簡易檢索 / 詳目顯示

研究生: 賀佑堯
Yo-Yao Ho
論文名稱: 二硫化鉭及二硫化錸摻雜鉭之晶體成長及其特性研究
Crystal growth and characterization of TaS2 and Re1-xTaxS2 (x = 0, 0.01, 0.05)
指導教授: 何清華
Ching-Hwa Ho
李奎毅
Kuei-Yi Lee
口試委員: 李奎毅
Kuei-Yi Lee
陳瑞山
Ruei-San Chen
薛宏中
Hung-chung Hsueh
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 83
中文關鍵詞: 晶體成長特性研究二硫化鉭二硫化錸摻雜
外文關鍵詞: crystal growth, characterization, TaS2, ReS2, dope
相關次數: 點閱:343下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用化學氣相傳導法分別長出1T與2H結構之二硫化鉭(TaS2)和成長二硫化錸摻雜鉭Re1-XTaXS2 (X = 0, 0.01, 0.05)系列之高品質單晶,由X射線光電子能譜儀(XPS)確定鉭已成功摻入二硫化錸中。
X光晶格繞射結果確定二硫化鉭為六方晶系,藉由變溫電阻率的量測確認其為金屬導電性材料,並藉由霍爾量測實驗得知其電子濃度分別為1.1x1020/cm3 (1T)及1.6x1020 / cm3 (2H),而電子遷移率分別為37 cm2/V.s (1T)及80 cm2/V.s (2H)。二硫化錸為低對稱性的三斜結構,具有顯著的平面極化特性,透過拉曼量測,發現有摻雜鉭與無摻雜鉭的二硫化錸並無明顯的拉曼峰偏移,但其拉曼極化特性卻有所改變,在141 cm-1, 345 cm-1, 405 cm-1三個位置之極化圖顯示,各峰值所在的角度由無摻雜, X=0.01及X=0.05,隨著鉭量增加,最大峰值強度所在角度亦隨之減小,顯示極化特性已改變。另外透過調制光譜,可以發現摻了鉭的二硫化錸與無摻雜相同,仍保有激子1及激子2躍遷,其峰值位置也幾乎沒有改變,但仍反映在極化特性上。計算(激子1 / 激子2),隨著摻鉭量增加,其強度從0度(平行b軸)偏移到-20度。透過對Re1-XTaXS2 (X = 0, 0.01, 0.05)進行熱探針與霍爾實驗,發現無摻雜二硫化錸為N型半導體,摻鉭後(X = 0.01與X = 0.05)變成P型半導體,電阻率ρ隨著摻鉭量增加而增大,因此,具有電洞捕獲效應,且載子遷移率μ亦有所提升,但因濃度下降,導致電阻率ρ變大。


In this thesis, I use chemical vapor transport method (CVT) to grow up high quality 1T and 2H Tantalum disulfide (TaS2) and ReS2 doping Tantalum Re1-XTaXS2 (X = 0, 0.01, 0.05) series crystal, and then I use X-ray photoelectron spectroscopy (XPS) to confirm that Tantalum is successfully doped into ReS2. From XRD, we know TaS2 has hexagonal structure. From temperature dependent (TD) resistivity measurement, it is verified as a metallic material. From Hall measurement, TaS2 has high concentration about 1.1x1020 / cm3 (1T) and1.6x1020 / cm3 (2H), and its mobility is 37 cm2 / V.s (1T), 80 cm2 / V.s (2H), respectively. Rhenium disulfide ReS2 has triclinic structure, and it has significant in-plane polarization property. From Raman measurement, Re1-XTaXS2 (X = 0, 0.01, 0.05) materials have no obvious change of peak shifting, but the polarization property is changed. For the three peaks 141 cm-1, 345 cm-1, 405 cm-1, the polar plots show that from undoped ReS2 to X=0.01and X=0.05, the degrees of maximum signal decrease with the increase of Tantalum. The polarization behavior is changed. From Thermalmodulation experiment, the energies of exciton 1 and exciton 2 of whole series Re1-XTaXS2 are similar. The difference is at polarization angle, the maximum intensity of (Ex1 / Ex2) is shifted from degree 0 to degree -20. From Hot probe and Hall measurement, undoped ReS2 belongs to N type semiconductor. After doping Tantalum, Re1-XTaXS2 (X = 0.01, 0.05) become P type semiconductors. Besides, after doping tantalum, the resistivity increases with the dopant is increased. ReS2 doped with tantalum shows hole trapping effect. As the Ta dopant increases, the carrier concentration decreases to enhance mobility from 205 cm2 / V.s (Re0.99Ta0.01S2) to 423 cm2 / V.s (Re0.95Ta0.05S2).

