change confirmed that the ordered packing of the microspheres in the water layer was
    retained during the temperature increase. Hence, the synthesized PNIPAM-grafted
    silica microspheres could provide an understanding of the packing mechanism of PCs
    in water and could be used in a wide range of visual color sensor and optical
    application.
    2. we developed a simple method to prepare PNIPAM@SiO2 composite. The bioenzyme,
    hemoglobin was immobilized on the surfaces of PNIPAM@SiO2 composite to fabricate
    the Hb/PNIPAM@SiO2 composite electrode. The Hb exhibits direct electron transfer
    with the modified electrode surface. Moreover, the Hb/PNIPAM@SiO2 modified
    electrode detected H2O2 over wide well-linear concentration range. We believe that the
    fabricated biosensor has great potential for biological and biomedical applications.
    3. In summary, we have demonstrated the Ag@SiO2@Agseed and Ag@SiO2@AgNPs coreshell nanoparticles with enhanced therapeutic performance using a bioimaging and
    excellent biocompatibility. The in vitro study shows the effective photothermal
    destruction of HeLa cancer cells, we detected the large cells damage upon the light
    irradiation Cell apoptosis imaging. We believe both materials are showed good
    photothermal heat generation. Therefore, these nanoparticles would play effective
    photothermal therapy agents play important roles in biomedical and the presented
    research use as a promising therapeutic system for cancer.
    Finally, that the the spherical-shape core-shell SiO2-poly(N isopropylacrylamide) (PNIPAM) and
    Ag@SiO2@Ag micro-nanosphere hybrid core-shell micro-nanospheres for sensing, biomedical
    applications. In detail, tailoring methods offer a multifunctional property in a single system,
    which is going to needy in the near future. In addition, recently lot of researcher focused on this
    novel material to resolve some of the longtime problem in the sensing promising therapeutic
    system for cancer.

    摘要--------------------------------------------------------------------------------------------------------------i Abstract--------------------------------------------------------------------------------------------------------iii Acknowledgement--------------------------------------------------------------------------------------------xi List of Figures-----------------------------------------------------------------------------------------------xiv List of schemes ---------------------------------------------------------------------------------------------xix List of tables-------------------------------------------------------------------------------------------------xix List of abbreviations----------------------------------------------------------------------------------------xx 1. Chapter 1: Introduction----------------------------------------------------------------------------------1 1.1. Silicon dioxide (SiO2)-------------------------------------------------------------------------------1 1.2. Silicon dioxide nanosphere and microsphere (SiO2)-------------------------------------------1 1.3. Synthesis (SiO2)-------------------------------------------------------------------------------------3 1.4. Core-shell (inorganic-polymer)--------------------------------------------------------------------4 1.5. Silver (Ag)--------------------------------------------------------------------------------------------4 1.5.1. Silver nanomaterial their applications ---------------------------------------------------5 1.6. Core-shell (inorganic-inorganic)------------------------------------------------------------------7 1.7. Eco- friendly polymer-------------------------------------------------------------------------------8 x 1.7.1. Thermoresponsive polymers --------------------------------------------------------------9 1.7.2. poly(N-isopropylacryamide)(PNIPAM)------------------------------------------------10 1.8. Atom Transfer Radical Polymerization (ATRP)----------------------------------------------12 1.9. Photonic crystal (PCs)-----------------------------------------------------------------------------13 1.9.1. One dimensional photonic crystals (1DPCs)-------------------------------------------14 1.9.2. Two dimensional photonic crystals (2DPCs)------------------------------------------14 1.9.3. Three dimensional photonic crystals (3DPCs)-----------------------------------------14 1.9.4. Bragg’s Law--------------------------------------------------------------------------------15 1.10. Biosensor------------------------------------------------------------------------------------16 1.11. Bioimaging---------------------------------------------------------------------------------18 1.11.1. Fluorescence Imaging --------------------------------------------------------------------18 1.12. Phototherapy--------------------------------------------------------------------------------20 1.12.1. Photothermal therapy (PTT)--------------------------------------------------------------20 2. Chapter 2: Research objectives -----------------------------------------------------------------------23 3. Chapter 3: Real-Time Packing Behavior of Core-Shell Silica@Poly(N-isopropylacrylamide) Microspheres as Photonic Crystals for Visualizing in Thermal Sensing.------------------------24 3.1. Introduction-----------------------------------------------------------------------------------------25 3.2. Experimental Section------------------------------------------------------------------------------28 xi 3.2.1. Materials------------------------------------------------------------------------------------28 3.2.2. Synthesis of PNIPAM-Functionalized Silica Microparticle-------------------------28 3.2.3. Characterization----------------------------------------------------------------------------30 3.3. Results and Discussion----------------------------------------------------------------------------30 3.4. Conclusions-----------------------------------------------------------------------------------------43 4. Chapter 4: Facile synthesis of poly (N-isopropylacrylamide) coated SiO2 core-shell microspheres via surface-initiated atom transfer radical polymerization for H2O2 biosensor applications ----------------------------------------------------------------------------------------------44 4.1. Introduction------------------------------------------------------------------------------------45 4.2. Experimental section ------------------------------------------------------------------------47 4.2.1. Materials -------------------------------------------------------------------------47 4.2.2. Synthesis of NH2-functionalized SiO2 microspheres (NH2-SiO2)--------48 4.2.3. Synthesis of 2-bromoisobutyrate-functionalized SiO2 microspheres (BrSiO2) -----------------------------------------------------------------------------49 4.2.4. Synthesis of PNIPAM@SiO2 core-shell microspheres via ATRP-------49 4.2.5. Characterization-----------------------------------------------------------------50 4.2.6. Electrode preparation-----------------------------------------------------------50 4.3. Results and discussion-----------------------------------------------------------------------51 xii 4.3.1. Characterization of PNIPAM@SiO2 core-shell microspheres -----------51 4.3.2. Electrochemical behavior of Hb/NIPAM@SiO2 electrode----------------57 4.3.3. Real sample analysis------------------------------------------------------------63 4.4. Conclusions------------------------------------------------------------------------------------64 5. Chapter 5: Fabrication of Ag@SiO2@Agseed with Ag@SiO2@AgNPs Core-Shell Nanohybrids for Photothermal therapy-PTT and Bioimaging of Cancer cells----------------------------------65 5.1. Introduction------------------------------------------------------------------------------------66 5.2. Experimental Section ------------------------------------------------------------------------69 5.2.1. Materials-------------------------------------------------------------------------69 5.2.2. Synthesis of silver nanoparticles ---------------------------------------------69 5.2.3. Synthesis of Ag@SiO2@Agseed nanoparticles ------------------------------70 5.2.4. Synthesis of Ag@SiO2@AgNPs nanoparticles ------------------------------70 5.2.5. Characterization ----------------------------------------------------------------70 5.2.6. Fluorescence image of Ag@SiO2@Agseed, Ag@SiO2@AgNPs core-shell nanoparticles -------------------------------------------------------------------101 5.2.7. Cell viability assay -------------------------------------------------------------71 5.2.8. Photothermal efficiency of Ag@SiO2@Agseed, Ag@SiO2@AgNPs coreshell nanoparticles--------------------------------------------------------------72 xiii 5.2.9. Cell apoptosis imaging---------------------------------------------------------72 5.3. Results and discussion -----------------------------------------------------------------------73 5.3.1. Characterization of Ag@SiO2@Agseed, Ag@SiO2@AgNPs Core-Shell Nanoparticle ---------------------------------------------------------------------73 5.3.2. Morphology of Ag@SiO2@Agseed, Ag@SiO2@AgNPs Core-Shell Nanoparticle---------------------------------------------------------------------76 5.3.3. Photothermal therapy efficacy of Ag@SiO2@Agseed and Ag@SiO2@AgNPs nanoparticles----------------------------------------------80 5.4. Conclusion ------------------------------------------------------------------------------------88 6. Chapter 6: Summary and Conclusions ---------------------------------------------------------------89 List of Publications------------------------------------------------------------------------------------------91 Conference Presentation------------------------------------------------------------------------------------92 References ----------------------------------------------------------------------------------------------------93

    1. X. Duab, J. He, Spherical silica micro/nanomaterials with hierarchical structures: Synthesis and applications, Nanoscale 2011, 3, 3984-4002.
    2. M. D. Sanchez-Garcia, J. M. Lagaron, Nanocomposites for food packaging in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New York, NY, USA, 2010, 1-11.
    3. C. Sanchez, H. Arribart, M. M. G. Guille, Biomimetism and bioinspiration as tools for the design of innovative materials and systems, Nat. Mater. 2005, 4, 277-288.
