簡易檢索 / 詳目顯示

研究生: 黃昱維
Yu-wei Huang
論文名稱: 以合成新型聚醯亞胺-氯離子液體/聚丙烯腈黏著劑抑制鋰硫電池穿梭效應提升電化學穩定度
Synthesis of novel polyimide-Cl ionic liquid/polyacrylonitrile binder to inhibit shuttle effect and improve electrochemical stability for lithium-sulfur batteries
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 蘇威年
Wei-Nien Su
吳乃立
Nae-Lin Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 244
中文關鍵詞: 聚醯亞胺聚丙烯腈離子液體鋰硫電池穿梭效應碳硫黏著劑熱閉環法多功能性高分子固態電解質介面複合式黏著劑X-ray 光電子能譜Soft X-ray 吸收光譜非臨場分析
外文關鍵詞: Shuttle effect, Carbon/sulfur, Thermal cyclodehydration, Multifunctional polymer, Compound binder, Soft XAS, ex-situ analysis
相關次數: 點閱:317下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究內容主要分為四部分 (1)以熱閉環法聚合成新型多功能型聚醯亞胺-氯離子液體; (2)聚醯亞胺-氯離子液體應用於鋰硫電池黏著劑; (3)以聚醯亞胺-氯離子液體/聚丙烯腈複合式油性黏著劑提升鋰硫電池電化學穩定度; (4)以非臨場分析探討黏著劑與電極材料交互作用。
這個研究工作以發展具有離子液體功能聚醯亞胺-氯離子液體新型黏著劑PICl-IL,透過四步再結晶方式進行單體改質和熱閉環脫水聚合。黏著劑材料PICl-IL設計的概念主要為以離子液體官能基接枝於聚醯亞胺之側鏈,使聚合物本身玻璃轉化點溫度降低,有利於側鏈離子液體結構的擺動,並可提升材料離子導電性,由NMR和FTIR分析成功證實製備出聚醯亞胺-氯離子液體高分子。而電化學分析中,首先將硫承量控制約0.96 mg/cm^2,並進行50圈充放電循環測試,仍可維持719.8 mAh/g之電容量,明顯優於商業化黏著劑PVdF及NaCMC (~540 mAh/g)。而PICl-IL具有優異的捕捉多硫化物或多硫化鋰能力,有效使陰極表面硫的利用率提高,綜合上述結果顯示聚醯亞胺-氯離子液體除了能應用於黏著劑之外,亦可同時解決硫的利用率不足之問題。
本研究進一步提出複合式油性黏著劑之應用,以提升電化學穩定度,探討不同比例複合式黏著劑效應,結果顯示黏著劑比為 PICl-IL/PAN-10 (1:1) 經50圈於0.1C充放電循環後,碳硫電極可維持801.6 mAh/g之電容量,約等於52.8 %電容維持率 ; 相較之下,優於PICl-IL黏著劑之維持率,而由於聚丙烯腈的腈基結構,使PAN與多硫化物容易產生極性間的親和力。此外添加高極性PAN有助於使導電碳材和硫粉分散均勻,補足PICl-IL分散性及黏度不足之問題,PAN也提供良好導離性,因此充放電測試中,正極材料在高速率2 C下充放電測試,可逆電容仍然可達339.2 mAh/g。
研究結果顯示PICl-IL/PAN複合黏著劑具有良好互補的功能與提升碳硫材料的穩定性。此外,亦應用同步輻射光源之X光原子吸收光譜和X光電子能譜分析黏著劑與電極材料之交互作用機制。於首圈充放電中可觀察到新型黏著劑能有效減少與電解液的反應,生成SEI沉積於陰極材料表面上,減少硫含量的損失,其PICl-IL與PAN相較於商業化黏著劑PVdF及NaCMC耐化學性極佳,除了高黏度及好的分散性和導離度,也具有捕捉多硫化物的能力,因此能更有效使鋰硫電池的電化學循環獲得更穩定之提升。


This work mainly consists of four topics: (a) synthesis of novel polyimide-Cl ionic liquid by thermal cyclodehydration, (b) application of polyimide-Cl ionic liquid as a binder for Lithium–sulfur batteries, (c) polyimide-Cl ionic liquid/PAN composite binder for enhancing electrochemical stability of lithium-sulfur batteries, and (d) the interaction mechanism between binder and electrode materials by ex-situ analysis.
First, a novel multifunctional binder comprising of polymeric ionic liquid, polyimide-chlorine ionic liquid complex coupled with chlorine anions is developed, prepared by a four-step recrystallization method through thermal cyclodehydration. The concept of synthetic structure was mainly by grafting ionic liquid functional groups on the side chain of polyimide, in order to lower down the temperature of glass transition point of polymer and facilitate the swinging of the side chain, thereby, increasing the ionic conductivity, PICl-IL were synthesized and confirmed by NMR and FTIR. The loading amount of sulfur was fixed around 0.96 mg/cm2, and the discharge capacity delivers as 719.8 mAh/g, which is better than electrode with the commercial binder (~540 mAh/g). In addition, PICl can also trap the lithium polysulfides and minimize the shuttle effect and sulfur loss.
Next, composite binder with lipophilic compound was prepared. After optimization, the fabricated composite binder PICl-IL/PAN-10 (1:1) showed better capacity retention after 50 cycles with discharging-charging rate of 0.1 C. The composite binder showed a capacity of 801.6 mAh/g and retention of 82.8% at the 50th cycle, exceeding the retention of a commercial binder. The nitrile group on PAN backbone possess good affinity towards polysulfides Li2Sn (4≤n≤8) due to the strong dipole-dipole interactions. The addition of highly polar PAN helped disperse the conductive carbon and sulfur powder, which were poorly dispersed in PICl-IL and improved insufficient viscosity of PICL-IL, as well as increased the ionic conductivity. Therefore, PICl-IL/PAN-10 (1:1) can deliver a high reversible capacity of 339.2 mAh/g at 2 C-rate.