中文摘要…………………………………………………………………I Abstract…………………………………………………………………III 致謝……………………………………………………………………..V 目錄…………………………………………………………………….VI 圖索引………………………………………………………………….IX 表索引………………………………………………………………...XIII 第一章 緒論………………………………………………………...1 第二章 晶體成長…………………………………………………...4 2.1 長晶方法………………………………………………………..4 2.2 晶體成長流程…………………………………………………..6 2.3 封管真空系統…………………………………………………..7 2.4 三區獨立長晶爐………………………………………………..9 2.5 晶體成長結果…………………………………………………10 第三章 實驗原理與量測系統…………………………………….13 3.1 X-ray晶格繞射分析儀(XRD)………………………………...13 3.2 X射線光電子能譜儀(XPS)…………………………………..15 3.3 拉曼散射光譜(Raman)………………………………………..16 3.4 光穿透光譜(Tr)………………………………………………..18 3.5 調制光譜簡介(TR)……………………………………………19 3.6 電特性量測……………………………………………………20 3.6.1 熱探針實驗……………………………………………….20 3.6.2 四點量測………………………………………………….21 3.6.3 霍爾量測………………………………………………….23 第四章 TaS2實驗結果與分析……………………………………24 4.1 X-ray晶格繞射分析………………………………………….24 4.2 拉曼光譜量測………………………………………………...27 4.3 電特性量測…………………………………………………...30 4.3.1 熱探針實驗量測結果……………………………………30 4.3.2 電阻率量測結果…………………………………………30 4.3.3 霍爾量測結果……………………………………………31 4.3.4 變溫電阻率量測結果……………………………………32 第五章 Re1-XTaXS2 (X=0, 0.01, 0.05)實驗結果與分析………….33 5.1 X射線光電子能譜儀實驗…………………………………...33 5.2 拉曼光譜量測………………………………………………...35 5.3 調制光譜量測結果與分析…………………………………...40 5.4 光穿透光譜量測結果與討論………………………………...50 5.5 電特性量測…………………………………………………...55 5.5.1 熱探針實驗結果…………………………………………55 5.5.2 四點量測結果……………………………………………56 5.5.3 霍爾量測結果……………………………………………57 第六章 總結………………………………………………………59 參考文獻………………………………………………………………60

[1] H. X. Zhong, S. Gao, J. J. Shi, L. Yang, Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted 1T diamond-chain structures ReS2 and ReSe2, Phys. Rev. B., Vol. 92, Iss. 11, pp. 115438, 2015.
[2] J. L. Webb, L. S. Hart, D. Wolverson, C. Y. Chen, J. Avila, M. C. Asensio, Phys. Rev. B., Vol. 96, Iss. 11, pp.115205, 2017.
[3] C. H. Ho, Y. S. Huang, P. C. Liao, K. K. Tiong, Crystal structure and band-edge transitions of ReS2-xSex layered compounds, J. Phys. Chem. Solids., Vol. 60, Iss. 11, pp. 1797~1804, 1999.
[4] H. Schafer, Chemical Transport Reactions, Academic Press, 1964.
[5] 何清華, 二硫化鐵之單晶成長與特性研究. 碩士論文, 國立台灣工業技術學院, 1991.
[6] 許樹恩,吳泰伯, X光繞射原理與材料結構分析. 中國材料科學學會, 1996.
[7] A. Beiser, Concepts of Modern Physics, McGraw-Hill Education(India) Pvt Limited, 2003.
[8] K. Siegbahn, ESCA: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy, Almqvist & Wiksells, 1967.
[9] 陳雅涵, 鉍硫化物之單晶成長與特性研究. 碩士論文, 國立台灣科技大學, 2016.
[10] 陳欣宏, 硫化鎵之晶體成長及光學特性研究. 碩士論文, 國立台
灣科技大學, 2013.
[11] F. H. Pollak, H. Shen, Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices, Mater. Sci. Eng. R., Vol. 10, pp. 275-374, 1993.
[12] H. Mathieu, J. Allègre, B. Gil, Piezomodulation spectroscopy: A powerful investigation tool of heterostructures, Phys. Rev. B., Vol. 43, Iss. 3, pp. 2218-2227, 1991.
[13] 陳韋竹, 霍爾效應量測裝置開發與應用, 碩士論文, 樹德科技大學, 2010.
[14] Y. Liu, R. Ang, W. J. Lu, W. H. Song, L. J. Li, Y. P. Sun. Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS2−xSex, Appl. Phys. Lett., Vol. 102, Iss. 19, p.192602, 2013.
[15] A. Meetsma, G. A. Wiegers, R. J. Haange, J. L. Deboer, Structure of 2H-TaS2, Acta Cryst., Vol. C46, Iss. 9, pp.1598-1599, 1990.
[16] J. J. Wu, M. J. Liu, K. Chatterjee, K. P. Hackenberg, J. F. Shen, X. L. Zou, Y. Yan, J. Gu, Y. C. Yang, J. Lou, P. M. Ajayan, Exfoliated 2D Transition Metal Disulfides for Enhanced Electrocatalysis of Oxygen Evolution Reaction in Acidic Medium, Adv. Mater. Interfaces., Vol. 3, Iss. 9, p. 1500669, 2016.
[17] T. Hirataa, F. S. Ohuchib, Temperature dependence of the Raman spectra of 1T-TaS2, Solid State Commun., Vol. 117, Iss. 6, pp. 361-364, 2001.
[18] D. Svetin, I. Vaskivskyi, S. Brazovskii, D. Mihailovic, Three-dimensional resistivity and switching between correlated electronic states in 1T-TaS2, Sci. Rep., Vol. 7, p. 46048, 2017.
[19] O. R. Albertini, R. Zhao, R. L. McCann, S. Feng, M. Terrones, J. K. Freericks, J. A. Robinson, A. Y. Liu, Zone-center phonons of bulk, few-layer, and monolayer 1T-TaS2:Detection of commensurate charge density wave phase through Raman scattering, Phys. Rev. B., Vol. 93, Iss. 21, p. 214109, 2016.
[20] J. P. Shi, X. Wang, S. Zhang, L. F. Xiao, Y. Huan, Y. Gong, Z. P. Zhang, Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst, Nat. Commun., Vol. 8, Iss. 1, p. 958, 2017.
[21] Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., Vol. 7, Iss. 11, pp. 699-712, 2012.