    4. M. Han, X. Gao, J. Z. Su, S. Nie, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nat Biotechnol. 2001, 19, 631-635.
    5. G. Li, G. Liu, E. T. Kang, K. G. Neoh, X. Yang, pH-Responsive Hollow Polymeric Microspheres and Concentric Hollow Silica Microspheres from Silica-Polymer Core-Shell Microspheres, Langmuir 2008, 24, 9050-9055.
    6. Y. Chan, J. P. Zimmer, M. Stroh, S. Steckel, R.K. Jain, Moungi G. Bawendi, Incorporation of luminescent Nanocrystals into monodisprse cor-shell silica microsphere, Adv. Mater. 2004, 16, 2092-2097.
    7. Y. Lin, J. Zhang, E.H. Sargent, E. Kumacheva, Photonic pseudo-gap-based modification of photoluminescence from CdS nanocrystal satellites around polymer microspheres in a photonic crystal, Appl. Phys. Lett. 2002, 81, 3134-3136.
    8. T. Pfohl, J. H. Kim, M. Yasa, Z. Wen, M. W. Kim, C. R. Safinya, Selective Surface Modification in Silicon Microfluidic Channels for Micromanipulation of Biological Macromolecules, Biomedical Microdevices 2001, 3, 239-244.
    9. X. Gao, W. Chen, S. Nie, Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding, J. Biomed. Opt. 2002, 7, 532-537.
    10. D. G. Shchukin, G. B. Sukhorukov, H. Mohwald, Smart Inorganic/Organic Nanocomposite Hollow Microcapsules, Angew. Chem., Int. Ed. 2003, 42, 4472-4475.
    11. K. R. Martin, Silicon: The Health Benefits of a Metalloid. Metal Ions in Life Sciences Interrelations between Essential Metal Ions and Human Diseases 2013, 13, 451-473.
    12. J. McCarthy, I. I. Stepniak, J. J. Corbalan, M. W. Radomski, Mechanisms of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: Protective effects of fisetin, Chemical Research in Toxicology 2012, 25, 2227-2235.
    13. W. Stober, A. Fink, E. Bohn, Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, J. Colloid Interface Sci. 1968, 26, 62-69.
    14. K. S. Rao, K. El-Hami, T. Kodaki, K. Matsushige, K. Makino, A novel method for synthesis of silica nanoparticles, Journal of Colloid and Interface Science 2005, 289, 125-131.
    15. H. Amouri, C. Desmarets, J. Moussa, Confined Nanospaces in Metallocages: Guest Molecules, Weakly Encapsulated Anions, and Catalyst Sequestration, Chem. Rev. 2012, 112, 2015-2041.
    16. H. H. Park, K. Woo, J. P. Ahn, Core-shell bimetallic nanoparticles robustly fixed on the outermost surface of magnetic silica microspheres, Sci. Rep. 2013, 3, 1497.
    17. C. Perruchot, M. A. Khan, A. Kamitsi, S. P. Armes, Synthesis of Well-Defined, Polymer-Grafted Silica Particles by Aqueous ATRP, Langmuir 2001, 17, 4479-4481.
    18. G. L. Li, H. Mohwald, D. G. Shchukin, Precipitation polymerization for fabrication of complex core-shell hybrid particles and hollow structures, Chem. Soc. Rev. 2013, 42, 3628-3646.
    19. J. S. Jiang, Y. Zhang, X. Z. Guo, H. Q. Zhang, Narrow or Monodisperse, Highly Cross-Linked, and “Living” Polymer Microspheres by Atom Transfer Radical Precipitation Polymerization, Macromolecules 2011, 44, 5893-5904.
    20. J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. D. Bievre, M. Groning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, T. Prohaska, Atomic weights of the elements 2013 (IUPAC Technical Report) Pure Appl. Chem. 2016, 88, 265-291.
    21. K. R. Rogers, K. Bradham, T. Tolaymat, D. J. Thomas, T. Hartmann, L. Ma, A. Williams, Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid, Sci. Total Environ. 2012, 420, 334-339.
    22. W. Li, P. H. C. Camargo, X. Lu, Y, Xia, Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced raman scattering, Nano Lett. 2009, 9, 485-490.
    23. X. F. Zhang, Z. G. Liu, W. Shen, S. Gurunathan, Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches, Int. J. Mol. Sci. 2016, 17, 1534-1568.
    24. M. Rycenga, C. M. Cobley, J. L. Zeng, W. Moran, C. H. Zhang, Q. Qin, D. Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications, Chem. Rev. 2011, 111, 3669-3712.
    25. X. M. Qian, S. M. Nie, Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications, Chem. Soc. Rev. 2008, 37, 912-920.
    26. G. C. Schatz, R. P. Van Duyne, Electromagnetic mechanism of surface-enhanced spectroscopy. In: Handbook of Vibrational Spectroscopy. John Wiley & Sons, Inc., New York, 2006.
    27. S. Pal, Y. K. Tak, J. M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol. 2007, 73, 1712-1720.
    28. K. H. Chen, Y. C. Pu, K. D. Chang, Y. F. Liang, C. M. Liu, J. W. Yeh, H. C. Shih, Y. J. Hsu, Ag-Nanoparticle-decorated SiO2 nanospheres exhibiting remarkable plasmon-mediated photocatalytic properties, J. Phys. Chem. C. 2012, 116, 19039-19045.
    29. A. P. R. Magalhaes, L. B. Santos, L. G. Lopes, C. R. A. Estrela, C. Estrela, E. M. Torres, A. F. Bakuzis, P. C. Cardoso, M. S. Carriao, Nano silver application in dental cements, ISRN Nanotech. 2012, 2012, 365438.
    30. Y. Huang, X. Li, Z. Liao, G. Zhang, Q. Liu, J. Tang, Y. Peng, X. Liu, Q. Luo, A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis, 2007, 33, 161-166.
    31. E. Locatelli, F. Broggi, J. Ponti, P. Marmorato, F. Franchini, S. Lena, M. C. Franchini, Lipophilic silver nanoparticles and their polymeric entrapment into targeted-PEG-based micelles for the treatment of glioblastoma, Adv. Healthc. Mater. 2012, 1, 342-347.
    32. B. L. Cushing, V. L. Kolesnichenko, C. J. Oconnor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles, Chem. Rev. 2004, 104, 3893-3946.
    33. P.Wang, Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys. Chem. Chem. Phys. 2012, 14, 9813-9825.
    34. J. K. Lim, R. D. Tilton, A. Eggeman, S. A. Majetich, Design and synthesis of plasmonic magnetic nanoparticles, J. Magn. Magn. Mater. 2007, 311, 78-83.
    35. Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, W. Tan, Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods, Langmuir 2008, 24, 11860-11865.
    36. P. Rai, S. Mallidi, X. Zheng, R. Rahmanzadeh, Y. Mir, S. Elrington, A. Khurshid, T. Hasan, Development and applications of photo-triggered theranostic agents. Adv. Drug. Deliv. Rev. 2010, 62, 1094-1124.
    37. Y. L. Wang, B. B. Newell, J. Irudayaraj, Folic acid protected silver nanocarriers for targeted drug delivery, J. Biomed. Nanotechnol. 2012, 8, 751-759.
    38. A. Wicki, D. Witzigmann, V. Balasubramanian, J. Huwyler, Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications, J. Control. Release. 2015, 200, 138-157.
    39. M. B. Gawande, A. Goswami, T. Asefa, H. Guo, A. V. Biradar, D. L. Peng, R. Zboril, R. S. Varma, Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis, Chem. Soc. Rev. 2015, 44, 7540-7590.
    40. B. J. Jankiewicz, D. Jamiola, J. Choma, M. Jaroniec, Silica-metal core-shell nanostructures, Advances in Colloid and Interface Science 2012, 17, 28-47.
    41. W. Wang, S. A. Asher, Photochemical Incorporation of Silver Quantum Dots in Monodisperse Silica Colloids for Photonic Crystal Applications, J. Am. Chem. Soc. 2001, 123, 12528-12535.
    42. O. Siiman, A. Burshteyn, Preparation, Microscopy, and Flow Cytometry with Excitation into Surface Plasmon Resonance Bands of Gold or Silver Nanoparticles on Aminodextran-Coated Polystyrene Beads, J Phys Chem B. 2000,104, 9795-9810.
    43. M. Lahav, E. A. Weiss, Q. Xu, G. M. Whitesides, Core-Shell and Segmented Polymer-Metal Composite Nanostructures, Nano Lett. 2006, 6, 2166-2171.
    44. J. H. Kim, W. W. Bryan, T. R. Lee, Preparation, Characterization, and Optical Properties of Gold, Silver, and Gold-Silver Alloy Nanoshells Having Silica Cores, Langmuir 2008, 24, 11147-11152.
