簡易檢索 / 詳目顯示

研究生: 陳昶昇
Chang-Sheng Chen
論文名稱: 事業廢棄物合成鈣礬石處理含硼廢水之研究
Removal of Boron Using Ettringite Synthesized from Industrial By-products
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 娃瑪
I.D.A.A. Warmadewanthi
李奇旺
Chi-Wang Li
顧洋
Young Ku
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 86
中文關鍵詞: 吸附鈣礬石工業副產物廢水
外文關鍵詞: Adsorption, Boron, Ettringite, Industrial by-products, Wastewater
相關次數: 點閱:416下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗探討利用工業廢棄物合成的鈣礬石吸附處理含硼之工業廢水的效果,其中探討反應動力、硼初始濃度、離子強度、以及溫度對吸附反應的影響。鈣礬石主要利用工業副產物(轉爐石與排煙脫硫石膏),並添加純硫酸鋁,其莫耳比([鈣]:[鋁]:[硫酸根])為3:2:3,平衡酸鹼值為12.02,反應溫度25ºC的環境下合成。
此反應於實驗進行30分鐘後達平衡,並可由擬二階動力學模型來描述。在平衡吸附反應(初始濃度為5-50 mg B/L)中,可得知反應較符合 Langmuir等溫吸附模型。在吸附反應中,不同離子強度(I=0-0.05M 硝酸鈉)對硼之吸附不具影響。由熱力學分析可得知去除硼的反應為自發並放熱的反應。由反應焓變化(∆H° =-127.65 kJ/mol)可推斷此反應主要為化學吸附。我們亦藉由晶相分析及表面分析確認反應機制主要為吸附。本研究充分利用工業廢棄物合成去除硼材料,不僅達到資源循環利用的效益,並且在合成與吸附實驗時所使用較少能源與時間,更可以減少對環境的影響。


The treatment of wastewater containing boron by adsorption through synthesized ettringite was investigated in this study. Ettringite was synthesized using industrial by-products (basic oxygen furnace slag and flue gas desulfurization gypsum) and an addition of pure aluminum sulfate at a molar ratio ([Ca]:[Al]:[SO4]) of 3:2:3 under pHe of 12.02 and 25℃. The synthesized ettringite was characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) to ensure the quality and composition.
Kinetic study indicated that boron adsorption reached equilibrium after 30 minutes and followed pseudo-second-order kinetic model. Equilibrium adsorption study (C0=5-50 mg B/L) showed that the reaction was affected by pH and experimental results were better fitted with Langmuir isotherm. The removal of boron seemed to be independent of ionic strength through the range of 0-0.05 M of NaNO3. Thermodynamic analysis revealed that the adsorption process by ettringite was spontaneous and exothermic. The value of standard Gibbs free energy change became less negative with an increase of temperature, implying that the reaction was less favorable with increasing temperature. The magnitude of change of standard enthalpy ("∆H°=" 127.65 kJ/mol) suggests a chemisorption mechanism. Evidence from XRD and FESEM indicated an adsorption process without precipitation reaction involved. The results of this study showed it is feasible to synthesize adsorbent from industrial by-products for the removal of boron from wastewater.

摘要 Abstract TABLE OF CONTENTS List of Figures List of Tables CHAPTER 1 INTRODUCTION 1.1 Background 1.2 Objective CHAPTER 2 LITERATURE REVIEW 2.1 Boron 2.1.1 Boron: Properties, uses, and chemistry 2.1.2 Boron toxicity and regulations 2.1.3 Technologies in boron removal 2.2 Ettringite 2.3 Kinetics study of boron removal 2.4 Adsorption isotherms 2.5 Thermodynamics of boron removal CHAPTER 3 METHODS AND MATERIALS 3.1 Materials and reagents 3.2 Equipment and Instruments 3.3 Experimental method 3.3.1 Experimental framework and procedures 3.3.2 Synthesis of ettringite 3.3.3 Boron removal 3.3.3.1 Kinetic study of boron removal 3.3.3.2 Adsorption isotherms and effect of temperature 3.3.3.3 Effects of Ionic Strength 3.3.4 Sample analysis 3.3.4.1 Inductively couple plasma atomic emission spectrometry (ICP-AES) 3.3.4.2 BET surface area 3.3.4.3 X-ray diffraction (XRD) analysis 3.3.4.4 Field emission scanning electron microscope (FESEM) and energy dispersive X-ray spectrometer (EDX) CHAPTER 4 RESULTS AND DISCUSSION 4.1 Characterization of industrial by-products 4.1.1 Characterization of basic oxygen furnace (BOF) slag 4.1.2 Characterization of flue-gas-desulfurization (FGD) gypsum 4.2 Characterization of synthesized ettringite 4.2.1 X-ray diffraction analysis 4.2.2 Field-emission scanning electron microscope (FESEM) and energy dispersive X-ray spectrometer (EDX) analysis 4.2.3 BET surface area 4.3 Adsorption kinetics 4.4 Adsorption Isotherms 4.5 Effects of Ionic Strength 4.6 Effect of Temperature 4.7 Analysis of loaded ettringite CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 5.1 Conclusions 5.2 Recommendations REFERENCE APPENDIX

Álvarez-Ayuso, E., Nugteren, H., 2005. Synthesis of ettringite: a way to deal with the acid wastewaters of aluminium anodising industry. Water Research 39, 65-72.

Ashton Acton, Q., 2013. Boron Compounds - Advances in Research and Application, 2013 edition, Georgia Atlanta: ScholarlyEditions.

Australia Government, 2016. Australian Drinking Water Guidelines. Retrieved 2017, from https://www.nhmrc.gov.au/guidelines-publications/eh52

Belhadj, E., Diliberto, C., Lecomte, A., 2012. Characterization and activation of Basic Oxygen Furnace slag. Cement and Concrete Composites 34(1), 34-40.

Blanco, I., Molle, P., Sáenz de Miera, L., Ansola, G., 2016. Basic Oxygen Furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands. Water Research 89, 355-365.

Dalas, F., Pourchet, S., Rinaldi, D., Nonat, A., Sabio, S., Mosquet, M., 2015. Modification of the rate of formation and surface area of ettringite by polycarboxylate ether superplasticizers during early C3A–CaSO4 hydration. Cement and Concrete Research 69, 105-113.

Ding, L., Deng, H., Wu, C., Han, X., 2012. Affecting factors, equilibrium, kinetics and thermodynamics of bromide removal from aqueous solutions by MIEX resin. Chemical Engineering Journal 181-182, 360-370.

Do, D. D., 1998. Adsorption Analysis: Equilibria and Kinetics, London: Imperial College Press,.

Doğanay, C. O., Özbelge, H. Ö., Bıçak, N., Aydoğan, N., Yılmaz, L., 2011. Use of Specifically Tailored Chelating Polymers for Boron Removal from Aqueous Solutions by Polymer Enhanced Ultrafiltration. Separation Science and Technology 46(4), 581-591.

Environmental Protection Agency, Taiwan, 2014. Chemical Industry Effluent Standards.
Retrieved 2017,
from http://a0-oaout.epa.gov.tw/law/EngLawContent.aspx?Type=E&id=166

Eren, E., Cubuk, O., Ciftci, H., Eren, B., Caglar, B., 2010. Adsorption of basic dye from aqueous solutions by modified sepiolite: Equilibrium, kinetics and thermodynamics study. Desalination 252, 88-96.

Ezechi, E. H., Isa, M. H., Kutty, S. R., Yaqub, A., 2014. Boron removal from produced water using electrocoagulation. Process Safety and Environmental Protection 92(6), 509-514.

Ezechi, E., Isa, M., Kutty, S., 2012. Boron in produced water: Challenges and improvements: A comprehensive review. Journal of Applied Sciences 12, 402-415.

Febrianto, J., Kosasih, A., Sunarso, J., Ju, Y.-H., Indraswati, N., Ismadji, S., 2009. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 162(2-3), 616-645.

Fogler, S. H., 2011. Essentials of Chemical Reaction Engineering, International ed. Pearson.

Foo, K., Hameed, B., 2010. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal 156, 2-10.

Guan, Z., Lv, J., Bai, P., Guo, X., 2016. Boron removal from aqueous solutions by adsorption - A review. Desalination 383(1), 29-37.

Han, C., Wang, Z., Yang, H., Xue, X., 2015. Removal kinetics of phosphorus from synthetic wastewater using basic oxygen furnace slag. Journal of Environmental Sciences 30, 21-29.

Hashem, F., Amin, M., 2014. Kinetic and thermal studies of removal of CrO4 ions by ettringite. Journal of Thermal Analysis and Calorimetry 116(2), 835-844.

Health Canada., 2017. Guidelines for Canadian Drinking Water Quality - Summary Table. Retrieved 2017, from http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/sum_guide-res_recom/index-eng.php

Hilal, N., Kim, G. J., Somerfield, C., 2011. Boron removal from saline water: A comprehensive review. Deslination 273(1), 23-35.

Hongo, T., Tsunashima, Y., Iizuka, A., Yamasaki, A., 2014. Synthesis of Anion-Exchange Materials form Concrete Sludge and Evaluation of Their Ability to Remove Harmful Anions (Borate, Fluride, and Chromate). International Journal of Chemical Engineering and Applications 5(4), 298-302.

Iizuka, A., Takahashi, M., Nakamura, T., Yamasaki, A., 2014. Boron removal performance of a solid sorbent derived from waste concrete. Industrial and Engineering Chemistry Research 53, 4046-4051.

Irawan, C., Liu, J., Wu, C.-C., 2011. Removal of boron using aluminum-based water treatment residuals (Al-WTRs). Desalination 276(1-3), 322-327.

Isaacs-Paez, E., Leyva-Ramos, R., Jacobo-Azuara, A., Martinez-Rosales, J., Flores-Cano, J., 2014. Adsorption of boron on calcined AlMg layered double hydroxide from aqueous solutions. Mechanism and effect of operating conditions. Chemical Engineering Journal 245, 248-257.

Ismail, M., Zhang, X., Lazim, M., 2013. Removal of Boron and Arsenic from Petrochemical Wastewater by Using Aquatic Booster as Adsorbent. Polish Journal of Environmental Studies 22(2), 403-408.

Itakura, T., Sasai, R., Itoh, H., 2005. Precipitation recovery of boron from wastewater by hydrothermal mineralization. Water Research 39(12), 2543-2548.

Kabay, N., Güler, E., & Bryjak, M., 2010. Boron in seawater and methods for its separation — A review. Desalination 261, 212-217.

Kavak, D., 2009. Removal of boron from aqueous solutions by batch adsorption on calcined alunite using experimental design. Journal of Hazardous Materials 163(1), 308-314.

Kentjono, L., Liu, J., Chang, W., Irawan, C., 2010. Removal of boron and iodine from optoelectronic wastewater using Mg-Al(NO3) layered double hydroxide. Desalination 262 (1-3), 280-283.

Kir, E., Gurler, B., Gulec, A., 2011. Boron removal from aqueous solution by using plasma-modified and unmodified anion-exchange membranes. Deslination 267(1), 114-117.

Kluczka, J., 2015. Boron removal from aqueous solutions using an amorphous zirconium dioxide. International Journal of Environmental Research 9(2), 711-720.

Kluczka, J., Gnus, M., Dudek, G., Turczyn, R., 2017. Removal of boron from aqueous solution by composite chitosan beads. Separation Science and Technology 52(9), 1559-1571.

Kluczka, J., Korolewicz, T., Zolotajkin, M., Adamek, J., 2015. Boron removal from water and wastewater using new polystyrene-based resin grafted with glycidol. Water Resources and Industry 11, 46-57.

Komatsu, R., Mizukoshi, N., Makida, K., Tsukamoto, K., 2009. In-situ observation of ettringite crystals. Journal of Crystal Growth 311, 1005-1008.

Mantellato, S., Palacios, M., Flatt, R., 2016. Impact of sample preparation on the specific surface area of synthetic ettringite. Cement and Concrete Research 86, 20-28.

Manzano, H., Ayuela, A., Telesca, A., Monteiro, P., & Dolado, J., 2012. Ettringite strengthening at high pressures induced by the densification of the hydrogen bond network. The Journal of Physical Chemistry 116(30), 16138-16143.

Medala, M., Labbez, C., Pochard, I., Nonat, A., 2011. Ettringite surface chemistry: Interplay of electrostatic and ion specificity. Journal of Colloid and Interface Science 354, 765-770.

Melnik, L., Babak, Y., Goncharuk, V., Chepurnaya, I., 2015. Application potential of boron-selective sorbents of different nature for water conditioning in terms of the boron content. Journal of Water Chemistry and Technology 37(1), 25-31.
Ministry of the Environment., 2007. Environmental Quality Standards of Japan. Retrieved 2017, from http://www.env.go.jp/en/standards/

Miyazaki, T., Takeda, T., Akane, S., Itou, T., Hoshiko, A., En, K., 2010. Role of boric acid for a poly (vinyl alcohol) film as a cross-linking agent: Melting behaviors of the films with boric acid. Polymer 51(23), 5539-5549.

Moore, A., Taylor, H., 1970. Crystal Structure of Ettringite. Acta Crystallographica B26, 386-393.

Moreno-Castilla, C., 2004. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42(1), 83-94.

Myneni, S., Traina, S., Logan, T., 1998. Ettringite solubility and geochemistry of Ca(OH)2-Al2(SO4)3-H2O system at 1 atm pressure and 298K. Chemical Geology 148, 1-19.

Öztürk, N., Kavak, D., 2005. Adsorption of boron from aqueous solutions using fly ash Batch and column studies. Journal of Hazardous Materials 127(1-3), 81-88.

Ping, Q., Abu-Reesh, I. M., He, Z., 2015. Boron removal from saline water by a microbial desalination cell integrated with donnan dialysis. Desalination 376, 55-61.

Plank, J., Hirsch, C., 2007. Impact of zeta potential of early cement hydration phases on superplasticizer adsorption. Cement and Concrete Research 37(4), 537-542.

Polowczyk, I., Ulatowska, J., Koźlecki, T., Bastrzyk, A., Sawiński, W., 2013. Studies on removal of boron from aqueous solution by fly ash agglomerates. Desalination 310, 93-101.

Saha, P., Chowdhury, S., 2011. Insight Into Adsorption Thermodynamics. In M. Tadashi, Thermodynamics (349-364). InTech. Retrieved 2017, from https://www.intechopen.com/books/thermodynamics/insight-into-adsorption-thermodynamics

Samatya, S., Köseoğlu, P., Kabay, N., Tuncel, A., Yüksel, M., 2015. Utilization of geothermal water as irrigation water after boron removal by monodisperse nanoporous polymers containing NMDG in sorption–ultrafiltration hybrid process. Desalination 364, 62-67.

Sari, M. A., Chellam, S., 2015. Mechanisms of boron removal from hydraulic fracturing wastewater by aluminum electrocoagulation. Journal of Colloid and Interface Science 458, 103-111.

Sasaki, T., Sakai, Y., Hongo, T., Iizuka, A., Yamasaki, A., 2012. Preparation of a solid adsorbent derived from concrete sludge and its boron removal performance. Industrial and Engineering Chemistry Research 51 (16), 5813-5817.

Shih, Y.-J., Liu, C.-H., Lan, W.-C., Huang, Y.-H., 2014. A novel chemical oxo-precipitation (COP) process for efficient remediation of boron wastewater at room temperature. Chemosphere 111, 232-237.

Singapore's National Water Agency., 2016. Drinking Water Quality. Retrieved 2017, from https://www.pub.gov.sg/watersupply/waterquality/drinkingwater

Soetaredjo, F., Kurniawan, A., Ki, O., Ismadji, S., 2013. Incorporation of selectivity factor in modeling binary component adsorption isotherms for heavy metals-biomass system. Chemical Engineering Journal 219, 137-148.

Tagliabue, M., Reverberi, A., Bagatin, R., 2014. Boron removal from water: needs, challenges and perspectives. Journal of Cleaner Production 77, 56-64.

Taylor, H., Famy, C., Scrivener, K., 2001. Delayed ettringite formation. Cement and Concrete Research, 31(5), 683-693.

Tsai, H.-C., Lo, S.-L., 2011 Boron removal and recovery from concentrated wastewater using a microwave. Journal of Harzardous Materials 186, 1431-1437.

Tsunashima, Y., Iizuka, A., Akimoto, J., Hongo, T., Yamasaki, A., 2012. Preparation of sorbents containing ettringite phase from concrete sludge and their performance in removing borate and fluoride ions from waste water. Chemical Engineering Journal 200-202, 338-343.

Tu, K. L., Chivas, A. R., Nghiem, L. D., 2014. Effects of chemical preservation on flux and solute rejection by reverse osmosis membranes. Journal of Membrane Science 472, 202-209.

Vasudevan, S., Lakshmi, J., 2012. Electrochemical Removal of Boron fromWater: Adsorption and Thermodynamic Studies. The Canadian Journal of Chemical Engineering, 90, 1017-1026.

Wang, B., Guo, X., Bai, P., 2014. Removal technology of boron dissolved in aqueous solutions - A review. Colloids and surfaces A: Physicochemical and Engineering Aspects 444, 338-344.

Wolska, J., Bryjak, M., 2013. Methods for boron removal from aqueous solutions - A review. Deslination 310, 18-24.

World Heath Organization., 2011. Guidelines for Drinking-water Quality. Retrieved from http://apps.who.int/iris/bitstream/10665/44584/1/9789241548151_eng.pdf

Xu, Y., Jiang, J.-Q., 2008. Technologies for Boron Removal. Industrial and Engineering Chemistry Research 47, 16-24.

Yilmaz, A. E., Boncukcuoglu, R., Bayar, S., Fil, B. A., Kocakerim, M. M., 2012. Boron removal by means of chemical precipitation with calcium hydroxide and calcium borate formation. Korean Journal of Chemical Engineering 29(10), 1382-1387.

Yoshikawa, E., Sasaki, A., Endo, M., 2012. Removal of boron from wastewater by the hydroxyapatite formation reaction using acceleration effect of ammonia. Journal of Hazardous Materials 237-238, 277-282.

Yüksel , S., Yürüm , Y. 2009. Removal of Boron from Aqueous Solutions by Adsorption Using Fly Ash, Zeolite, and Demineralized Lignite. Journal of Separation Science and Technology 45(1), 105-115.

Zhang, M., Reardon, E. J. 2003. Removal of B, Cr, Mo, and Se from wastewater by incoporation into hydrocalumite and ettringite. Environmental Science and Technology 37, 2947-2952.

無法下載圖示 全文公開日期 2019/08/01 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2019/08/01 (國家圖書館:臺灣博碩士論文系統)
QR CODE