簡易檢索 / 詳目顯示

研究生: 王釗偉
Chao-Wei Wang
論文名稱: 微型化晶片天線及新型人工合成傳輸線 之研究
A Study of the Miniaturized Chip Antenna and a New Planar Artificial Transmission Line
指導教授: 楊成發
Chang-Fa Yang
馬自莊
Tzyh-Ghuang Ma
口試委員: 李學智
Hsueh-Jyh Li
曾昭雄
Chao-Hsiung Tseng
胡泉凌
Chuan-Ling Hu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 104
中文關鍵詞: 微型化晶片天線人造合成傳輸線方向耦合器威爾金森功率分配器微帶線至共平面帶線轉接相位陣列天線巴特勒矩陣
外文關鍵詞: lanar chip antenna, rat-race, microstrip-to-CPS transition, interrogation region, Butler matrix.
相關次數: 點閱:358下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一應用於GPS系統之整合式微型化晶片天線與低雜訊放大器。此微型化晶片天線使用多重曲折繞線構成輻射體,並使用射出成型封裝技術將LCP與晶片天線進行封裝。相較於傳統的陶瓷patch天線,此天線具有小尺寸及低成本等優點。此微型化晶片天線僅有10×8×1.0 mm3之尺寸相當適合內建於GPS接收器等行動裝置。
    本論文另一部分提出一新型的人造合成傳輸線,並使用此傳輸線設計應用於RFID的微型化耦合器、功率分配器及4乘4的Butler Matrix。此平面式人造合成傳輸線使用近集總微帶元件及其之間不連續效應所設計而成,此結構可以合成各種不同特徵阻抗及電器長度之傳輸線。另一方面,使用此新型傳輸線設計之的低通濾波器亦被實現於本論文中,此低通濾波器使用近集總微帶元件及其之間不連續效應達到電路微型化之設計。為了增加濾波器之頻率選擇度及止帶之頻寬,其成功地設計出四個衰減極點以達到電路之需求。此低通濾波器的電路面積僅有0.15 0.08 ,其中 為濾波器於3-dB截止頻率之導波波長。
    同樣地,設計於 UHF頻段之RFID的900方向耦合器及1800方向耦合器,其僅有分別0.12 0.13 及 0.10 0.16 的面積,即相較於傳統型式的設計分別減少了73% 及 91%的電路面積。本論文所提出之耦合器實驗及模擬之結果相當符合並具有良好的諧波抑制效果,其可抑制高達16倍頻以上之諧波。應用於RFID的Wilkinson功率分配器亦同時在本論文中討論,其所佔之電路面積為0.065 0.109 。為了使功率分配器之二次諧波濾去,本設計使用額外的並聯短路殘枝以達到電路所需之要求。同時,本論文使用一種簡單的方法控制RFID讀取器之讀取範圍。此方法使用本論文提出之1800方向耦合器及相位陣列天線產生合-及差-的天線場型來控制RFID讀取器之讀取範圍並同時達到縮小化之設計。同時,一應用於UHF RFID 頻段之4乘4 Butler Matrix亦成功地設計於本論文中並同時進行微型化之設計。此4乘4的Butler Matrix的電路面積僅有99 mm 108 mm即0.49 0.54 。本論文提出之Butler Matrix具有良好的相位控制及接近於相同的功率分配及微小化的尺寸,其相當適合於各種RFID之應用。為驗證此Butler matrix之相位陣列天線讀取器之效果,本論文進行讀取範圍及穿透力的實驗。經由實驗結果證明,此相位陣列天線讀取器相較於與用單一天線讀取器在讀取範圍及穿透力分別具有20.5 %及72.5 %的增強效果。
    此外,為了驗證此人工合成傳輸線於較高頻段的微型化能力。本論文亦提出設計於5-GHz WLNA頻段的微帶線至共平面帶線的轉接,其具有微型化、低介入損失及78.6 %的3-dB介入損失頻寬。


    A planar chip antenna integrated with a low noise amplifier for GPS applications at 1.575 GHz is presented in this thesis. This chip antenna comprises a radiating structure of multiple meandered conducting strips packed with an LCP dielectric composite material to achieve size, performance characteristics and cost effectiveness superior to conventional GPS ceramic patch antennas. The 10×8×1.0 mm3 compact surface-mount chip antenna is suitable built in a GPS receiver operating at 1.575 GHz.