    45. J. B. Jackson, N. J. Halas, Silver Nanoshells: Variations in Morphologies and Optical Properties, J Phys Chem B. 2001,105, 2743-2746.
    46. M. Chen, Y. N. Kim, H. M. C. Lee, C. Li, S. Cho, Multifunctional Magnetic Silver Nanoshells with Sandwichlike Nanostructures, J Phys Chem C. 2008, 112, 8870-8874.
    47. J. Zhang, J. Liu, S. Wang, P. Zhan, Z. Wang, N. Ming. Facile Methods to Coat Polystyrene and Silica Colloids with Metal, Adv. Funct. Mater, 2004, 14, 1089-1096.
    48. S. Kimura, T. Kidchob, Y. Imanishi, Controlled Release from Amphiphilic Polymer Aggregates, Polym. Adv. Technol., 2001, 12, 85-95.
    49. S. R. Tonge B. J. Tighe, Responsive hydrophobically associating polymers: a review of structure and properties, Advanced Drug Delivery Reviews 2001, 53, 109-122.
    50. T. Chen, R. Ferris, J. Zhang, R. Ducker, S. Zauscher, Stimulus-responsive polymer brushes on surfaces: Transduction mechanisms and applications, Progress in Polymer Science 2010 35, 94-112.
    51. M. J. Zohuriaan-Mehr, K. Kabiri, Superabsorbent Polymer Materials: A Review, Iranian Polymer Journal 2008, 17, 451-477.
    52. S. Dincer, Z. M. O. Rzaev, E. Piskin, Synthesis and Characterization of Stimuli-Responsive Poly(N-isopropylacrylamide-co-N-vinyl-2-pyrrolidone), J. Polym, res. 2006, 13, 121-131.
    53. D. Schmaljohann, Thermo- and pH-responsive polymers in drug delivery, Adv. Drug Deliv. Rev. 2006, 58, 1655-1670.
    54. P. De, M. Li, R. G. Sudershan, S. S. Brent, Temperature-Regulated Activity of Responsive Polymer-Protein Conjugates Prepared by Grafting-from via RAFT Polymerization, J. Am. Chem. Soc. 2008, 130, 11288-11289.
    55. E. S. Gil, S. M. Hudson, Stimuli-reponsive polymers and their bioconjugates, Prog. Polym. Sci. 2004, 29, 1173-1222.
    56. H. Meng, G. Li, A review of stimuli-responsive shape memory polymer composites, Polymer 2013, 54, 2199-2221.
    57. J. Kost, R. Langer, Responsive polymer systems for controlled delivery of therapeutics, Trends in Biotechnology 1992, 10, 127-131.
    58. G. Garnweitner, B. Smarsly, R. Assink, W. Ruland, E. Bond, C. Jeffrey, Brinker, Self-Assembly of an Environmentally Responsive Polymer/Silica Nanocomposite, J. AM. CHEM. SOC. 2003, 125, 5626-5627.
    59. J. Raula, J. Shan, M. Nuopponen, A. Niskanen, H. Jiang, E. I. Kauppinen, H. Tenhu, Synthesis of Gold Nanoparticles Grafted with a Thermoresponsive Polymer by Surface-Induced Reversible-Addition-Fragmentation Chain-Transfer Polymerization, Langmuir 2003, 19, 3499-3504.
    60. S. Kunugi, K. Takano, N. Tanaka, K. Suwa, M. Akashi, Effects of Pressure on the Behavior of the Thermoresponsive Polymer Poly(N-vinylisobutyramide) (PNVIBA), Macromolecules 1997, 30, 4499-4501.
    61. Z. Zhang, J. Wang, X. Nie, T. Wen, Y. Ji, X. Wu, Y. Zhao, C. Chen, Near Infrared Laser-Induced Targeted Cancer Therapy Using Thermoresponsive Polymer Encapsulated Gold Nanorods, J. Am. Chem. Soc. 2014, 136, 7317-7326.
    62. M. A. Ward, T. K. Georgiou, Thermoresponsive Polymers for Biomedical Applications, Polymers 2011, 3, 1215-1242.
    63. L. Ionov, M. Stamm, S. Diez, Reversible Switching of Microtubule Motility Using Thermoresponsive Polymer Surfaces, Nano Lett. 2006, 6, 1982-1987.
    64. J. F. Lutz, O. Akdemir, A. Hoth, Point by Point Comparison of Two Thermosensitive Polymers Exhibiting a Similar LCST:  Is the Age of Poly(NIPAM) Over, J. Am. Chem. Soc. 2006, 128, 13046-13047.
    65. L. Klouda, G. Antonios, Mikos, Thermoresponsive hydrogels in biomedical application, European Journal of Pharmaceutics and Biopharmaceutics 2008, 68, 34-45.
    66. I. B. Malham, L. Bureau, Density Effects on Collapse, Compression, and Adhesion of Thermoresponsive Polymer Brushes, Langmuir, 2010, 26, 4762-4768.
    67. R. Yoshida, k. Sakai, T. Okano, Y. Sakurai, release profiles in the shrinking process of thermoresponsive poly(Nisopropylacrylamide-co-alkyl methacrylate) gels, Ind. Eng. Chem. Res. 1992, 31, 2332-2339.
    68. S. Champ, W. Xue, M. B. Huglin, A novel semi-automated apparatus to concentrate aqueous polymer solutions with a thermosensitive hydrogel, Polymer 2001, 42, 2247-2273.
    69. R. Liu, M. Fraylich, B. R. Saunders, Thermoresponsive copolymers: from fundamental studies to applications, Colloid Polym Sci. 2009, 287, 627-643.
    70. H. G. Schild, Poly(N-isopropylacrylamide) experiment, theory and application Progress in Polymer Science 1992, 17, 163-249.
    71. M. Heskins, J. Guillet, Solution Properties of Poly(N-isopropylacrylamide), J. Macromol. Sci. 1968, A2, 1441-1455.
    72. Y. Z. You, K. K. Kalebaila, S. L. Brock, D. Oupicky, Temperature-Controlled Uptake and Release in PNIPAM-Modified Porous Silica Nanoparticles, Chem. Mater. 2008, 20, 3354-3359.
    73. S. S. Pennadam, M. D. Lavigne, C. F. Dutta, K. Firman, D. Mernagh, D. C. Gorecki, C. Alexander, Control of A Multisubunit DNA Motor by a Thermoresponsive Polymer Switch, J. Am. Chem. Soc. 2004, 126, 13208-13209.
    74. H. Feil, Y. H. Bae, J. Feijen, S. W. Kim, Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers, Macromolecules 1993, 26, 2496-2500.
    75. H. Inoue, S. K. K. Katayama, The whole process of phase transition and relaxation of poly(N-isopropylacrylamide) aqueous solution Phys. Chem. Chem. Phys. 2013, 15, 3814-3819.
    76. J. S. Wang, K. Matyjaszewski, Controlled/living radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117, 5614-5615.
    77. K. Matyjaszewski, J, Xia, Atom Transfer Radical Polymerization Chem. Rev. 2001, 101, 2921-2990.
    78. A. M. Kasko, A. M. Heintz, C. Pugh, The Effect of Molecular Architecture on the Thermotropic Behavior of Poly [11-(4‘-cyanophenyl-4‘‘-phenoxy)undecyl acrylate] and Its Relation to Polydispersity, Macromolecules, 1998, 31, 256-271.
    79. K. Matyjaszewski, Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives, Macromolecules 2012, 45, 4015-4039.
    80. K. Pangilinan, Rigoberto, Advinculacyclic, polymers and catenanes by atom transfer radical polymerization (ATRP), Polym Int. 2014, 63, 803-813.
    81. D. K. Hwang, B. Leeb, D. H. Kim, Efficiency enhancement in solid dye-sensitized solar cell by three-dimensional photonic crystal RSC Adv. 2013, 3, 3017-3023.
    82. G. V. Freymann, V. Kitaev, V. B. Lotschz, A. O. Geoffrey, Bottom-up assembly of photonic crystals, Chem. Soc. Rev. 2013, 42, 2528-2554.
    83. X. Fei, T. Lu, J. Ma, S. Zhu, D. Zhang, A bioinspired poly(N-isopropylacrylamide)/silver nanocomposite as a photonic crystal with both optical and thermal responses, Nanoscale 2017, 9, 12969-12975.
    84. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2008.
    85. H. Shen, Z. Wang, Y. Wu, B. Yang, One-dimensional photonic crystals: fabrication, responsiveness and emerging applications in 3D construction, RSC Adv. 2016, 6, 4505-4520.
