簡易檢索 / 詳目顯示

研究生: 趙志豪
Chih-Hao Chao
論文名稱: 利用化學蝕刻法製作光場匹配光纖透鏡之研究
A Study of Utilizing a Chemical Etching Technique to Design the Lens Fiber that Matches the Mode Field
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 李三良
San-Liang Lee
汪家昌
Jia-Chang Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 79
中文關鍵詞: 耦光光纖透鏡化學蝕刻法
外文關鍵詞: Lens Fiber
相關次數: 點閱:507下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

一般以化學蝕刻法(chemical etching)製作應用於光纖通訊上之單錐度透鏡光纖(tapered fiber),具有製作簡易快速、成本低廉的優點。不過以此方式所製作的透鏡光纖會因為光纖的光場與雷射不匹配,造成耦光的效率偏低。本研究主要針對光場不匹配的問題而提出一新式雙階段化學蝕刻法(Two steps chemical etching),利用傾斜角度改變與旋轉蝕刻程序,可在光纖端面製作出x軸、y軸具有不同θx與θy錐角的光纖尖錐,經由熔燒後製作出在x軸、y軸方向上具有不同曲率半徑、能匹配雷射光場的雙錐度透鏡光纖。
具有橢圓狀曲率半徑的雙錐度透鏡光纖,其尖端透鏡可藉由實驗參數的改變而控制x、y軸曲率半徑比率。在同樣的製作時間下,實驗對照組之一般單錐度透鏡光纖耦光效率為30%,雙錐度透鏡光纖耦光效率達到62%,證明以新式雙階段蝕刻法所製作之雙錐度透鏡光纖具有提升耦光效率的效果。對於製作透鏡光纖應用在光纖通訊上,此方法增加了化學蝕刻法更高的實用性。


Chemical etching technique is commonly used to design the tapered fiber that is applied to the optical fiber communication since it is simple, efficient, and inexpensive. However, the tapered fiber made by this technique can cause low coupling efficiency due to the mismatch between the fiber’s mode field and laser. The current study aims to propose a new technique called two steps chemical etching technique to solve the mode field mismatch problem. This new technique utilizes the change of gradient and the rotate etching process to design fiber tips with different θx and θy cone angles on the end of the optical fiber. Moreover, this new technique, through melting, can produce different radius of curvature on both x and y axes of the lens fiber with two tapers to match the laser mode filed.
By changing the experiment parameter, the researcher can control the ratio between x and y axes’ radius of curvature of the lens fiber. With the same fabricating time, the coupling efficiency of the tapered fiber in a control group was 30% while the coupling efficiency of the lens fiber with two tapers was up to 62%. The result indicated that the lens fiber with two tapers made by the two steps chemical etching technique could increase the effects of the coupling efficiency. This technique also enlarges the practicability of the chemical etching technique with respect to designing the tapered fiber used in the optical fiber communication.

中文摘要……………………….…………………………………………I 英文摘要………………………………………………………………...II 誌謝……………………………………………………………………..III 目錄……………………………………………………………………..IV 圖索引……………………………………………………...…………..VII 表索引…………………………………………………………….…....XII 第一章 緒論…………………………………………………….…1 1.1 前言………………………………………………….………………1 1.2 研究動機…………………………………………….………………1 1.3 研究目的…………………………………………….………………2 第二章 文獻回顧…………………………….……...………….3 2.1 耦光技術簡介………………...……………………………………..3 2.2 光纖對光源的耦合理論………...…………………………………..6 2.3 光纖透鏡製作法………………..……………………………..…….9 2.3.1 光阻法…………………………………………….………...…10 2.3.2 研磨法………………………………………………...……….11 2.3.3 熔燒抽絲法………………………………………...………….11 2.3.4 雷射微加工法…………………………………………………12 2.3.5 化學蝕刻法……………………………………………………15 第三章 雙錐度光纖透鏡製作……………………...……19 3.1 單錐度光纖尖錐製作…………………………..……...………..…20 3.1.1 光纖尖錐蝕刻機制分析……………………………...……….20 3.1.2 光纖尖錐控制參數…………………………………...……….23 3.2 改良式光纖尖錐蝕刻系統………..…..…………..….……………27 3.3 以改良式光纖尖錐蝕刻系統製作光纖透鏡………………..…….28 3.3.1 不對稱錐角形成機制…………..……………..………………32 3.3.2 旋轉變因之於不對稱錐角形成原理……….…..………...…. 33 3.3.3 匹配雷射光場之透鏡光纖研究……………..…..………...….40 3.4 利用雙階段式蝕刻法製作理想光纖透鏡…………………..…….44 3.4.1 選擇最適合之蝕刻傾斜角………………..………...…….…. 47 3.4.2 選擇最適合之蝕刻時間………..……………………………..47 第四章 雙錐度光纖耦光效率量測…………...………53 4.1 耦光效率量測系統……………………...…………………………53 4.2 光纖透鏡熔燒………………..……...………………..……………57 4.2.1 光纖透鏡熔燒系統……..………...………………………...…58 4.2.2 光纖尖錐透鏡熔燒……..………………...………..………….60 4.3 熔燒後之雙錐度光纖耦光效率量測………………….……..……67 第五章 結論與建議..………………………………...……….73 5.1 結論………..……………………………………………………….73 5.2 建議與未來研究方向…………………………………………...…75 參考文獻…………………………………………………..……….78

[1] 王崗嶸、陳鴻仁,2000年DWDM產業及技術動態調查,光電科技協進會。
[2] 黃見裕,台灣大學光電所碩士論文,「光纖陣列的製造與構裝」,1994年6月。
[3] 陳瑞鑫,陳鴻仁,林依恩編著,易善穠審,「光纖通訊原理與技術」,全華科技圖書有限公司,2004年1月。
[4] H. Izadpanah, L. A. Reith, “Microlens fabrication technique for an efficient laser/single-mode fiber coupling”, SPIE, vol. 836, pp. 306-315,1987.
[5] H. M. Presby, A. F. Benner, and C. A. Edwards, “Laser micromachining of efficient fiber microlenses”, Appl. Opt., vol. 29, no. 18, pp.2692-2695, 1990.
[6] J. I. Sakai, Tatsuya Kimura, “Design of a miniature lens for semiconductor laser to single-mold fiber coupling”, IEEE J.Q.E., pp1059-1066, 1980.
[7] K. S. Lee, F. S. Barnes, ”Microlenses on the end of single-mode Optical Fibers for Laser applications”, App. Opt., pp3134-3139,1985.
[8] V. S. Shah et al., “Efficient Power Coupling from a 980-nm, Broad-Area Laser to a Single-Mode Fiber Using a Wedge-Shaped Fiber Endface,” Lightwave Technology, Journal of, Vol.8, No.9, Sep. 1990, pp. 1313 –1318.
[9] B. Hillerich, “Shape analysis and coupling Loss of Microlenses on Single-Mode Fiber Tips”, App. Opt., pp3102-3106,1988.
[10] J. I. Yamada, Y. Murakami, J. I. Sakai, “Characteristic of a Hemispherical Microlens for Coulping Between a Semiconductor Laser and Single-Mode Fiber”, IEEE J.Q.E., pp1067-1072, 1980.
[11] W. H. Cheng, C. S. Wang, C. J. Hwang, “Highly Efficient Power Coupling Between GaAlAs Laser and Tapered-hemispherical-end Multimode Fibers”, App. Opt., pp3409-3410, 1982
[12] C. A. Edwards, H. M. Presby, “Ideal Microlenses for Laser to Fiber Coupling”, IEEE J.L.T., pp252-257, 1993
[13] 莊育樹,台灣科技大學機械研究所碩士論文,「應用透鏡光纖與蝕刻矽方法於半導體雷射被動定位構裝之研究」,2002年6月。
[14] 丁勝懋編著,「雷射工程導論」,中央圖書出版社,2003年4月。
[15] P. K. Wong, T. H. Wang, C. M. Ho, “Optical Fiber Tip Fabricated by Surface Tension Controlled Etching”, M. & A. Engineering, UCLA, CA 90095, 2002.
[16] 楊國煇,台灣科技大學機械研究所碩士論文,「應用覆晶技術改良光通訊次模組封裝之被動定位研究」,2004年6月。
[17] L. L. Lo, “The Meniscus on a Needle – a Lesson in Matching”, Journal of Fluid Mechanics, 132, 65, 1983.
[18] Warren J. Smith. “Modern optical engineering”, New York: McGraw Hill, 2000.

QR CODE