    A miniaturized branch-line coupler, a rat-race coupler, two Wilkinson power dividers, and a 4 by 4 Butler matrix based on a newly proposed planar artificial transmission line (ATL) are presented in this thesis. This planar artificial transmission line is composed of microstrip quasi-lumped elements and their discontinuities, and is capable of synthesizing microstrip lines with various characteristic impedances and electrical lengths. On the other hand, a new quasi-lumped low-pass filter using the proposed artificial transmission line has been demonstrated in this thesis. This low-pass filter uses quasi-lumped elements and their associated discontinuous effects to realize a compact design. To improve the frequency selectivity as well as stopband rejection bandwidth, four attention poles have been successfully introduced and well explained. The proposed low-pass filter features compact size, sharp cutoff response, and wide stopband rejection. The dimensions of this low-pass filter are reported to be as small as 0.15 g×0.08 g at the 3-dB cutoff frequency, 2 GHz.
    At the center frequency of UHF RFID band, the occupied sizes of the proposed quadrature hybrid and rat-race coupler are merely 0.12 0.13 and 0.10 0.16 , respectively, which correspond to size reductions of 73% and 91% as compared to those of the conventional designs. The measurement results reveal excellent agreement with the simulation ones, and the wideband responses further demonstrate that the proposed hybrids are well-behaved with no spurious harmonics up to two octaves. Meanwhile, at the center frequency of the UHF RFID system, the occupied size of the proposed miniaturized Wilkinson power divider is merely 13.4 mm 22.4 mm, or equivalently 0.065 0.109 . By utilizing the harmonic suppression nature of the artificial transmission line and two additional short-circuited stubs, this miniaturized divider also exhibits harmonic suppression characteristics over nearly a decade bandwidth. Additionally, a simple method that can allow better control of the interrogation region of the RFID reader by using the antenna array with difference and sum beam patterns has been proposed and demonstrated in this thesis. This structure is capable of well controlling the interrogation region of the reader, and to achieve the compact design replace the proposed design with the conventional rat-race coupler. Furthermore, a miniaturized Butler matrix with a compact circuit size of 0.49 0.54 has also been realized. The miniaturized Butler matrix features good phase control, nearly equal power splitting and moderate insertion loss, and is suitable for beam-switch antenna arrays in some UHF RFID applications. The experimental results reveal that the proposed Butler-matrix-based switch-beam phase array demonstrates a 20.5 % and 72.5 % enhancement in the readable range and penetrating ability, respectively, as compared to those of a single antenna element.
    In addition, to demonstrate the capability of miniaturization at higher frequency range, in this thesis a microstrip-to-CPS transition is designed at the 5-GHz WLAN band by utilizing the proposed artificial transmission line. The proposed transition features compact size, low insertion loss, and wide 3-dB insertion loss bandwidth of 78.6%. The design methodology, simulated and experimental results are discussed throughout the thesis.