    86. P. Kurt, D. Banerjee, R. E. Cohen, M. F. Rubner, Structural color via layer-by-layer deposition: layered nanoparticle arrays with near-UV and visible reflectivity bands, J. Mater. Chem. 2009, 19, 8920-8927.
    87. J. T. Zhang, L. Wang, D. N. Lamont, S. S. Velankar and S. A. Asher, Fabrication of large-area two-dimensional colloidal crystals, Angew. Chem. Int. Ed. 2012, 51, 6117-6120.
    88. C. Li and B. V. Lotsch, Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing, Chem. Commun. 2012, 48, 6169.
    89. N. Vogel, M. Retsch, C. A. Fustin, A. D. Campo, U. Jonas, Dvances in Colloidal Assembly: The Design of Structure and Hierarchy in Two and Three Dimensions, Chem. Rev. 2015, 115, 6265-6311.
    90. S. Kawashima, K. Ishizaki, S. Noda, Light propagation in three-dimensional photonic crystals, Optics Express 2010, 18, 386-392.
    91. S. O. Klimonsky, V. V. Abramova, A. S. Sinitskii, Y. D. Tretyakov, Photonic crystals based on opals and inverse opals: synthesis and structural features, Russ. Chem. Rev. 2011, 80, 1191-1207.
    92. C. Kittel, Introduction to Solid State Physics, (Seventh Edition) 1996, 29.
    93. P. A. Rundquist, P. Photinos, S. Jagannathan, S. A. Asher, Dynamical Bragg Diffraction From Crystalline Colloidal Arrays, J. Chem. Phys. 1989, 91, 4932-4941.
    94. L. C. Clark, C. Lyons, N. Y. Ann, Electrode Systems for Continuous Monitoring in Cardiovascular Surgery, Acad. Sci. 1962, 102, 29-45.
    95. J. Reichert, A. Csaki, J. M. Kohler, W. Fritzsche, Chip-Based Optical Detection of DNA Hybridization by Means of Nanobead Labeling, Anal. Chem. 2000, 72, 6025-6029.
    96. K. Ramanathan, B. Danielsson, Principles and applications of thermal biosensors, Biosens. Bioelectron. 2001, 16, 417-423.
    97. S. Babacan, P. Pivarnik, S. Letcher, A. Rand, Evaluation of antibody immobilization methods for piezoelectric biosensor application, Biosens. Bioelectron. 2000, 15, 615-621.
    98. M. A. Alonso-Lomillo, O. Dominguez-Renedo, M. J. Arcos Martinez, Screen-printed biosensors in microbiology; a review, Talanta, 2010, 82, 1629-1636.
    99. F. W. Cheller, N. Bistolas, S. Liu, M. Janchen, M. K. Wollenberger, Thirty years of haemoglobin electrochemistry, Adv. Colloid Interface Sci. 2005, 116, 111-120.
    100. I. Ardeleanu, D. G. Margineanu, H. Vais, Electrochemical conversion in biofuel cells using Clostridium butyricum or Staphylococcus aureus Oxford, Bioelectrochem. Bioenerg. 1983, 11, 273-277.
    101. Y. Wu, S. Hu, Biosensors based on direct electron transfer in redox proteins, Microchim. Acta. 2007, 159, 1-17.
    102. S. I. Gundersen, G. Chen, H. M. Powell, A. F. Palmer, Hemoglobin regulates the metabolic and synthetic function of rat insulinoma cells cultured in a hollow fiber bioreactor, Biotechnol. Bioeng. 2010, 107, 582-592.
    103. J. S. Jahr, F. Lurie, B. Driessen, Z. Tang, R. F. Louie, G. Kost, Validation of oxygen saturation measurements in a canine model of hemoglobin-based oxygen carrier infusion, Am. J. Ther. 2003, 10, 21-8.
    104. J. Li, L. Zhou, X. Han, H. Liu, Direct electrochemistry of hemoglobin based on Gemini surfactant protected gold nanoparticles modified glassy carbon electrode, Sens. Actuators, B. 2008, 135, 322-326.
    105. D. Voet, J. G. Voet, Biochemistry, Wiley, 2010, vol. 4.
    106. B. Modell, M. D. Bull, Global epidemiology of haemoglobin disorders and derived service indicators, World Health Organ. 2008, 86, 480-487.
    107. P. Bharati, S. Som, S. Chakrabarty, S. Bharati, M. Pal, Prevalence of anemia and its determinants among nonpregnant and pregnant women in India, Asia Pac. J. Public Health. 2008, 20, 347-359.
    108. H. Anand, R. Mir, R. Saxena, Hemoglobin color scale a diagnostic dilemma, Indian J. Pathol. Microbiol. 2009, 52, 360-362.
    109. M. Wang, J. Zheng, Direct Electrochemistry and Electrocatalysis of Hemoglobin Immobilized on the Functionalized Graphene-Carbon Nanotube Composite Film, J. Electrochem. Soc. 2012, 159, F150-F156.
    110. R. Zhang, X. Wang, K. Shiu, Accelerated direct electrochemistry of hemoglobin based on hemoglobin-carbon nanotube (Hb-CNT) assembly, J. Colloid Interface Sci. 2007, 316, 517-522.
    111. C. Cai, J. Chen, Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode, Anal. Biochem. 2004, 325, 285-292.
    112. J. Nordberg, E. S. J. Arner, Reactive Oxygen Species, Antioxidants, and the Mammalian Thioredoxin System, Free Radic Biol Med. 2001, 31, 1287-1312.
    113. D. J. Czewski, Y. Zhang, G. K. Das, D. K. Yi, P. Padmanabhan, K. K. Bhakoo, T. Y.Tan, S. T. Selvan, Bimodal Magnetic-Fluorescent Probes for Bioimaging, Microscopy Research and Technique 2011, 74, 563-576.
    114. H. Gong, Z. Dong, Y. Liu, S. Yin, L. Cheng, W. Xi, J. Xiang, K. Liu, Y. Li, Z. Liu, Engineering of Multifunctional NanoMicelles for Combined Photothermal and Photodynamic Therapy under the Guidance of Multimodal Imaging, Adv. Funct. Mater. 2014, 24, 6492-6502.
    115. Q. Chen, C. Liang, X. Wang, J. He, Y. Li, Z. Liu, An Albumin Based Theranostic Nano Agent for Dual-Modal Imaging Guided Photothermal Therapy to Inhibit Lymphatic Metastasis of Cancer Post Surgery, Biomaterials 2014, 35, 9355-9362.
    116. M. S. Judenhofer, H. F. Wehrl, D. F. Newport, C. Catana, S. B. Siegel, M. Becker, A. Thielscher, M. Kneilling, M. P. Lichy, M. Eichner, Simultaneous PET-MRI: A New Approach for Functional and Morphological Imaging, Nat. Med. 2008, 14, 459-465.
    117. H. Chen, D. Wang, G. W. Tang, T. Todd, Z. Zhen, C. Tsang, K. Hekmatyar, T. Cowger, R. B. Hubbard, W. Zhang, Gd-Encapsulated Carbonaceous Dots with Efficient Renal Clearance for Magnetic Resonance Imaging, Adv. Mater. 2014, 26, 6761-6766.
    118. Y. Liu, J. J. Yin, Z. Nie, Harnessing the Collective Properties of Nanoparticle Ensembles for Cancer Theranostics, Nano Res. 2014, 1, 1719-1730.
    119. F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, G. Stucky, Fabrication of Ag@SiO2@Y2O3:Er Nanostructures for Bioimaging: Tuning of the Upconversion Fluorescence with Silver Nanoparticles, J. AM. CHEM. SOC. 2010, 132, 2850-2851.
    120. K. Aslan, M. Wu, J. R. Lakowicz, C. D. Geddes, Fluorescent Core-Shell Ag@SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms, J. AM. CHEM. SOC. 2007, 129, 1524-1525.
    121. Z. Zhang, C. Liu, J. Bai, C. Wu, Y. Xiao, Y. Li, J. Zheng, R. Yang, W. Tan, Silver Nanoparticle Gated, Mesoporous Silica Coated Gold Nanorods (AuNR@MS@AgNPs): Low Premature Release and Multifunctional Cancer Theranostic Platform, ACS Appl. Mater. Interfaces. 2015, 7, 6211-6219.
    122. L. Tong, C. M. Cobley, J. Chen, Y. Xia, J. X. Cheng, Bright Three-Photon Luminescence from Gold/Silver AlloyedNanostructures for Bioimaging with Negligible PhotothermalToxicity, Angew. Chem. Int. Ed. 2010, 49, 3485-3488.