The results show that the compound binder has a good complementary function and enhance the stability of carbon/sulfur composite. Furthermore, the synchrotron-based X-ray absorption spectroscopy (XAS) and X-ray
photoelectron spectroscopy (XPS) were used to study the interaction mechanism between binder and electrode materials. It demonstrated that new PICl-IL/PAN binder can effectively reduce the reactions with the electrolyte at the first cycle, and SEI is formed on the surface of the cathode material, and decreases the loss of sulfur.
In conclusion, the PICl-IL/PAN binder exhibits better chemical resistance and excellent functions, such as strong adhesion, good dispersion and high ionic conductivity. As a result, the composite binder is capable of effectively trapping polysulfides to improve the electrochemical performance of sulfur composite cathode. PICl-IL is thought to be a promising multifunctional binder for Li-S batteries.

摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XIII 表目錄 XXII 符號索引 XXIV 第1章 緒論 1 1.1. 前言 1 1.2. 鋰離子二次電池的發展 3 1.3. 鋰離子二次電池的組成及機制 5 1.4. 鋰離子二次電池各元件介紹 9 1.4.1. 正極(陰極)材料 11 1.4.2. 負極(陽極)材料 16 1.4.3. 電解液 18 1.4.4. 隔離膜 24 1.4.5. 黏著劑 25 1.5. 鋰硫電池介紹 29 1.5.1. 鋰硫電池電化學機制 31 1.5.2. 限制鋰硫電池發展主要問題 37 1.6. 研究動機與目的 39 第2章 文獻回顧 43 2.1. 鋰硫電池文獻回顧 43 2.1.1. 鋰硫電極材料發展演進 43 2.2. 鋰硫穿梭效應限制的突破方法 50 2.2.1. 陰極材料設計 50 2.2.2. 陰極材料表面改質 53 2.2.3. 固態電解質摻入修飾 56 2.2.4. 黏著劑開發 58 2.3. 黏著劑材料開發之回顧 61 2.3.1. 鋰硫電池黏著劑發展 63 2.3.2. 聚丙烯腈黏著劑應用 74 2.4. 離子液體黏著劑發展 76 2.4.1. 聚醯亞胺合成相關文獻 76 2.4.2. 離子液體 (Ionic liquid, IL) 82 2.4.3. 離子液體高分子 85 2.4.4. 離子液體(PIL)黏著劑應用 88 第3章 實驗方法與儀器設備 91 3.1. 儀器設備 91 3.2. 實驗藥品 93 3.3. 實驗步驟 95 3.3.1. 碳硫陰極材料合成 95 3.3.2. 聚醯亞胺氯離子液體 (Polyimide-Cl Ionic Liquid, PICl-IL) 黏著劑 96 3.3.3. 陰極極片製備 104 3.3.4. 鈕扣型電池組裝 107 3.4. 材料結構鑑定 108 3.4.1. 核磁共振儀分析 (NMR) 108 3.4.2. 傅立葉轉換紅外線光譜儀 (FTIR) 108 3.4.3. 熱重分析儀 (TGA) 109 3.4.4. 表面積及孔徑分析儀 (BET) 109 3.5. 不同黏著劑電極分析儀器 110 3.5.1. 場發射掃描式電子顯微鏡 (FE-SEM) 110 3.5.2. 穿透式電子顯微鏡 (TEM) 110 3.5.3. 固有黏度測試 (Inherent viscosities test) 110 3.5.4. X光能量色散圖譜分析 (EDS) 111 3.5.5. X光繞射分析儀 (XRD) 112 3.5.6. 同步輻射光源軟X-ray吸收光譜 (Soft XAS) 113 3.5.7. 同步輻射光源X-ray光電子能譜 (XPS) 114 3.6. 抑制穿梭效應機制分析方法 115 3.6.1. 多硫鋰化物溶液製備方法 115 3.6.2. 紫外光-可見光光譜分析 (UV-vis) 115 3.6.3. 拉曼散射光譜分析儀 (Raman) 117 3.7. 鈕扣電池電化學效能測試 117 3.7.1. 電化學效能特性測試 117 3.7.2. 循環伏安分析 (CV) 117 3.7.3. 電化學交流阻抗 (EIS) 118 第4章 結果與討論 123 4.1. 合成新型多功能醯亞胺-氯離子液 123 4.1.1. 聚醯亞胺-氯離子液體結構鑑定 124 4.1.2. 聚醯亞胺-氯離子液體熱性質分析 143 4.1.3. 小結 147 4.2. 聚醯亞胺-氯離子液體黏著劑 148 4.2.1. 碳硫複合陰極材料鑑定 148 4.2.2. 不同黏著劑性質比較 153 4.2.3. 不同黏著劑之鈕扣型電池性能測試 162 4.2.4. 小結 171 4.3. 聚醯亞胺-氯離子液體/聚丙烯腈複合式黏著劑 173 4.3.1. 複合式黏著劑鈕扣型電池性能測試 173 4.3.2. 複合式黏著劑性質比較 188 4.3.3. 小結 201 4.4. 以非臨場分析黏著劑與電極間交互作用 202 4.4.1. XANES光譜非臨場分析 202 4.4.2. X光電子能譜表面元素非臨場分析 208 4.4.3. Soft XAS非臨場吸收光譜電子結構變化分析 216 4.4.4. 小結 219 第5章 綜合討論 220 5.1. 聚醯亞胺-氯離子液體黏著劑與商業化黏著劑分析比較 220 5.2. 聚醯亞胺-氯離子液體/聚丙烯腈複合式黏著劑分析 221 第6章 結論 222 第7章 未來展望 225 參考文獻 226 附錄 一 碳載體比表面積測定與電化學影響 240 附錄 二 硝酸鋰催化裂解反應的影響 241 附錄 三 紫外光-可見光譜定量分析多硫化鋰 242 附錄 四 變速率充放電曲線圖 243

[1] 狩.浩志, 【技術講座】電池開發呈多樣化,更加注重安全性能. NIKKEI ELECTRONICS TAIWAN EDITION: 2010.