    摘要 I ABSTRACT III 致謝 VI TABLE OF TONCENTS VII LIST OF FIGURES IX LIST OF TABLES XIII CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 ORGANIZATION OF THE THESIS 2 CHAPTER 2 A MINIATURIZED GPS PLANAR CHIP ANTENNA INTEGRATED WITH LOW NOISE AMPLIFIER 4 2.1 INTRODUCTION 4 2.2 DESIGN OF THE GPS MINIATURIZED CHIP ANTENNA 5 2.3 A CHIP ANTENNA INTEGRATED WITH LOW NOISE AMPLIFIER 7 2.4 SUMMARY 8 CHAPTER 3 THE INVESTIGATION OF A NEW ARTIFICIAL TRANSMISSION LINE…………............. 19 3.1 INTRODUCTION 19 3.2 DESIGN CONCEPTS AND THE ARTIFICIAL TRANSMISSION LINE 21 3.3 THE PROPAGATION CHARACTERISTICS 24 3.4 ARTIFICIAL TRANSMISSION LINE AS A LOW-PASS FILTER 28 3.5 SUMMARY 31 CHAPTER 4 MINIATURIZED HYBRIDS, WILKINSON POWER DIVIDER AND MICROSTRIP-TO-CPS TRANSITION 42 4.1 INTRODUCTION 42 4.2 THE MINIATURIZED QUADRATURE HYBRID 44 4.3 THE MINIATURIZED RAT-RACE HYBRID 46 4.4 THE MINIATURIZED WILKINSON POWER DIVIDER WITH SECOND HARMONIC SUPPRESSION CHARACTERISTICS 48 4.5 THE MICROSTRIP-TO-CPS TRANSITION 50 4.6 SUMMARY 53 CHAPTER 5 PHASE ARRAY ANTENNA FOR RFID APPLICATIONS 67 5.1 INTRODUCTION 67 5.2 INTERROGATION REGION CONTROL OF A RFID READER 68 5.3 MINIATURIZED BUTLER MATRIX FOR RFID APPLICATION 70 5.4 SUMMARY 73 CHAPTER 6 CONCLUSIONS 82 REFERENCES 85

    [1] Warren L. Stutzman, Gary A. Thiele, Antenna Theory and Design, John Wiley & Sons, Inc., 2nd Edition, 1997.
    [2] M. Ali, T. Sittironnarit, H.-S. Hwang, R. A. Sadler, and G. J. Hayes, “Wide-Band/Dual-Band Packaged Antenna for 5-6GHz WLAN Application,” IEEE trans. Antennas Propagat., vol. 52, no. 2, pp. 610–615, Feb. 2004.
    [3] T.-J. Warnagiris and T. J. Minardo, “Performance of meandered line as an electrically small antenna,” IEEE trans. Antennas Propagat., vol. 46, pp. 1797-1801, December 1998.
    [4] C.-L. Hu, M.-C. Pan, S.-T. Lin, C.-F. Yang, K.-C. Cheng, S.-F. Wang, L.-S. Jang, C.-L. Liao, “A fabrication method of small chip antennas,” Taiwan patent # I241052, Oct. 1, 2005 – Dec. 28, 2024.
    [5] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design , 2nd Edition, Prentice Hall, 1996.
    [6] D.-K. Shaeffer, and T.-H. Lee, ”A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp. 745 - 759, May 1997.
    [7] C.-W. Wang, Y.-M. Chen, C.-F. Yang, S.-T. Lin, C.-L. Liao, C.-L. Hu “A Miniature GPS Planar Chip Antenna Integrated with Low Noise Amplifier,” in IEEE AP-S Dig., pp. 1241-1244, Honolulu, 10-15 June 2007.
    [8] I. Toyoda, T. Hirota, T. Hiraoka, and T. Tokumitsu, “Multilayer MMIC brach-line coupler and broad-side coupler,” in Microwave and Millimeter-Wave Monolithic Circuits Sym. Dig., Albuquerque NM, 1-3 June 1992, pp. 79–82.
    [9] Y.-C. Chiang and C.-Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE trans. Microwave Theory Tech., vol. 49, no. 3, pp. 476–479, Mar. 2001.
    [10] F.-R. Yang, K.-P. Ma, Y. Qian and T. I. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,” IEEE trans. Microwave Theory Tech., vol. 47, no. 8, pp. 1509-1514, Aug. 1999.
    [11] Y. J. Sung, C. S. Ahn and Y.-S. Kim, “Size reduction and harmonic suppression of rat-race hybrid coupler using defected ground structure,” IEEE Microwave Wireless Comp. Lett., vol. 14, no. 1, pp. 7–9, Jan. 2004.
    [12] K.-O. Sun, S.-J. Ho, C.-C. Yen and D. van der Weide, “A compact branch-line coupler using discontinuous microstrip lines,” IEEE Microwave Wireless Comp. Lett., vol. 15, no. 8, pp. 519-520, Aug. 2005.