    123. G. A. Sotiriou, S. E. Pratsinis, Engineering nanosilver as an antibacterial, biosensor and bioimaging material, Current Opinion in Chemical Engineering 2011, 1, 3-10.
    124. C. D. Geddes, J. R. Lakowicz, Metal-Enhanced Fluorescence. J. Fluoresc. 2002, 12, 121-129.
    125. Y. Yan, L. Meng, W. Zhang, Y. Zheng, S. Wang, B. Ren, Z. Yang, X. Yan, High-Throughput Single-Particle Analysis of Metal-Enhanced Fluorescence in Free Solution Using Ag@SiO2 Core-Shell Nanoparticles, ACS Sens. 2017, 2, 1369-1376.
    126. C. Li, Y. Zhu, X. Zhang, X. Yang, C. Li, Metal-Enhanced Fluorescence of Carbon Dots Adsorbed Ag@SiO2 Core-Shell Nanoparticles. RSC Adv. 2012, 2, 1765-1768.
    127. X. J. Liu, M. Knauer, N. P. Ivleva, R. Niessner, C. Haisch, Synthesis of Core-Shell Surface-Enhanced Raman Tags for Bioimaging, Anal. Chem. 2010, 82, 441-446.
    128. X. Kong, Q. Yu, X. Zhang, X. Du, H. Gong, H. Jiang, Synthesis and Application of Surface Enhanced Raman Scattering (SERS) Tags of Ag@SiO2 Core/Shell Nanoparticles in Protein Detection. J. Mater. Chem. 2012, 22, 7767-7774.
    129. T. Huang, P. D. Nallathamby, D. Gillet, X. H. N. Xu, Design and synthesis of single-nanoparticle optical biosensors for imaging and characterization of single receptor molecules on single living cells, Anal Chem 2007, 79, 7708-7718.
    130. G. A. Sotiriou, A. M. Hirt, P. Y. Lozach, A. Teleki, F. Krumeich, S. E. Pratsinis, Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles, Chem. Mater. 2011, 23, 1985-1992.
    131. W. Deng, M. E. Goldys, Plasmonic Approach to Enhanced Fluorescence for Applications in Biotechnology and the Life Sciences, Langmuir 2012, 28, 10152-10163.
    132. C. Geddes, A. Parfenov, D. Roll, J. Fang, J. Lakowicz, Electrochemical and laser deposition of silver for use in metalenhanced fluorescence, Langmuir 2003, 19, 6236-6241.
    133. L. Zou1, H. Wang, B. He, L. Zeng, T. Tan, H. Cao, X. He, Z. Zhang, S. Guo, Y. Li, Current Approaches of Photothermal Therapy in Treating Cancer Metastasis with Nanotherapeutics, Theranostics 2016, 6, 762-772.
    134. D. Jaque, L. M. Maestro, B. D. Rosal, P. H. Gonzalez, A. Benayas, J. L. Plaza, E. Martin Rodriguez, J. Garcia Sole, Nanoparticles for photothermal therapies, Nanoscale, 2014, 6, 9494-9530.
    135. S. Link, M. A. El-Sayed, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals, Int. Rev. Phys. Chem. 2000, 19, 409-453.
    136. Laser Institute of America ANSI Z136.1-2000, American National Standard for the Safe Use of Lasers, Orlando, FL, 2000.
    137. C. L. Garrett, D. O. Draper, K. L. Knight. Heat distribution in the lower leg from pulsed short-wave diathermy and ultrasound treatments, Journal of Athletic Training 2000, 35, 50-55.
    138. J. R. Lepock, K. H. Cheng, H. Al-qysi, I. Sim, C. J. Koch, J. Kruuv, Hyperthermia-induced inhibition of respiration and mitochondrial protein denaturation in CHL cells, Int. J. Hyperthermia. 1987, 3, 123-132.
    139. S. Rastegar, M. Motamedi, A. J. Welch, L. J. Hayes, A theoretical study of the effect of optical properties in laser ablation of tissue, IEEE Trans. Biomed. Eng. 1989, 36, 1180-1187.
    140. A. J. Welch, M. Motamedi, S. Rastegar, G. L. Lecarpentier and D. Jansen, Laser thermal ablation, Photochem. Photobiol, 1991, 53, 815-823.
    141. J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, Gold nanocages as photothermal transducers for cancer treatment, Small, 2010, 6, 811-817.
    142. E. Day, P. A. Thompson, L. Zhang, N. A. Lewinski, N. Ahmed, Nanoshell-mediated photothermal therapy improves survival in a murine glioma model, J. Neuro-Oncol. 2011, 104, 55-63.
    143. L. Rizzello, P. P. Pompa. Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev. 2014, 43, 1501-1518.
    144. M. Rai, K. Kon, A. Ingle, N. Duran, S. Galdiero, M. Galdiero, Broad-spectrum bioactivities of silver nanoparticles:the emerging trends and future prospects. Appl Microbiol Biotechnol. 2014, 98, 1951-1961.
    145. H. Shi, X. S. Ye, X. X. He, K. M. Wang, W.S. Cui, D. G. He, D. Li, X. K. Jia, Au@Ag/Au nanoparticles assembled with activatable aptamer probes as smart "nano-doctors" fo image-guided cancer thermotherapy. Nanoscale 2014, 6, 8754-8761.
    146. M. Yamada, M. Foote, T. W. Prow, Therapeutic gold, silver, and platinum nanoparticles, Nanomed Nanobiotechnol 2015, 7, 428-445.
    147. R. Liu, L. Jing, D. Peng, Y Li, J. Tian, Z. Dai, Manganese (II) Chelate Functionalized Copper Sulfide Nanoparticles for Efficient Magnetic Resonance/Photoacoustic Dual-Modal Imaging Guided Photothermal Therapy, Theranostics 2015, 5, 1144-1153.
    148. I. E. Sayed, X. Huang, M. E. Sayed, Selective laser photo-thermal therapy of epithelial
    carcinoma using anti-EGFR antibody conjugated gold nanoparticles, Cancer Lett. 2006, 239, 129-135.
    149. E. I. Alarcon, The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles, Biomaterials, 2012, 33, 4947-4956.
    150. I. B. Jang, J. H. Sung, H. J. Choi, I. Chin, Synthesis and characterization of titanium coated polystyrene core-shell spheres for electronic ink, Synth. Met. 2005, 152, 9-12.
    151. H. L. Jiang, T. Akita, T. Ishida, M. Haruta, Q. Xu, Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework, J. Am. Chem. Soc. 2011, 133, 1304-1306.
    152. C. L. Li, B. R. Huang, J. Y. Chang, J. K. Chen, Bifunctional superparamagnetic-luminescent core-shell-satellite structured microspheres: Preparation, characterization, and magnetodisplay application, J. Mater. Chem. C. 2015, 3, 4603-4615.
    153. C. L. Li, C. J. Chang, J. K. Chen, Fabrication of sandwich structured devices encapsulating core/shell SiO2/Fe3O4 nanoparticle microspheres as media formagneto-responsive transmittance, Sens. Actuators B. 2015, 210, 46-55.
    154. J. H. Lee, C. Y. Koh, J. P. Singer, S. J. Jeon, M. Maldovan, O. Stein, E. L. Thomas, 25th Anniversary Article: Ordered polymer structures for the engineering of photons and phonons, Adv. Mater. 2014, 26, 532-569.
    155. S. L. Leung, M. Li, W. J. Li, J. D. Mai, Gold nano-particle-based thermal sensors fabricated using microspotting and DEP techniques, Sens. Actuators A 2012, 178, 32-39.
    156. W. Zhang, J. Zheng, C. Tan, X. Lin, S. Hu, J. Chen, X. You, S. Li, Designed self-assembled hybrid Au@CdS core-shell nanoparticles with negative charge and their application as highly selective biosensors, J. Mater. Chem. B 2015, 3, 217-224.
    157. S. A. Kalele, S. S. Ashtaputre, N. Y. Hebalkar, S. W. Gosavi, D. N. Deobagkar, D. D. Deobagkar, S. K. Kulkarni, Optical detection of antibody using silica-silver core-shell particles, Chem. Phys. Lett. 2005, 404, 136-141.
    158. J. Wang, L. Sun, K. Mpoukouvalas, K. Lienkamp, I. Lieberwirth, B. Fassbender, E. Bonaccurso, G. Brunklaus, A. Muehlebach, T. Beierlein, Construction of redispersible polypyrrole core-shell nanoparticles for application in polymer electronics, Adv. Mater. 2009, 21, 1137-1141.