[2] 黃俊誠;陳藹然, 鋰電池Lithium Battery. 科學Online - 科技部高瞻自然科學教學資源平台 2009.
[3] 美緒, 西., 鋰電池發展史. 日經技術在線 2015.
[4] 林振華、林振富, 充電式鋰離子電池之材料與應用.
[5] Song, M.-K.;Park, S.;Alamgir, F. M.;Cho, J.;Liu, M., Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Materials Science and Engineering: R: Reports 2011, 72 (11), 203-252.
[6] Goodenough, J. B.;Park, K.-S., The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society 2013, 135 (4), 1167-1176.
[7] Julien, C. M.;Mauger, A.;Zaghib, K.;Groult, H., Comparative issues of cathode materials for Li-ion batteries. Inorganics 2014, 2 (1), 132-154.
[8] Zheng, J.;Zheng, H.;Wang, R.;Ben, L.;Lu, W.;Chen, L.;Chen, L.;Li, H., 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. Physical Chemistry Chemical Physics 2014, 16 (26), 13229-13238.
[9] Whittingham, M. S., Lithium batteries and cathode materials. Chemical reviews 2004, 104 (10), 4271-4302.
[10] Johnson, C.;Li, N.;Vaughey, J.;Hackney, S.;Thackeray, M., Lithium–manganese oxide electrodes with layered–spinel composite structures xLi 2 MnO 3·(1− x) Li 1+ y Mn 2− y O 4 (0< x< 1, 0⩽ y⩽ 0.33) for lithium batteries. Electrochemistry communications 2005, 7 (5), 528-536.
[11] Ji, X.;Lee, K. T.;Nazar, L. F., A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature materials 2009, 8 (6), 500-506.
[12] Etacheri, V.;Marom, R.;Elazari, R.;Salitra, G.;Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262.
[13] Ellis, B. L.;Lee, K. T.;Nazar, L. F., Positive electrode materials for Li-ion and Li-batteries. Chemistry of Materials 2010, 22 (3), 691-714.
[14] Balaish, M.;Kraytsberg, A.;Ein-Eli, Y., A critical review on lithium–air battery electrolytes. Physical Chemistry Chemical Physics 2014, 16 (7), 2801-2822.
[15] Mizushima, K.;Jones, P.;Wiseman, P.;Goodenough, J. B., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
[16] Fergus, J. W., Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources 2010, 195 (4), 939-954.
[17] Huang, Y.;Chen, J.;Ni, J.;Zhou, H.;Zhang, X., A modified ZrO 2-coating process to improve electrochemical performance of Li (Ni 1/3 Co 1/3 Mn 1/3) O 2. Journal of Power Sources 2009, 188 (2), 538-545.
[18] Li, H.;Jin, J.;Wei, J.;Zhou, Z.;Yan, J., Fast synthesis of core-shell LiCoPO 4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances. Electrochemistry Communications 2009, 11 (1), 95-98.
[19] Qing, C.;Bai, Y.;Yang, J.;Zhang, W., Enhanced cycling stability of LiMn 2 O 4 cathode by amorphous FePO 4 coating. Electrochimica Acta 2011, 56 (19), 6612-6618.
[20] Şahan, H.;Göktepe, H.;Patat, Ş.;Ülgen, A., Effect of the Cr 2 O 3 coating on electrochemical properties of spinel LiMn 2 O 4 as a cathode material for lithium battery applications. Solid State Ionics 2010, 181 (31), 1437-1444.
[21] Walz, K. A.;Johnson, C. S.;Genthe, J.;Stoiber, L. C.;Zeltner, W. A.;Anderson, M. A.;Thackeray, M. M., Elevated temperature cycling stability and electrochemical impedance of LiMn 2 O 4 cathodes with nanoporous ZrO 2 and TiO 2 coatings. Journal of power sources 2010, 195 (15), 4943-4951.
[22] Şahan, H.;Göktepe, H.;Patat, Ş., A novel method to improve the electrochemical performance of LiMn2O4 cathode active material by CaCO3 surface coating. Journal of Materials Science & Technology 2011, 27 (5), 415-420.
[23] Wang, S.;Zhou, C.;Zhou, Q.;Ni, G.;Wu, J., Preparation of LiFePO 4/C in a reductive atmosphere generated by windward aerobic decomposition of glucose. Journal of Power Sources 2011, 196 (11), 5143-5146.
[24] Oh, S. M.;Oh, S. W.;Yoon, C. S.;Scrosati, B.;Amine, K.;Sun, Y. K., High‐performance carbon‐LiMnPO4 nanocomposite cathode for lithium batteries. Advanced Functional Materials 2010, 20 (19), 3260-3265.
[25] Saravanan, K.;Vittal, J. J.;Reddy, M.;Chowdari, B. V.;Balaya, P., Storage performance of LiFe 1− x Mn x PO 4 nanoplates (x= 0, 0.5, and 1). Journal of Solid State Electrochemistry 2010, 14 (10), 1755-1760.
[26] Kim, J.;Park, Y.-U.;Seo, D.-H.;Kim, J.;Kim, S.-W.;Kang, K., Mg and Fe Co-doped Mn based olivine cathode material for high power capability. Journal of the Electrochemical Society 2011, 158 (3), A250-A254.
[27] Saravanan, K.;Ramar, V.;Balaya, P.;Vittal, J. J., Li (Mn x Fe 1− x) PO 4/C (x= 0.5, 0.75 and 1) nanoplates for lithium storage application. Journal of Materials Chemistry 2011, 21 (38), 14925-14935.
[28] Li, G.;Azuma, H.;Tohda, M., LiMnPO4 as the cathode for lithium batteries. Electrochemical and Solid-State Letters 2002, 5 (6), A135-A137.
[29] Amine, K.;Yasuda, H.;Yamachi, M., Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochemical and Solid-State Letters 2000, 3 (4), 178-179.
[30] Wolfenstine, J.;Allen, J., Ni 3+/Ni 2+ redox potential in LiNiPO 4. Journal of Power Sources 2005, 142 (1), 389-390.
[31] Thackeray, M.;David, W.;Bruce, P.;Goodenough, J., Lithium insertion into manganese spinels. Materials Research Bulletin 1983, 18 (4), 461-472.
[32] Jahn, H. A.;Teller, E., "Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1937, pp. 220-235.
[33] Goodenough, J. B.;Loeb, A. L., Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels. Physical Review 1955, 98 (2), 391.
[34] Aurbach, D.;Levi, M.;Gamulski, K.;Markovsky, B.;Salitra, G.;Levi, E.;Heider, U.;Heider, L.;Oesten, R., Capacity fading of Li x Mn 2 O 4 spinel electrodes studied by XRD and electroanalytical techniques. Journal of Power Sources 1999, 81, 472-479.
[35] Xia, Y.;Zhou, Y.;Yoshio, M., Capacity Fading on Cycling of 4 V Li/LiMn2 O 4 Cells. Journal of The Electrochemical Society 1997, 144 (8), 2593-2600.
[36] Kim, J.-H.;Myung, S.-T.;Yoon, C.;Kang, S.;Sun, Y.-K., Comparative study of LiNi0. 5Mn1. 5O4-δ and LiNi0. 5Mn1. 5O4 cathodes having two crystallographic structures: Fd3m and P4332. Chem. Mater 2004, 16 (5), 906-914.
[37] Molenda, J.;Marzec, J.;Świerczek, K.;Ojczyk, W.;Ziemnicki, M.;Molenda, M.;Drozdek, M.;Dziembaj, R., The effect of 3d substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel. Solid State Ionics 2004, 171 (3), 215-227.
[38] Ohzuku, T.;Takeda, S.;Iwanaga, M., Solid-state redox potentials for Li [Me 1/2 Mn 3/2] O 4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. Journal of Power Sources 1999, 81, 90-94.
[39] R. D. Rauh, K. M. A., G. F. Pearson, J. K. Surprenant and S. B. Brummer, A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte Journal of The Electrochemical Society 1979, vol. 126.
[40] Nazar, L. F.;Ji, X.;Lee, K. T., A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Materials 2009, 8 (6), 500-506.
[41] Hagen, M.;Hanselmann, D.;Ahlbrecht, K.;Maça, R.;Gerber, D.;Tübke, J., Lithium–Sulfur Cells: The Gap between the State-of-the-Art and the Requirements for High Energy Battery Cells. Advanced Energy Materials 2015, 5 (16), n/a-n/a.
[42] Zanini, M.;Basu, S.;Fischer, J., Alternate synthesis and reflectivity spectrum of stage 1 lithium—graphite intercalation compound. Carbon 1978, 16 (3), 211-212.
[43] ink, B. T. L., "Rechargeable battery " US Patent, 1981.
[44] Su, F.;Poh, C. K.;Chen, J. S.;Xu, G.;Wang, D.;Li, Q.;Lin, J.;Lou, X. W., Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 2011, 4 (3), 717-724.
[45] Petkov, V.;Timmons, A.;Camardese, J.;Ren, Y., Li insertion in ball-milled graphitic carbon studied by total x-ray diffraction. Journal of Physics: Condensed Matter 2011, 23 (43), 435003.
[46] 林振華、林振富, 充電式鋰離子電池之材料與應用.
[47] 呂學隆, 鋰電池電解液產業在兩岸的發展現況. 工業材料雜誌 2011, 289.
[48] Goodenough, J. B.;Kim, Y., Challenges for rechargeable Li batteries. Chemistry of Materials 2010, 22 (3), 587-603.
[49] Peled, E., The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model. J. Electrochem. Soc. 1979, 126, 2047.
[50] Peled E., G. D., Ardel G., Menachem C., Bar-Tow D. and;V, E., Role of sei in lithium and lithium ion batteries Mat. Res. Soc. Symp. 1995, 393, 209-221.
[51] Peled E., G. D. a. P. J., Anode/Electrolyte Interface. In Handbook of Battery Materials [Online] O., B. J., Ed. 1998.
[52] Peled E., M. C., Bar-Tow D. and Melman A., improved graphite anode for lithium-ion batteries: Chemically bonded solid electrolyte interface and nanochannel formation J. Electrochem. Soc. 1996, 143 (1), L4-L7.
[53] Liu, M.;Ye, F.;Li, W.;Li, H.;Zhang, Y., Chemical routes toward long-lasting lithium/sulfur cells. Nano Research 2016, 9 (1), 94-116.
[54] Lithium-Ion_Batteries_Solid-Electrolyte_Interphase. Balbuena, P. B.;Wang, Y., Eds. Imperial College Press: 2004.
[55] 馬振基, 鋰離子電池原理與技術. 五南圖書出版: 2010.
[56] Wild, M.;O'Neill, L.;Zhang, T.;Purkayastha, R.;Minton, G.;Marinescu, M.;Offer, G. J., Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 2015, 8 (12), 3477-3494.
[57] Yeon, J.-T.;Jang, J.-Y.;Han, J.-G.;Cho, J.;Lee, K. T.;Choi, N.-S., Raman Spectroscopic and X-ray Diffraction Studies of Sulfur Composite Electrodes during Discharge and Charge. Journal of The Electrochemical Society 2012, 159 (8), A1308-A1314.
[58] Mikhaylik, Y. V.;Akridge, J. R., Polysulfide Shuttle Study in the Li/S Battery System. Journal of The Electrochemical Society 2004, 151 (11), A1969-A1976.
[59] 洪惠鈺, "以溶解沉澱法製備高導電度硫/聚丙烯腈-碳複合物於鋰硫電池正極之應用," 碩士, 化學工程系, 國立台灣科技大學, 2016.
[60] Urbonaite, S.;Poux, T.;Novák, P., Progress Towards Commercially Viable Li-S Battery Cells. Advanced Energy Materials 2015, 5 (16), 1500118.
[61] Zegeye, T. A., "Design, Characterization, and Fabrication of Sulfur Nanocomposite Cathode Material for High Performance Lithium-Sulfur Batteries," Doctoral Dissertation, Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 2017.
[62] Yin, Y. X.;Xin, S.;Guo, Y. G.;Wan, L. J., Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angewandte Chemie International Edition 2013, 52 (50), 13186-13200.
[63] Ji, L.;Rao, M.;Zheng, H.;Zhang, L.;Li, Y.;Duan, W.;Guo, J.;Cairns, E. J.;Zhang, Y., Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. Journal of the American Chemical Society 2011, 133 (46), 18522-18525.
[64] Wang, H.;Yang, Y.;Liang, Y.;Robinson, J. T.;Li, Y.;Jackson, A.;Cui, Y.;Dai, H., Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano letters 2011, 11 (7), 2644-2647.
[65] Zhao, Q.;Hu, X.;Zhang, K.;Zhang, N.;Hu, Y.;Chen, J., Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li–S batteries. Nano letters 2015, 15 (1), 721-726.
[66] Wang, D.;Zhang, W.;Zheng, W.;Cui, X.;Rojo, T.;Zhang, Q., Towards High‐Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy. Advanced Science 2017, 4 (1).
[67] Aurbach, D.;Pollak, E.;Elazari, R.;Salitra, G.;Kelley, C. S.;Affinito, J., On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. Journal of The Electrochemical Society 2009, 156 (8), A694-A702.
[68] Liang, X.;Wen, Z.;Liu, Y.;Wu, M.;Jin, J.;Zhang, H.;Wu, X., Improved cycling performances of lithium sulfur batteries with LiNO 3-modified electrolyte. Journal of Power Sources 2011, 196 (22), 9839-9843.
[69] Park, M.-S.;Yu, J.-S.;Kim, K. J.;Jeong, G.;Kim, J.-H.;Jo, Y.-N.;Hwang, U.;Kang, S.;Woo, T.;Kim, Y.-J., One-step synthesis of a sulfur-impregnated graphene cathode for lithium–sulfur batteries. Physical Chemistry Chemical Physics 2012, 14 (19), 6796-6804.
[70] Xi, K.;Cao, S.;Peng, X.;Ducati, C.;Kumar, R. V.;Cheetham, A. K., Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries. Chem Commun (Camb) 2013, 49 (22), 2192-4.
[71] Kim, J.-S.;Hwang, T. H.;Kim, B. G.;Min, J.;Choi, J. W., A Lithium-Sulfur Battery with a High Areal Energy Density. Advanced Functional Materials 2014, 24 (34), 5359-5367.
[72] Tan, G.;Xu, R.;Xing, Z.;Yuan, Y.;Lu, J.;Wen, J.;Liu, C.;Ma, L.;Zhan, C.;Liu, Q.;Wu, T.;Jian, Z.;Shahbazian-Yassar, R.;Ren, Y.;Miller, D. J.;Curtiss, L. A.;Ji, X.;Amine, K., Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries. Nature Energy 2017, 2, 17090.
[73] Zegeye, T. A.;Tsai, M.-C.;Cheng, J.-H.;Lin, M.-H.;Chen, H.-M.;Rick, J.;Su, W.-N.;Kuo, C.-F. J.;Hwang, B.-J., Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries. Journal of Power Sources 2017, 353, 298-311.
[74] Xin, S.;Gu, L.;Zhao, N.-H.;Yin, Y.-X.;Zhou, L.-J.;Guo, Y.-G.;Wan, L.-J., Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries. Journal of the American Chemical Society 2012, 134 (45), 18510-18513.
[75] Chen, R.;Zhao, T.;Lu, J.;Wu, F.;Li, L.;Chen, J.;Tan, G.;Ye, Y.;Amine, K., Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S Batteries. Nano Letters 2013, 13 (10), 4642-4649.
[76] Yao, H.;Zheng, G.;Hsu, P.-C.;Kong, D.;Cha, J. J.;Li, W.;Seh, Z. W.;McDowell, M. T.;Yan, K.;Liang, Z., Improving lithium-sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nature communications 2014, 5, 3943.
[77] Li, Z.;Jiang, Y.;Yuan, L.;Yi, Z.;Wu, C.;Liu, Y.;Strasser, P.;Huang, Y., A highly ordered meso@ microporous carbon-supported sulfur@ smaller sulfur core–shell structured cathode for Li–S batteries. ACS nano 2014, 8 (9), 9295-9303.
[78] He, G.;Evers, S.;Liang, X.;Cuisinier, M.;Garsuch, A.;Nazar, L. F., Tailoring porosity in carbon nanospheres for lithium–sulfur battery cathodes. ACS nano 2013, 7 (12), 10920-10930.
[79] Xiao, L.;Cao, Y.;Xiao, J.;Schwenzer, B.;Engelhard, M. H.;Saraf, L. V.;Nie, Z.;Exarhos, G. J.;Liu, J., A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium‐sulfur batteries with long cycle life. Advanced Materials 2012, 24 (9), 1176-1181.
[80] Li, Z.;Yuan, L.;Yi, Z.;Liu, Y.;Xin, Y.;Zhang, Z.;Huang, Y., A dual coaxial nanocable sulfur composite for high-rate lithium-sulfur batteries. Nanoscale 2014, 6 (3), 1653-60.
[81] Wang, C.;Wan, W.;Chen, J.-T.;Zhou, H.-H.;Zhang, X.-X.;Yuan, L.-X.;Huang, Y.-H., Dual core–shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries. J. Mater. Chem. A 2013, 1 (5), 1716-1723.
[82] Tao, X.;Wang, J.;Ying, Z.;Cai, Q.;Zheng, G.;Gan, Y.;Huang, H.;Xia, Y.;Liang, C.;Zhang, W.;Cui, Y., Strong Sulfur Binding with Conducting Magnéli-Phase TinO2n–1Nanomaterials for Improving Lithium–Sulfur Batteries. Nano Letters 2014, 14 (9), 5288-5294.
[83] Lee, F.;Tsai, M.-C.;Lin, M.-H.;Ni'mah, Y. L.;Hy, S.;Kuo, C.-Y.;Cheng, J.-H.;Rick, J.;Su, W.-N.;Hwang, B.-J., Capacity retention of lithium sulfur batteries enhanced with nano-sized TiO2-embedded polyethylene oxide. J. Mater. Chem. A 2017, 5 (14), 6708-6715.
[84] Chen, W.;Qian, T.;Xiong, J.;Xu, N.;Liu, X.;Liu, J.;Zhou, J.;Shen, X.;Yang, T.;Chen, Y., A new type of multifunctional polar binder: toward practical application of high energy lithium sulfur batteries. Advanced Materials 2017, 29 (12).
[85] Ryu, J. H.;Kim, J. W.;Sung, Y.-E.;Oh, S. M., Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochemical and solid-state letters 2004, 7 (10), A306-A309.
[86] Chen, Z.;Christensen, L.;Dahn, J., Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers. Electrochemistry communications 2003, 5 (11), 919-923.
[87] Eom, J.-Y.;Cao, L.;Wang, C.-Y., "Effect of anode binders on low-temperature performance of Li-ion batteries," in Meeting Abstracts, 2012, pp. 1016-1016.
[88] Guerfi, A.;Kaneko, M.;Petitclerc, M.;Mori, M.;Zaghib, K., LiFePO 4 water-soluble binder electrode for Li-ion batteries. Journal of Power Sources 2007, 163 (2), 1047-1052.
[89] He, M.;Yuan, L.-X.;Zhang, W.-X.;Hu, X.-L.;Huang, Y.-H., Enhanced Cyclability for Sulfur Cathode Achieved by a Water-Soluble Binder. The Journal of Physical Chemistry C 2011, 115 (31), 15703-15709.
[90] Liu, W.-R.;Yang, M.-H.;Wu, H.-C.;Chiao, S.;Wu, N.-L., Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochemical and Solid-State Letters 2005, 8 (2), A100-A103.
[91] Li, J.;Lewis, R.;Dahn, J., Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-ion batteries. Electrochemical and Solid-State Letters 2007, 10 (2), A17-A20.
[92] Beattie, S. D.;Larcher, D.;Morcrette, M.;Simon, B.;Tarascon, J.-M., Si electrodes for Li-ion batteries—a new way to look at an old problem. Journal of The Electrochemical Society 2008, 155 (2), A158-A163.
[93] Bridel, J.-S.;Azais, T.;Morcrette, M.;Tarascon, J.-M.;Larcher, D., Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries. Chemistry of materials 2009, 22 (3), 1229-1241.
[94] Seh, Z. W.;Zhang, Q.;Li, W.;Zheng, G.;Yao, H.;Cui, Y., Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chemical Science 2013, 4 (9), 3673.
[95] Wang, H.;Sencadas, V.;Gao, G.;Gao, H.;Du, A.;Liu, H.;Guo, Z., Strong affinity of polysulfide intermediates to multi-functional binder for practical application in lithium–sulfur batteries. Nano Energy 2016, 26, 722-728.
[96] Pan, J.;Xu, G.;Ding, B.;Chang, Z.;Wang, A.;Dou, H.;Zhang, X., PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium–sulfur batteries. RSC Adv. 2016, 6 (47), 40650-40655.
[97] Zhang, S. S., Binder Based on Polyelectrolyte for High Capacity Density Lithium/Sulfur Battery. Journal of the Electrochemical Society 2012, 159 (8), A1226-A1229.
[98] Wang, Q.;Yan, N.;Wang, M.;Qu, C.;Yang, X.;Zhang, H.;Li, X.;Zhang, H., Layer-by-Layer Assembled C/S Cathode with Trace Binder for Li–S Battery Application. ACS Applied Materials & Interfaces 2015, 7 (45), 25002-25006.
[99] Jiao, Y.;Chen, W.;Lei, T.;Dai, L.;Chen, B.;Wu, C.;Xiong, J., A Novel Polar Copolymer Design as a Multi-Functional Binder for Strong Affinity of Polysulfides in Lithium-Sulfur Batteries. Nanoscale Research Letters 2017, 12 (1).
[100] Shen, L.;Shen, L.;Wang, Z.;Chen, L., In Situ Thermally Cross-linked Polyacrylonitrile as Binder for High-Performance Silicon as Lithium Ion Battery Anode. ChemSusChem 2014, 7 (7), 1951-1956.
[101] Luo, L.;Xu, Y.;Zhang, H.;Han, X.;Dong, H.;Xu, X.;Chen, C.;Zhang, Y.;Lin, J., Comprehensive Understanding of High Polar Polyacrylonitrile as an Effective Binder for Li-Ion Battery Nano-Si Anodes. ACS Appl Mater Interfaces 2016, 8 (12), 8154-61.
[102] Kreuz, J. A.;Endrey, A.;Gay, F.;Sroog, C., Studies of thermal cyclizations of polyamic acids and tertiary amine salts. Journal of Polymer Science Part A: Polymer Chemistry 1966, 4 (10), 2607-2616.
[103] Yang, C.-P.;Hsiao, S.-H.;Wu, K.-L., Organosoluble and light-colored fluorinated polyimides derived from 2,3-bis(4-amino-2-trifluoromethylphenoxy)naphthalene and aromatic dianhydrides. Polymer 2003, 44 (23), 7067-7078.
[104] Ratta, V., POLYIMIDES: chemistry & structure-property relationships–literature review. Faculty of Virginia Polytechnic Institute and State University 1999, 3-28.
[105] Tseng, C.-Y.;Ye, Y.-S.;Cheng, M.-Y.;Kao, K.-Y.;Shen, W.-C.;Rick, J.;Chen, J.-C.;Hwang, B.-J., Sulfonated Polyimide Proton Exchange Membranes with Graphene Oxide show Improved Proton Conductivity, Methanol Crossover Impedance, and Mechanical Properties. Advanced Energy Materials 2011, 1 (6), 1220-1224.
[106] Ye, Y.-S.;Rick, J.;Hwang, B.-J., Ionic liquid polymer electrolytes. J. Mater. Chem. A 2013, 1 (8), 2719-2743.
[107] MacFarlane, D. R.;Forsyth, M.;Izgorodina, E. I.;Abbott, A. P.;Annat, G.;Fraser, K., On the concept of ionicity in ionic liquids. Physical Chemistry Chemical Physics 2009, 11 (25), 4962-4967.
[108] Ueno, K.;Tokuda, H.;Watanabe, M., Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Physical Chemistry Chemical Physics 2010, 12 (8), 1649-1658.
[109] Tokuda, H.;Hayamizu, K.;Ishii, K.;Susan, M. A. B. H.;Watanabe, M., Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. The Journal of Physical Chemistry B 2004, 108 (42), 16593-16600.
[110] Maier, G.;Meier-Haack, J., Sulfonated aromatic polymers for fuel cell membranes. Fuel cells II 2008, 1-62.
[111] Ruzette, A.-V.;Leibler, L., Block copolymers in tomorrow's plastics. Nature materials 2005, 4 (1), 19-31.
[112] Elabd, Y. A.;Hickner, M. A., Block copolymers for fuel cells. Macromolecules 2010, 44 (1), 1-11.
[113] Shi, Z.;Holdcroft, S., Synthesis and proton conductivity of partially sulfonated poly ([vinylidene difluoride-co-hexafluoropropylene]-b-styrene) block copolymers. Macromolecules 2005, 38 (10), 4193-4201.
[114] Bae, B.;Miyatake, K.;Watanabe, M., Synthesis and properties of sulfonated block copolymers having fluorenyl groups for fuel-cell applications. ACS applied materials & interfaces 2009, 1 (6), 1279-1286.
[115] Elabd, Y. A.;Napadensky, E.;Walker, C. W.;Winey, K. I., Transport properties of sulfonated poly (styrene-b-isobutylene-b-styrene) triblock copolymers at high ion-exchange capacities. Macromolecules 2006, 39 (1), 399-407.
[116] He, Y.;Boswell, P. G.;Bühlmann, P.;Lodge, T. P., Ion gels by self-assembly of a triblock copolymer in an ionic liquid. The Journal of Physical Chemistry B 2007, 111 (18), 4645-4652.
[117] Zhang, S.;Lee, K. H.;Sun, J.;Frisbie, C. D.;Lodge, T. P., Viscoelastic properties, ionic conductivity, and materials design considerations for poly (styrene-b-ethylene oxide-b-styrene)-based ion gel electrolytes. Macromolecules 2011, 44 (22), 8981-8989.
[118] Imaizumi, S.;Kokubo, H.;Watanabe, M., Polymer actuators using ion-gel electrolytes prepared by self-assembly of ABA-triblock copolymers. Macromolecules 2011, 45 (1), 401-409.
[119] Simone, P. M.;Lodge, T. P., Phase behavior and ionic conductivity of concentrated solutions of polystyrene-poly (ethylene oxide) diblock copolymers in an ionic liquid. ACS applied materials & interfaces 2009, 1 (12), 2812-2820.
[120] Ye, Y.-S.;Tseng, C.-Y.;Shen, W.-C.;Wang, J.-S.;Chen, K.-J.;Cheng, M.-Y.;Rick, J.;Huang, Y.-J.;Chang, F.-C.;Hwang, B.-J., A new graphene-modified protic ionic liquid-based composite membrane for solid polymer electrolytes. Journal of Materials Chemistry 2011, 21 (28), 10448.
[121] Grygiel, K.;Lee, J.-S.;Sakaushi, K.;Antonietti, M.;Yuan, J., Thiazolium poly (ionic liquid) s: Synthesis and application as binder for lithium-ion batteries. ACS Macro Letters 2015, 4 (12), 1312-1316.
[122] Lee, J.-S.;Sakaushi, K.;Antonietti, M.;Yuan, J., Poly(ionic liquid) binders as Li+conducting mediators for enhanced electrochemical performance. RSC Adv. 2015, 5 (104), 85517-85522.
[123] von Zamory, J.;Bedu, M.;Fantini, S.;Passerini, S.;Paillard, E., Polymeric ionic liquid nanoparticles as binder for composite Li-ion electrodes. Journal of Power Sources 2013, 240, 745-752.
[124] 程品皓, "鋰離子添加劑之開發," 碩士, 化學工程系, 國立台灣科技大學, 2013.
[125] Xu, R.;Belharouak, I.;Li, J.;Zhang, X.;Bloom, I.;Bareño, J., Role of Polysulfides in Self‐Healing Lithium–Sulfur Batteries. Advanced Energy Materials 2013, 3 (7), 833-838.
[126] 李謨霖, "Thermoplastic polyimide 之機械/物理特性研究," 碩士, 有機分高分子所, 國立台北科技大學, 2007.
[127] Al-Ajaj, I. A.;Kareem, A. A., Synthesis and Characterization of Polyimide Thin Films by Thermal Evaporation and Solid State Reactions. Acta Technica Corviniensis-Bulletin of Engineering 2015, 8 (4), 147.
[128] Hsiao, S.-H.;Chen, Y.-J., Structure–property study of polyimides derived from PMDA and BPDA dianhydrides with structurally different diamines. European polymer journal 2002, 38 (4), 815-828.
[129] Wang, D.-W.;Zhou, G.;Li, F.;Wu, K.-H.;Lu, G. Q.;Cheng, H.-M.;Gentle, I. R., A microporous–mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries. Physical Chemistry Chemical Physics 2012, 14 (24), 8703.
[130] Gambou-Bosca, A.;Belanger, D., Chemical Mapping and Electrochemical Performance of Manganese Dioxide/Activated Carbon Based Composite Electrode for Asymmetric Electrochemical Capacitor. Journal of the Electrochemical Society 2015, 162 (5), A5115-A5123.
[131] Wang, T.;Shi, P.;Chen, J.;Cheng, S.;Xiang, H., Effects of porous structure of carbon hosts on preparation and electrochemical performance of sulfur/carbon composites for lithium–sulfur batteries. Journal of Nanoparticle Research 2016, 18 (1).
[132] Choi, N.-S.;Ha, S.-Y.;Lee, Y.;Jang, J. Y.;Jeong, M.-H.;Shin, W. C.;Ue, M., Recent Progress on Polymeric Binders for Silicon Anodes in Lithium-Ion Batteries. Journal of Electrochemical Science and Technology 2015, 6 (2), 35-49.
[133] Hagen, M.;Schiffels, P.;Hammer, M.;Dorfler, S.;Tubke, J.;Hoffmann, M. J.;Althues, H.;Kaskel, S., In-Situ Raman Investigation of Polysulfide Formation in Li-S Cells. Journal of the Electrochemical Society 2013, 160 (8), A1205-A1214.
[134] Pascal, T. A.;Wujcik, K. H.;Velasco-Velez, J.;Wu, C.;Teran, A. A.;Kapilashrami, M.;Cabana, J.;Guo, J.;Salmeron, M.;Balsara, N., X-ray absorption spectra of dissolved polysulfides in lithium–sulfur batteries from first-principles. The journal of physical chemistry letters 2014, 5 (9), 1547-1551.
[135] Ye, Y.;Kawase, A.;Song, M.-K.;Feng, B.;Liu, Y.-S.;Marcus, M.;Feng, J.;Cairns, E.;Guo, J.;Zhu, J., X-ray Absorption Spectroscopy Characterization of a Li/S Cell. Nanomaterials 2016, 6 (1), 14.
[136] Li, W.;Yao, H.;Yan, K.;Zheng, G.;Liang, Z.;Chiang, Y.-M.;Cui, Y., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nature Communications 2015, 6, 7436.
[137] Diao, Y.;Xie, K.;Xiong, S.;Hong, X., Insights into Li-S Battery Cathode Capacity Fading Mechanisms: Irreversible Oxidation of Active Mass during Cycling. Journal of the Electrochemical Society 2012, 159 (11), A1816-A1821.
[138] Koo, B.;Kim, H.;Cho, Y.;Lee, K. T.;Choi, N.-S.;Cho, J., A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries. Angewandte Chemie International Edition 2012, 51 (35), 8762-8767.
[139] Rodrigues, F.;Galante, D.;do Nascimento, G. M.;Santos, P. S., Interionic Interactions in Imidazolic Ionic Liquids Probed by Soft X-ray Absorption Spectroscopy. The Journal of Physical Chemistry B 2012, 116 (5), 1491-1498.
[140] Godoi, F. C. d.;Wang, D.-W.;Zeng, Q.;Wu, K.-H.;Gentle, I. R., Dependence of LiNO3 decomposition on cathode binders in Li–S batteries. Journal of Power Sources 2015, 288, 13-19.

QR CODE