    [13] K. W. Eccleston and S. H. M. Ong, “Compact planar microstrip line branch-line and rat-race couplers,” IEEE trans. Microwave Theory Tech., vol. 51, no. 10, pp. 2119-2125, Oct. 2003.
    [14] A.-S. Liu, H.-S. Wu, C.-K.C. Tzuang, and R.-B. Wu, “Ka-band 32-GHz planar integrated switched-beam smart antenna,” in IEEE MTT-S Int. Microwave Sym. Dig., Long Bench CA, pp. 565-568, 12-17 June 2005.
    [15] C.-W. Wang, T.-G. Ma and C.-F. Yang, “Miniaturized branch-Line coupler with harmonic suppression for RFID applications using artificial transmission lines,” in IEEE MTT-S Int. Microwave Sym. Dig., Honolulu, 3-8 June 2007.
    [16] C.-W. Wang, T.-G. Ma and C.-F. Yang, “A new planar artificial transmission line and its applications to miniaturized Butler matrix for frequency identification systems,” IEEE trans. Microwave Theory Tech., submit for publication.
    [17] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE trans. Comp., Hybrids, Manufact. Technol., vol. 15, no. 4, pp. 483–490, Aug. 1992.
    [18] D. M. Pozar, Microwave Engineering, Wiley, 2005, 3rd Edition.
    [19] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, Wiley, 2001, 2nd.
    [20] M.-L. Ha and Y.-S. Kwon,”Ku-band stop filter implemented on a high resistivity silicon with inverted microstrip line photonic bandgap (PBG) structure,” in IEEE Microwave Wireless Comp. Lett., vol. 15, pp410 – 412, June 2005.
    [21] I. Rumsey, M.-M. Piket and P.-K. Kelly,”Photonic bandgap structures used as filters in microstrip circuits,” in IEEE Microwave Wireless Comp. Lett., vol. 15, pp336 – 338, Oct. 1998.
    [22] F. Giannini, M. Salerno, and R. Sorrentino, “Design of low-pass elliptic filters by means of cascaded microstrip rectangular elements,” IEEE Trans. Microwave Theory Tech., vol. 30, pp. 1348–1353, Sept. 1982.
    [23] L. H. Hsieh and K. Chang, “Compact elliptic-function low-pass filters using microstrip stepped-impedance hairpin resonators,” IEEE trans. Microwave Theory Tech., vol. 51, no. 1, pp. 193–199, Jan. 2003.
    [24] Wen-Hua Tu; Kai Chang,” Compact microstrip low-pass filter with sharp rejection,” in IEEE Microwave Wireless Comp. Lett., vol. 15, No. 6, pp. 404 – 406, June 2005.
    [25] M.-L. Chuang, “Miniaturized ring coupler of arbitrary reduced size,” IEEE Microwave Wireless Comp. Lett., vol. 15, no. 1, pp. 16-18, Jan. 2005.
    [26] J. Gu and X. Sun, “Miniaturization and harmonic suppression rat race coupler coupler using C-SCMRC resonators with distributive equivalent circuit,” IEEE Microwave Wireless Comp. Lett., vol. 15, no. 12, pp. 880-882, Dec. 2005.
    [27] J.- T. Kuo, J.-S. Wu, and Y.-C. Chiou, “Miniaturized rat race coupler with suppression of spurious passband,” IEEE Microwave Wireless Comp. Lett., vol. 17, no. 1, pp. 46-48, Jan. 2007.
    [28] C.-C. Chen and C.-K.C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE trans. Microwave Theory Tech., vol. 52, no. 6, pp. 1637-1647, Jun. 2004.
    [29] I. Bahl and P. Bhartia, Microwave Solid State Circuit Design, John Wiley & Sons, 2nd ed. 2003.
    [30] L.-H. Lu, P. Bhattacharya, L.-P. B. Katehi, and G.-E. Ponchak, “X-band and K-band lumped Wilkinson power dividers with a micromachined technology,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, Boston, MA, pp. 287–290, June 11–16, 2000.