    159. C. N. LaFratta, D. R. Walt, Very high density sensing arrays, Chem. Rev. 2008, 108, 614-637.
    160. N. H. Bings, A. Bogaerts, J. A. Broekaert, Atomic spectroscopy: A review, Anal. Chem. 2010, 82, 4653-4681.
    161. S. Shibata, K. Aoki, T. Yano, M. Yamane, Preparation of silica microspheres containing Ag nanoparticles, J. Sol Gel Sci. Technol. 1998, 11, 279-287.
    162. P. Russell, Photonic crystal fibers, Science 2003, 299, 358-362.
    163. D. Xu, H. Yu, Q. Xu, G. Xu, K. Wang, Thermoresponsive photonic crystal: Synergistic effect of poly(N isopropylacrylamide)-co-acrylic acid and morpho butterfly wing, ACS Appl. Mater. Interfaces 2015, 7, 8750-8756.
    164. K. R. Phillips, N. Vogel, Y. Hu, M. Kolle, C. C. Perry, J. Aizenberg, Tunable anisotropy in inverse opals and emerging optical properties, Chem. Mater. 2014, 26, 1622-1628.
    165. Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band, Adv. Funct. Mater. 2010, 20, 3784-3790.
    166. X. Yan, J. Yao, G. Lu, X. Li, J. Zhang, K. Han, B. Yang, Fabrication of non-close-packed arrays of colloidal spheres by soft lithography, J. Am. Chem. Soc. 2005, 127, 7688-7689.
    167. J. Ge, Y. Yin, Responsive photonic crystals, Angew. Chem. Int. Ed. 2011, 50, 1492-1522.
    168. Y. Takeoka, Stimuli-responsive opals: Colloidal crystals and colloidal amorphous arrays for use in functional structurally colored materials, J. Mater. Chem. C 2013, 1, 6059-6074.
    169. J. Zhang, Y. Li, X. Zhang, B. Yang, Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays, Adv. Mater. 2010, 22, 4249-4269.
    170. L. Wang, S. A. Asher, Fabrication of silica shell photonic crystals through flexible core templates. Chem. Mater. 2009, 21, 4608-4613.
    171. R. Rengarajan, P. Jiang, V. Colvin, D. Mittleman, Optical properties of a photonic crystal of hollow spherical shells. Appl. Phys. Lett. 2000, 77, 3517-3519.
    172. K. Busch, S. John, Photonic band gap formation in certain self-organizing systems. Phys. Rev. E 1998, 58, 3896-3908.
    173. J. L. Vivero-Escoto, Y. T. Huang, Inorganic-organic hybrid nanomaterials for therapeutic and diagnostic imaging applications, Int. J. Mol. Sci. 2011, 12, 3888-3927.
    174. R. Subbiah, M. Veerapandian, K. S. Yun, Nanoparticles: Functionalization and multifuctional application in biomedical science, Curr. Med. Chem. 2010, 17, 4559-4577.
    175. V. Brunella, S. A. Jadhav, I. Miletto, G. Berlier, E. Ugazio, S. Sapino, D. Scalarone, Hybrid drug carriers with temperature-controlled on-off release: A simple and reliable synthesis of PNIPAM-functionalized mesoporous silica nanoparticles, React. Funct. Polym. 2016, 98, 31-37.
    176. E. Burdukova, H. Li, N. Ishida, J. P. O’Shea, G. V. Franks, Temperature controlled surface hydrophobicity and interaction forces induced by poly(N-isopropylacrylamide), J. Colloid Interface Sci. 2010, 342, 586-592.
    177. C. G. Schafer, T. Winter, S. Heidt, C. Dietz, T. Ding, J. J. Baumberg, M. Gallei, Smart polymer inverse-opal photonic crystal films by melt-shear organization for hybrid core–shell architectures, J. Mater. Chem. C 2015, 3, 2204-2214.
    178. D. Wang, A. L. Rogach, F. Caruso, Composite photonic crystals from semiconductor nanocrystal/polyelectrolyte-coated colloidal spheres, Chem. Mater. 2003, 15, 2724-2729.
    179. J. T. Zhang, L. Wang, X. Chao, S. A. Asher, Periodicity-controlled two-dimensional crystalline colloidal arrays, Langmuir 2011, 27, 15230-15235.
    180. J. T. Zhang, L. Wang, D. N. Lamont, S. S. Velankar, S. A. Asher, Fabrication of large-area two-dimensional colloidal crystals, Angew. Chem. Int. Ed. 2012, 51, 6117-6120.
    181. M. Karg, T. Hellweg, Smart inorganic/organic hybrid microgels: Synthesis and characterization, J. Mater. Chem. 2009, 19, 8714-8727.
    182. K. Zhang H. Li, H. Zhang, S. Zhao, D. Wang, J. Wang, Surface-initiated atom transfer radical polymerization on spherical silicon gel in water-borne system at ambient temperature, Mater. Chem. Phys. 2006, 96, 477-482.
    183. T. Wu, Y. Zhang, X. Wang, S. Liu, Fabrication of hybrid silica nanoparticles densely grafted with thermoresponsive poly(N-isopropylacrylamide) brushes of controlled thickness via surface-initiated atom transfer radical polymerization, Chem. Mater. 2008, 20, 101-109.
    184. T. Wu, Z. Ge, S. Liu, Fabrication of thermoresponsive cross-linked poly(N-isopropylacrylamide) nanocapsules and silver nanoparticle-embedded hybrid capsules with controlled shell thickness, Chem. Mater. 2011, 23, 2370-2380.
    185. Y. V. Pan, R. A. Wesley, R. Luginbuhl, D. D. Denton, B. D. Ratner, Plasma polymerized N-isopropylacrylamide: Synthesis and characterization of a smart thermally responsive coating, Biomacromolecules 2001, 2, 32-36.
    186. M. M. Ward Muscatello, L. E. Stunja, S. A. Asher, Polymerized crystalline colloidal array sensing of high glucose concentrations, Anal. Chem. 2009, 81, 4978-4986.
    187. J. K. Chen, P. C. Pai, J. Y. Chang, S. K. Fan, pH-Responsive one-dimensional periodic relief grating of polymer brush-gold nanoassemblies on silicon surface, ACS Appl. Mater. Interfaces 2012, 4, 1935-1947.
    188. C. F. Huang, Surface-initiated atom transfer radical polymerization for applications in sensors, non-biofouling surfaces and adsorbents, Polym. J. 2016, 48, 341-350.
    189. Y. Huang, J. Zhou, B. Su, L. Shi, J. Wang, S. Chen, L. Wang, J. Zi, Y. Song, L. Jiang, Colloidal photonic crystals with narrow stopbands assembled from low-adhesive superhydrophobic substrates, J. Am. Chem. Soc. 2012, 134, 17053-17058.
    190. L. Pan, F. Zhang, R. Meng, J. Xu, C. Zuo, B. Ge, Anomalous change of airy disk with changing size of spherical particles, J. Quant. Spectrosc. Radiat. Transf. 2016, 170, 83-89.
    191. X. Chen, Z. C. Cui, Z. M. Chen, K. Zhang, G. Lu, G. Zhang, B. Yang, The synthesis and characterizations of monodisperse cross-linked polymer microspheres with carboxyl on the surface, Polymer 2002, 43, 4147-4152.
    192. F. Caruso, M. Spasova, A. Susha, M. Giersig, R. A. Caruso, Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach, Chem. Mater. 2001, 13, 109-116.
    193. M. S. Fleming, T. K. Mandal, D. R. Walt, Nanosphere-Microsphere Assembly: Methods for Core-Shell Materials Preparation, Chem. Mater. 2001, 13, 2210-2216.
    194. J. Zhu, A. B. Morgan, F. J. Lamelas, C. A. Wilkie, Fire Properties of Polystyrene-Clay Nanocomposites, Chem. Mater. 2001, 13, 3774-3780.
    195. C. N. LaFratta, D. R. Walt, Very High Density Sensing Arrays, Chem. Rev. 2008, 108, 614-637.
    196. H. Ge, T. Ding, C. Ma, G. Zhang, Temperature-Controlled Release of Diols from N-Isopropylacrylamide-co-Acrylamidophenylboronic Acid Microgels, J. Phys. Chem. B 2006, 110, 20635-20639.
    197. M. Y. Park, S. Lim, S. W. Lee, S. E. Park, Relative parameter contributions for encapsulating silica-gold nanoshells by poly(N-isopropylacrylamide-co-acrylic acid) hydrogels, Macromolecular Research 2009, 17, 307-312.
    198. J. Guo, W. Yang, C. C. Wang, J. He, J. Chen, Poly(N-isopropylacrylamide)-Coated Luminescent/Magnetic Silica Microspheres: Preparation, Characterization, and Biomedical Applications, Chem. Mater. 2006, 18, 5554-5562.