[22] J. W. Shim, A. Oh, D. H. Kang, S. Oh, S. K. Jang, J.H. Jeon, M. H. Jeon, M. W. Kim, C. H. Choi, J. Y. Lee, S. G. Lee, G. Y. Yeom, Y. J. Song, J. H. Park, High‐Performance 2D Rhenium Disulfide (ReS2) Transistors and Photodetectors by Oxygen Plasma Treatment, Adv. Mater., Vol. 28, Iss. 32, pp. 6985-6992, 2016.
[23] J. W. Huang, H. G. Gao, Y. F. Xia, Y. H. Sun, J. Xiong, Y. R. Li, S. Cong, J. Guo, S. Dud, G. F. Zou, Enhanced photoelectrochemical performance of defect-rich ReS2 nanosheets in visible-light assisted hydrogen generation, Nano Energy., Vol. 46, pp. 305-313, 2018.
[24] J. K. Qin, W. Z. Shao, Y. Li, C. Y. Xu, D. D. Ren, X. G. Song, L. Zhen,
van der Waals epitaxy of large-area continuous ReS2 films on mica substrate, RSC Adv., Vol. 7, Iss. 39, pp.24188-24194, 2017.
[25] Y. Q. Feng, W. Zhou, Y. J. Wang, J. Zhou, E. F. Liu, Y. J. Fu, Z. H. Ni, X. L. Wu, H. T. Yuan, F. Miao, B. G. Wang, X. G. Wan, D. Y. Xing, Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry, Phys. Rev. B., Vol. 92, Iss. 5, p. 054110, 2015.
[26] W. Wen, Y. Zhu, X. Liu, H. P. Hsu, Z. Fei, Y. F. Chen, X. S. Wang, M. Zhang, K. H. Lin, F. S. Huang, Y. P. Wang, Y. S. Huang, C. H. Ho, P. H. Tan, C. H. Jin, L. M. Xie, Anisotropic Spectroscopy and Electrical Properties of Two-Dimensional ReS2(1-x)Se2x Alloys with Distorted 1T Structure. Small, Vol. 13, Iss. 12, p. 1603788, 2017.
[27] O. B. Aslan, D. A. Chenet, A. M. V. D. Zande, J. C. Hone, T. F. Heinz, Linearly Polarized Excitons in Single- and Few-Layer ReS2 Crystals, ACS Photonics, Vol. 3, Iss. 1, pp. 96-101, 2016.
[28] C. H. Ho, Y. S. Huang, K. K. Tiong, In-plane anisotropy of the optical and electrical properties of ReS2 and ReSe2 layered crystals, J. Alloys Compd., Vol. 317-318, pp. 222-226, 2001.
[29] 劉展志, 錸的硫屬層狀二維半導體系列之光學特性研究, 碩士論文, 國立台灣科技大學, 2017.
[30] C. H. Ho, Z. Z. Liu, M. H. Lin, Direct and indirect light emissions from layered ReS2−xSex (0≤x≤2), Nanotechnology, Vol. 28, Iss. 23, p. 235203, 2017.
[31] S. Tongay, H. Sahin, C. H. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Y. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. S. Li, J. B. Li, F. M. Peeters, J. Q. Wu, Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling, Nat. Commun., Vol. 5, p. 3252, 2014.
[32] K. K. Tiong, C. H. Ho, Y. S. Huang, The electrical transport properties of ReS2 and ReSe2 layered crystals, Solid State Commun., Vol. 111, Iss. 11, pp.635~640, 1999.

QR CODE