    [31] M.-C. Scardelletti, G.-E. Ponchak, and T.-M. Weller, “Miniaturized Wilkinson power dividers utilizing capacitive loading,” IEEE Microwave Wireless Comp. Lett., vol. 12, no. 1, pp. 6–8, Jan. 2002.
    [32] Y.-J. Ko, J.-Y. Park, and J.-U. Bu, “Fully integrated unequal Wilkinson power divider with EBG CPW,” IEEE Microwave Wireless Comp. Lett., vol. 13, no. 7, pp. 276–278, July. 2003.
    [33] J.-S. Lim, S.-W. Lee, C.-S. Kim, D.-A. Nam, and S.-W. Nam, “A 4:1 unequal Wilkinson power divider,” IEEE Microwave Wireless Comp. Lett., vol. 11, no. 3, pp. 124–126, Mar. 2001.
    [34] C.-W. Wang, K.-H. Li, C.-J. Wu, and T.-G. Ma, “,” in 2007IEEE Asia-Pacific Micro. Conf., submit for publication.
    [35] N. Kaneda, W. R. Deal, Y. Qian, R. Waterhouse, and T. Itoh, .A Broad-Band Planar Quasi-Yagi Antenna,. IEEE trans. Antennas Propagat., vol. 50, no. 8, pp. 1158-1160, Aug, 2002.
    [36] S.-G. Mao, H.-K. Chiou, and C. H. Chen, “Design and modeling of uniplanar double-balanced mixer,” IEEE Microwave Guided Wave Lett., vol. 8, no. 10, pp. 354–356, Oct. 1998.
    [37] H.-T. Kim, S. Lee, S. Kim, Y. Kwon, and K.-S. Seo, “Millimeter-wave CPS distributed analogue MMIC phase shifter,” Electron. Lett., vol. 39, no. 23, pp. 1661–1662, Nov. 2003.
    [38] K. Goverdhanam, R. N. Simons, and L. P. B. Katehi, “Coplanar stripline components for high-frequency applications,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 10, pp. 1725–1729, Oct. 1997.
    [39] N.-I. Dib, R.-N. Simons, and L.-P.-B. Katehi, “New uniplanar transitions for circuit and antenna applications,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 12, pp. 2868–2872, Dec. 1995.
    [40] Y. Qian and T. Itoh, “A broad-band uniplanar microstrip-to-CPS transition,” in Proc. Asia–Pacific Microwave Conf., vol. 2, pp. 609–612, 1997.
    [41] R.-N. Simons, N.-I. Dib, and L.-P. B. Katehi, “Coplanar stripline to microstrip transition,” Electron. Lett., vol. 31, no. 20, pp. 1725–1726, Sep. 1995.
    [42] Y.-H. Suh and K. Chang, “A wide-band coplanar stripline to microstrip transition,” IEEE Microwave Wireless Comp. Lett., vol. 11, no. 1, pp. 28–29, Jan. 2001.
    [43] W.-H. Tu and K. Chang, “Wide-band microstrip-to-coplanar stripline/slotline transitions,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 3, pp. 1084 – 1089, March 2006.
    [44] K. Finkenzeller, RFID Handbook, John Wiley & Sons, 2nd ed., 2003.
    [45] T.-B. Hansen and M.-L. Oristaglio, “Method for Controlling the Angular Extent of Interrogation Zones in RFID,” IEEE Antennas and Wireless Propag. Lett., vol. 5, no. 1, pp. 134 – 137, Dec. 2006.
    [46] R.-C. Hua and T.-G. Ma, “A Printed Dipole Antenna for Ultra High Frequency (UHF) Radio Frequency Identification (RFID) Handheld Reader,” IEEE trans. Antennas Propagat., submitted for publication.
    [47] K.-K. Fu, A.-K-.Y. Lai, “FDTD optimization of beam forming network for multibeam antenna,” in IEEE AP-S Sym. Dig., vol. 4, pp. 2028 – 2031, 21-26 June 1998.

    QR CODE