    199. R. B. Vasani, S. J. P. McInnes, M. A. Cole, A. M. M. Jani, A. V. Ellis, N. H. Voelcker, Stimulus-Responsiveness and Drug Release from Porous Silicon Films ATRP-Grafted with Poly(N-isopropylacrylamide, Langmuir 2011, 27, 7843-7853.
    200. S. Kinge, M. Crego-Calama, D. N. Reinhoudt, Self-Assembling Nanoparticles at Surfaces and Interfaces, Chem. Phys. Chem. 2008, 9, 20-42.
    201. K. Suzuki, T. Yumura, Y. Tanaka, M. Akashi, Thermo-responsive release from interpenetrating porous silica–poly(N-isopropylacrylamide) hybrid gels, J. Controlled Release 2001, 75, 183-189.
    202. M. Chen, L. Wu, S. Zhou, B. You, A Method for the Fabrication of Monodisperse Hollow Silica Spheres, Adv. Mater. 2006, 18, 801-806.
    203. F. J. Lutz, A. Hoth, Preparation of Ideal PEG Analogues with a Tunable Thermosensitivity by Controlled Radical Copolymerization of 2-(2-Methoxyethoxy)ethyl Methacrylate and Oligo(ethylene glycol) Methacrylate, Macromolecules 2006, 39, 893-896.
    204. I. Idziak, D. Avoce, D. Lessard, D. Gravel, X. X. Zhu, Thermosensitivity of Aqueous Solutions of Poly(N,N-diethylacrylamide), Macromolecules 1999, 32, 1260-1263.
    205. R. M. K. Ramanan, P. Chellamuthu, L. Tang, K. T. Nguyen, Development of a Temperature-Sensitive Composite Hydrogel for Drug Delivery Applications, Biotechnol. Prog. 2006, 22, 118-125.
    206. J. Pyun, T. Kowalewski, K. Matyjaszewski, Synthesis of Polymer Brushes Using Atom Transfer Radical Polymerization, Macromol. Rapid Commun. 2003, 24, 1043-1059.
    207. W. Zhao, H. Wang, X. Qin, X. Wang, Z. Zhao, Z. Miao, L. Chen, M. Shan, Y. Fang, Q. Chen, A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode, Talanta 2009, 80, 1029-1033.
    208. E. A. Veal, A. M. Day, B. A. Morgan, Hydrogen peroxide sensing and signaling, Molecular Cell 2007, 26, 1-14.
    209. J. Chao, M. Zou, C. Zhang, H. Sun, D. Pan, H. Pei, S. Su, L. Yuwen, C. Fan, L. Wang, A MoS2-based system for efficient immobilization of hemoglobin and biosensing applications, Nanotechnology 2015, 26, 274005.
    210. P. Santhosh, K. M. Manesh, A. Gopalan, K. P. Lee, Fabrication of a new polyaniline grafted multi-wall carbon nanotube modified electrode and its application for electrochemical detection of hydrogen peroxide, Anal. Chim. Acta 2006, 575, 32-38.
    211. Y. Shen, M. Trauble, G. Wittstock, Detection of Hydrogen Peroxide Produced during Electrochemical Oxygen Reduction Using Scanning Electrochemical Microscopy, Anal. Chem. 2008, 80, 750-759.
    212. J. Liu, C. Guo, C. M. Li, Y. Li, Q. Chi, X. Huang, L. Liao, T. Yu, Electrochem. Carbon-decorated ZnO nanowire array: A novel platform for direct electrochemistry of enzymes and biosensing applications, Commun. 2009, 11, 202-205.
    213. Q. Rui, K. Komori, Y. Tian, H. Liu, Y. Luo, Y. Sakai, Electrochemical biosensor for the detection of H2O2 from living cancer cells based on ZnO nanosheets, Anal. Chim. Acta 2010, 70, 57-62.
    214. S. Chen, R. Yuan, Y. Chai, L. Zhang, N. Wang, X. Li, Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles, Biosens. Bioelectron. 2007, 22, 1268-1274.
    215. C. Guo, F. Hua, C. M. Li, P. K. Shen, Direct electrochemistry of hemoglobin on carbonized titania nanotubes and its application in a sensitive reagentless hydrogen peroxide biosensor, Biosens. Bioelectron. 2008, 24, 819-824.
    216. H. Tian, F. Liang, J. Jiao, J. Hu, Direct Electrochemistry of Hemoglobin on Nickel Ion Implanted-Modified ITO Electrode and Biosensing for H2O2, J. Electrochem. Soc. 2013, 160, B125-B131.
    217. Z. Zhu, L. Qu, Q. Niu, Y. Zeng, W. Sun, X. Huang, Urchinlike MnO2 nanoparticles for the direct electrochemistry of hemoglobin with carbon ionic liquid electrode, Biosens. Bioelectron. 2011, 26, 2119-2124.
    218. Y. Wang, J. Chen, J. Xiang, H. Li, Y. Shen, X. Gao, Y. Liang, Synthesis and characterization of end-functional polymers on silica nanoparticles via a combination of atom transfer radical polymerization and click chemistry, Reactive & Functional Polymer 2009, 69, 393-399.
    219. J. Hu, M. Chen, H. Tiana, W. Denga, Enzyme Bioelectrochemistry in Cast Biomembrane-Like Films, RSC Advances. 2015, 5, 81134-81141.
    220. K. Zhang, J. Ma, B. Zhang, S. Zhao, Y. Li, Y. Xu, W. Yu, J. Wang, Synthesis of thermoresponsive silica nanoparticle/PNIPAM hybrids by aqueous surface-initiated atom transfer radical polymerization, Materials. Letters 2007, 61, 949-952.
    221. P. Wang, Y. N. Zhou, J. S. Luo, Z. H. Luo, Poly(ionic liquid)s-based nanocomposite polyelectrolytes with tunable ionic conductivity prepared via SI-ATRP, Polym. Chem. 2014, 5, 882-891.
    222. T. B. Mai, T. N. Tran, M. R. Islam, J. M. Park, K. T. Lim, Covalent functionalization of silica nanoparticles with poly(N-isopropylacrylamide) employing thiol-ene chemistry and activator regenerated by electron transfer ATRP protocol, J. Mater. Sci. 2014, 49, 1519-1526.
    223. Y. Yang, X. Yan, Y. Cui, Q. He, D. Li, A. Wang, J. Feia, J. Li, Preparation of polymer-coated mesoporous silica nanoparticles used for cellular imaging by a ‘‘graft-from’’ method, J. Mater. Chem. 2008, 18, 5731-5737.
    224. J. F. Rusling, Enzyme Bioelectrochemistry in Cast Biomembrane-Like Films, Chem. Res. 1998, 31, 363-369.
    225. E. Fernandez, J. T. Larsson, K. J. Mclean, A. W. Munro, L. Gorton, C. Wachenfeldt, E. E. Ferapontova, Electron transfer reactions, cyanide and O2 binding of truncated hemoglobin from Bacillus subtilis, Electrochim. Acta 2013, 110, 86-93.
    226. F. Guo, X. X. Xu, Z. Z. Sun, J. X. Zhang, Z. X. Meng, W. Zheng, H. M. Zhou, B. L. Wang Y. F. Zheng, A novel amperometric hydrogen peroxide biosensor based on electrospun Hb-collagen composite, Colloids Surf. B 2011, 86, 140-145.
    227. X. X. Xu, J. X. Zhang, F. Guo, W. Zheng, H. M. Zhou, B. L. Wang, Y. F Zheng, Y. B Wang, Y. Cheng, X. Lou, B. Z. Jang, A novel amperometric hydrogen peroxide biosensor based on immobilized Hb in Pluronic P123-nanographene platelets composite, Colloids Surf. B 2011, 84, 427-432.
    228. N. Wei, X. Xin, J. Du, J. Li, A novel hydrogen peroxide biosensor based on the immobilization of hemoglobin on threedimensionally ordered macroporous (3DOM) gold-nanoparticle doped titanium dioxide (GTD) film, Biosens. Bioelectron. 2011, 26, 3602-3607.
    229. L. Luo, L. Zhu, Y. Xu, L. Shen, X. Wang, Y. Ding, Q. Li, D. Deng, Hydrogen peroxide biosensor based on horseradish peroxidase immobilized on chitosan-wrapped NiFe2O4 nanoparticles, Microchim Acta 2011, 174, 55-61.
    230. Y. Wang, M. Tang, X. Lin, F. Gao, M. Li, Sensor for hydrogen peroxide using a hemoglobin-modified glassy carbon electrode prepared by enhanced loading of silver nanoparticle onto carbon nanospheres via spontaneous polymerization of dopamine, Microchim Acta 2012, 176, 405-410.
    231. M. M. Khan, S. A. Ansari, J. Lee, M. H. Cho, Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor, Mater. Sci. Eng. C 2013, 33, 4692-4699.
    232. L. L. Zhang, G. Q. Han, Y. Liu, J. Tang, W. H. Tang, Immobilizing haemoglobin on gold/grapheme-chitosan nanocomposite as efficient hydrogen peroxide biosensor, Sens. Actuators B 2014, 197, 164-171.
    233. P. Kalluru, R. Vankayala, C. S. Chiang, K. C. Hwang, Nano-graphene oxide-mediated In vivo fluorescence imaging and bimodal Photodynamic and photothermal destruction of tumors. Biomaterials 2016, 95, 1-10.
    234. X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc. 2006, 128, 2115-2120.
    235. M. Li, S. K. Cushing, N. Wu, Plasmon-enhanced optical sensors: a review, Analyst 2015, 140, 386-406.
    236. K. Jia, P. Wang, L. Yuan, X. Znou, W. Chen, X. Liu, Facile synthesis of luminescent silver nanoparticles and fluorescence interactions with blue-emitting polyarylene ether nitrile, J. Mater. Chen. C 2015, 3, 3522-3529.
    237. X. Huang, M. A. El-Sayed, Plasmonic photothermal therapy (PPTT), Alexandria Journal of Medicine 2011, 47, 1-9.
    238. X. Huang, M. A. El-Sayed, Gold nanoparticles: Optical properties and implementation in cancer diagnosis and photothermal therapy, Journal of Advanced Research 2010, 1, 13-28.
    239. W. Wang, Z. P. Li, B. H. Gu, Z. Y. Zhang, H. X. Xu, Ag@SiO2 Core-Shell Nanoparticles for Probing Spatial Distribution of Electromagnetic Field Enhancement via Surface-Enhanced Raman Scattering, ACS Nano 2009, 3, 3493-3496.
    240. D. Shao, X. Zhang, W. Liu, F. Zhang, X. Zheng, P. Qiao, J. Li, W. F. Dong, L. Chen, Janus Silver-Mesoporous Silica Nanocarriers for SERS Traceable and pH-Sensitive Drug Delivery in Cancer Therapy, ACS Appl. Mater. Interfaces 2016, 8, 4303-4308.
    241. Z. L. Song, Z. Chen, X. Bian, L.Y. Zhou, D. Ding, H. Liang, Y.X. Zou, S.S. Wang, L. Chen, C. Yang, X. B. Zhang, W. Tan, Alkyne-functionalized superstable graphitic silver nanoparticles for Raman imaging, J Am Chem Soc. 2014, 136, 13558-13561.
    242. A. L. Gonzalez, Cecilia Noguez, J. Beranek, A. S. Barnard, Size, Shape, Stability, and Color of Plasmonic Silver Nanoparticles, J. Phys. Chem. C, 2014, 118, 9128-9136.
    243. Diez, R. H. A. Res, Fluorescent silver nanoclusters, Nanoscale 2011, 3, 1963-1970.
    244. K. Wang, X. Zhang, C. Niu, Y. Wang, Template-Activated Strategy toward One-Step Coating Silica Colloidal Microspheres with Silver. ACS Appl. Mater. Interfaces 2014, 6, 1272-1278.
    245. J. P. Yang, D. K. Shen, L. Zhou, W. Li, J. W. Fan, A. M. El-Toni, W. X. Zhang, F. Zhang, D. Y. Zhao, Mesoporous Silica-Coated Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Detection and Photothermal Therapy, Adv. Healthcare Mater. 2014, 3, 1620-1628.
    246. W. Fang, Z. Wang, S. Zong, H. Chen, D. Zhu, Y. Zhong, Y. Cui, pH-controllable drug carrier with SERS activity for targeting cancer cells, Biosens. Bioelectron. 2014, 57 10-5715.
    247. K. M. Yeo, S. Choi, R. M. Anisur, J. Kim, I. S. Lee, Surfactant-Free Platinum-on-Gold Nanodendrites with Enhanced Catalytic Performance for Oxygen Reduction, Angew.Chem., Int. Ed. 2011, 50, 745-748.
    248. J. M. Blake-Hedges, S. H. Greenspan, J. A. Kean, M. A. McCarron, M. L. Mendonca, K. L. Wustholz, Plasmon-enhanced fluorescence of dyes on silica-coated silver nanoparticles: a single-nanoparticle spectroscopy study, Chemical Physics Letters 2015, 635, 328-333.
    249. S. C. Boca, M. Potara, A. M. Gabudean, A. Juhem, P. L. Baldeck, S. Astilean, Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy, Cancer letters, 2011, 311, 131-140.
    250. S. C. Boca, M. Potara, A. M. Gabudean, A. Juhem, P. L. Baldeck, S. Astilean, Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells, Molecular pharmaceutics, 2013, 11, 391-399.
    251. I. P. Santos, L. M. L. Marzan, Colloidal silver nanoplates. State of the art and future challenges. Journal of Materials Chemistry 2008, 18, 1724-1737.
    252. C. E. Lin, L. R. Rau, J. W. Liaw, F. Y. Hsu, S. W. Tsai, Biocompatibility Analysis of NIH/3T3 Cells Exposed to Silica-Coated Silver and Silver Nanoparticles, Nanoscience and Nanotechnology Letters, 2016, 8, 1080-1088.
    253. P. D. Nallathamby, X. H. N. Xu, Study of cytotoxic and therapeutic effects of stable and purified silver nanoparticles on tumor cells, Nanoscale 2010, 2, 942-952.
    254. K. Chaloupka, Y. Malam, A. M. Seifalian, Nanosilver as a new generation of nanoproduct in biomedical applications, Trends in biotechnology 2010, 28, 580-588.
    255. J. Lee, D. J. Jang, Laser-induced fabrication of Ag@SiO2@Ag sandwich nanostructures having enhanced catalytic performances, RSC Adv. 2015, 5, 64268-64273.
    256. J. Lee, D. J. Jang, Highly Efficient Catalytic Performances of Eco-Friendly Grown Silver Nanoshells, J. Phys. Chem. C 2016, 120, 4130-4138.
    257. J.W. Alexander, History of the medical use of silver. Surg. Infec. 2009, 10, 289-292.
    258. G.V. Hartland, Optical studies of dynamics in noble metal nanostructures, Chem. Rev. 2011, 111, 3858-3887.
    259. C. Li, J. Mei, S. Li, N. Lu, L. Wang, B. Chen, W, Dong, One-pot synthesis of Ag@SiO2@Ag sandwich nanostructures, Nanotechnology, 2010, 21, 245602.
    260. Y. Wang, L. Chen, P. Liu, Biocompatible Triplex Ag@SiO2@mTiO2 Core-Shell Nanoparticles for Simultaneous Fluorescence-SERS Bimodal Imaging and Drug Delivery, Chem. Eur. J. 2012, 18, 5935-5943.
    261. Z. Bai, R. Chen, P. Si, Y. Huang, H. Sun, D. H. Kim, Fluorescent pH Sensor Based on Ag@SiO2 Core-Shell Nanoparticle, ACS Appl. Mater. Interfaces 2013, 5, 5856-5860.
    262. X. Y. Miao, I. Brener, T. S. Luk, Nanocomposite plasmonic fluorescence emitters with core/shell configurations, J. Opt. Soc. Am. B 2010, 27, 1561-1570.
    263. O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, M. Y. Losytskyy, A. V. Kotko, A. O. Pinchuk, Phys. Rev. B 2009, 79, 235438.
    264. L. C. Cheng, J. H. Huang, H. M. Chen, T. C. Lai, K. Y. Yang, R. S. Liu, M. Hsiao, C. H. Chen, L. J. Her, D. P. Tsai, Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent, J. Mater. Chem. 2012, 22, 2244-2253.
    265. D. Wang, Z. Guo, J. Zhou, J. Chen, G. Zhao, R. Chen , M. He , Z. Liu , H. Wang, Q. Chen, Novel Mn 3[Co(CN)6]2@SiO2@Ag Core-Shell Nanocube: Enhanced Two-Photon Fluorescence and Magnetic Resonance Dual-Modal Imaging-Guided Photothermal and Chemo-therapy, small 2015, 11, 5956-5967.
    266. P. F. Hsiao, A. Rajeshkumar, C. H. Ying, V. Adhishankar, H. C. Tsai, Thermoresponsive polyamic acid-conjugated gold nanocarrier for enhanced light-triggered 5-fluorouracil release, RSC Adv. 2017, 7, 8357-8365.

    無法下載圖示 全文公開日期 2023/02/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE