簡易檢索 / 詳目顯示

研究生: 邱嘉威
Jia-Wei Chiou
論文名稱: 鈣鈦礦太陽能電池研究
Perovskite Solar Cell
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陳景翔
Jing-Xiang Chen
陳詩芸
Shi-yun Chen
陳貞夙
Zhen-su Chen
吳季珍
Ji-Jhen WU
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 112
中文關鍵詞: 二氧化鈦鈣鈦礦太陽能電池兩步驟溶液沉積法旋塗法交流阻抗頻譜分析磁滯效應
外文關鍵詞: titanium dioxide, perovskite solar cells, two steps process, spin coating, AC Impedance, hysteresis
相關次數: 點閱:629下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於鈣鈦礦材料具有可調整能隙值、極高的吸收係數(1.54×104 cm-1)、低非輻射載子複合率和較長的載子擴散長度等優點,因此在近三年裡,有許多研究學者將其應用於太陽能電池的吸光層當中。然而,由於鈣鈦礦材料對水氧十分敏感,因此在一般的環境之下性質並不穩定。在此情況下,鈣鈦礦吸光層的製備往往會因為鈣鈦礦薄膜的沉積方式、結晶退火溫度、製作環境等因素,影響太陽能電池的效能。

      在本研究中,主要是在水氧值低的手套箱中進行鈣鈦礦太陽能電池的製作,以避免水氧在製備過程中的影響。在太陽能電池整體結構中,主要以二氧化鈦奈米粒子構成具有多孔性結構層來作為主要的支架提升電子提取效率;而在鈣鈦礦吸光材料的被覆上,則是利用兩步驟法進行。首先,以旋轉塗佈法分別針對碘化鉛與甲基胺碘在二氧化鈦奈米結構層上進行塗佈,最後再旋塗上電洞傳輸層與沉積金屬電極來完成此太陽能電池的製備。而由研究的結果中可知:鈣鈦礦吸光材料的塗佈法造成鈣鈦礦薄膜形態上的差異,除了影響元件的性能表現外,在磁滯效應的影響上也不同。最後以交流阻抗頻譜分析推測內部載子傳遞行為,可能因不同形態的鈣鈦礦薄膜於載子分離效率上的差異,使得鈣鈦礦太陽能電池的遲滯效應在旋轉塗佈法下獲得明顯的改善。

      在本次研究中,進行不同條件的優化,最後得到Jsc=21.37 mA/cm2、Voc=0.99 V、FF=0.69、PCE=14.42%之鈣鈦礦太陽能元件。


      Due to own the tunable band gap, high absorption coefficient (1.54x104 cm-1), low non-radiation carrier recombination and long carrier diffusion length, organic-inorganic hybrid perovskite materials received significant attention by many researchers in recent. There are many researchers used organic-inorganic hybrid perovskite materials as light-harvesting materials for solar cells. However, the perovskite materials is not stable in the ambient because it is very sensitive for the humidity and oxygen. Therefore, the performance of perovskite solar cells often affected by the deposition method, annealing temperature…

      In this study, perovskite solar cells were fabricated inside the glove box under low humidity and oxygen content. For the structure of perovskite solar cells, titanium dioxide (TiO2) nanoparticles were used to construct the mesoporous structural layer. Perovskite light harvesting materials were coated on the TiO2 structural layer via two steps process. Firstly, PbI2, CH3NH3I and hole transport medium (HTM) were coated sequentially via spin coating. Then the metal electrode was deposited by thermal evaporation. From this study, we could observe that the coating method would affect the morphologies of perovskite material and influence the performance of solar cells.
      In this study, the performance of perovskite solar cell fabricated by the optimal conditions can achieve Jsc=21.3 mA/cm2, Voc=0.99 V, FF=0.69, PCE=14.42 %.

    第一章、緒論 1 1-1 前言 1 1-2 研究動機與目的 1 第二章、理論基礎與文獻回顧 3 2-1 太陽能電池原理 3 2-1-1 半導體特性 3 2-1-2 p-n接面(p-n junction) 5 2-2 鈣鈦礦材料介紹 6 2-2-1 鈣鈦礦結構 6 2-2-2 鈣鈦礦材料的光伏特性與應用 8 2-3 磁滯效應(hysteresis) 10 2-3-1 內部缺陷 12 2-3-2 離子極化移動 13 2-3-3 鐵電效應 14 2-4 鈣鈦礦太陽能電池 14 2-4-1 元件結構及工作原理 14 2-4-2 介觀多孔性結構 17 2-4-2-1主動支架的結構層 17 2-4-2-2被動支架的結構層 18 2-4-3 平面式結構 19 2-4-4 電洞傳輸材料 20 2-5 鈣鈦礦太陽能電池製作 22 2-5-1 結構層厚度影響 22 2-5-2 以溶液法進行鈣鈦礦薄膜沉積 24 2-5-2-1 一步驟溶液沉積法(One-step solution deposition) 25 2-5-2-2 兩步驟連續溶液沉積法(two-step sequential solution deposition) 26 2-5-3 真空氣相沉積法 28 2-5-3-1 雙源氣相沉積(Dual-source vapor deposition) 28 2-5-3-2 蒸氣輔助溶液製程(Vapor-assisted solution process) 29 2-5-4 多孔性與平面式結構鈣鈦礦太陽能電池比較 29 2-5-4-1 形態和結晶 32 2-5-4-2 膜厚與擴散長度(diffusion length) 33 2-5-4-3 磁滯效應 34 第三章、實驗方法與步驟 36 3-1 實驗流程簡圖 36 3-2 實驗藥品與設備儀器 37 3-2-1 實驗藥品 37 3-2-2 實驗設備 39 3-2-3 分析儀器 40 3-3 實驗步驟 43 3-3-1 基板清洗及定義工作面積 43 3-3-2 二氧化鈦緻密層成長 44 3-3-3 二氧化鈦結構層成長 44 3-3-4 鈣鈦礦吸光層及電洞傳輸層沉積 45 3-3-5 蒸鍍金(Au)層作為金屬接面 46 3-3-6 I-V曲線量測 47 第四章、結果與討論 48 4-1 碘化鉛膜厚及結晶於鈣鈦礦薄膜的影響 48 4-1-1 改變碘化鉛溶液濃度對薄膜形態與結晶之影響 48 4-1-2 浸泡甲基胺碘溶液成長鈣鈦礦薄膜分析 53 4-1-3 I-V曲線分析鈣鈦礦太陽能元件 58 4-2 鈣鈦礦薄膜形態探討 60 4-2-1 不同方法沉積甲基胺碘溶液於鈣鈦礦薄膜之差異 60 4-2-2 鈣鈦礦薄膜特性分析 63 4-2-3 I-V曲線分析鈣鈦礦太陽能元件 65 4-2-4 薄膜形態與磁滯效應之關係 67 4-3 鈣鈦礦吸光層最佳化探討 68 4-3-1 改變甲基胺碘溶液濃度其薄膜形態與結晶探討 68 4-3-2 I-V曲線分析鈣鈦礦太陽能元件 72 4-3-3 最佳化之鈣鈦礦太陽能元件 75 4-3-4 磁滯效應分析 76 4-4 以交流阻抗頻譜分析於太陽能元件中之磁滯效應 80 4-4-1 鈣鈦礦太陽能元件之等效電路擬和 80 4-4-2 太陽能元件中的載子傳遞與磁滯效應之關係 81 第五章、結論 85 第六章、參考文獻 86

    1. P. Frankl and S. Nowak, Technology roadmap: solar photovoltaic energy. (OECD/IEA, 2010).
    2. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature, 499, 316 (2013)
    3. B. Cai, Y. Xing, Z. Yang, W.-H. Zhang, and J. Qiu, Energy & Environmental Science, 6, 1480 (2013)
    4. L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, Journal of the American Chemical Society, 134, 17396 (2012)
    5. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, Nanoscale, 3, 4088 (2011)
    6. G. Li, J. Y. Ho, H. Li, and H.-S. Kwok, Applied Physics Letters, 104, 231113 (2014)
    7. N. C. Efficiencies, http://www.nrel.gov/, (2015)
    8. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, Energy & Environmental Science, 7, 982 (2014)
    9. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, and M. K. Nazeeruddin, Nature Photonics, 7, 486 (2013)
    10. N. J. Jeon, H. G. Lee, Y. C. Kim, J. Seo, J. H. Noh, J. Lee, and S. I. Seok, Journal of the American Chemical Society, 136, 7837 (2014)
    11. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Journal of the American Chemical Society, 131, 6050 (2009)
    12. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science, 338, 643 (2012)
    13. K. Liang, D. B. Mitzi, and M. T. Prikas, Chemistry of Materials, 10, 403 (1998)
    14. M. Liu, M. B. Johnston, and H. J. Snaith, Nature, 501, 395 (2013)
    15. M. D. McGehee, Nature, 501, 323 (2013)
    16. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano Letters, 13, 1764 (2013)
    17. S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo, and S. I. Seok, Energy & Environmental Science, 7, 2614 (2014)
    18. H. J. Snaith, The Journal of Physical Chemistry Letters, 4, 3623 (2013)
    19. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science, 342, 341 (2013)
    20. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Science, 342, 344 (2013)
    21. M. D. G. a. M. McHenry, Structure of materials: an introduction to crystallography, diffraction and symmetry. (Cambridge University Press, 2007).
    22. 唐立權, 黃中垚, 張振雄, and 李明憲, 物理雙月刊, 27, 572 (2005)
    23. R. S. Roth, J. Res. Nat. Bur. Stand, 58, 75 (1957)
    24. P. Gao, M. Grätzel, and M. K. Nazeeruddin, Energy & Environmental Science, 7, 2448 (2014)
    25. D. B. Mitzi, C. Feild, W. Harrison, and A. Guloy, Nature, 369, 467 (1994)
    26. J. L. Knutson, J. D. Martin, and D. B. Mitzi, Inorganic Chemistry, 44, 4699 (2005)
    27. X. Zhou, F. P. Doty, and P. Yang, Atomistic models for scintillator discovery. (SPIE Optical Engineering+ Applications, 2010).
    28. V. Goldschmitdt, Die Mengenverhältnisse der Elemente und Atomarten. Norske Videnskaps Akademika Skifterern, Mathematisch-Naturvissenschaftliche Klasse, 4, 1 (1938)
    29. A. Poglitsch and D. Weber, The Journal of chemical physics, 87, 6373 (1987)
    30. D. B. Mitzi, Progress in Inorganic Chemistry, 48, 1 (2007)
    31. D. B. Mitzi, K. Chondroudis, and C. R. Kagan, IBM journal of research and development, 45, 29 (2001)
    32. G. Murtaza, S. Muhammad, S. Naeem, M. Khalid, and A. Manzar, Acta Physica Polonica A, 1, 102 (2013)
    33. J. Calabrese, N. Jones, R. Harlow, N. Herron, D. Thorn, and Y. Wang, Journal of the American Chemical Society, 113, 2328 (1991)
    34. E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, The Journal of Physical Chemistry C, 117, 13902 (2013)
    35. N. Onoda-Yamamuro, T. Matsuo, and H. Suga, Journal of Physics and Chemistry of Solids, 53, 935 (1992)
    36. L.-y. Huang and W. R. Lambrecht, Physical Review B, 88, 165203 (2013)
    37. N. Kitazawa, Y. Watanabe, and Y. Nakamura, Journal of Materials Science, 37, 3585 (2002)
    38. D. Liu and T. L. Kelly, Nature Photonics, 8, 133 (2014)
    39. H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, The Journal of Physical Chemistry Letters, 5, 1511 (2014)
    40. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, Nature Materials, 13, 897 (2014)
    41. A. Abate, M. Saliba, D. J. Hollman, S. D. Stranks, K. Wojciechowski, R. Avolio, G. Grancini, A. Petrozza, and H. J. Snaith, Nano Letters, 14, 3247 (2014)
    42. W.-J. Yin, T. Shi, and Y. Yan, Applied Physics Letters, 104, 063903 (2014)
    43. J. Kim, S.-H. Lee, J. H. Lee, and K.-H. Hong, The Journal of Physical Chemistry Letters, 5, 1312 (2014)
    44. E. J. Juarez-Perez, R. S. Sanchez, L. Badia, G. Garcia-Belmonte, Y. S. Kang, I. Mora-Sero, and J. Bisquert, The Journal of Physical Chemistry Letters, 5, 2390 (2014)
    45. E. Unger, E. Hoke, C. Bailie, W. Nguyen, A. Bowring, T. Heumüller, M. Christoforo, and M. McGehee, Energy & Environmental Science, 7, 3690 (2014)
    46. Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, and J. Huang, Nature Materials, 14, 193 (2015)
    47. N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely, and H. J. Snaith, ACS Nano, 8, 9815 (2014)
    48. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, Nano Letters, 14, 2584 (2014)
    49. W. Cochran, Advances in Physics, 9, 387 (1960)
    50. A. Dualeh, T. Moehl, N. Tetreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, ACS Nano, 8, 362 (2013)
    51. Y. Kutes, L. Ye, Y. Zhou, S. Pang, B. D. Huey, and N. P. Padture, The Journal of Physical Chemistry Letters, 5, 3335 (2014)
    52. X. Liu, W. Zhao, H. Cui, Y. a. Xie, Y. Wang, T. Xu, and F. Huang, Inorganic Chemistry Frontiers, 2, 315 (2015)
    53. M. Helander, M. Greiner, Z. Wang, W. Tang, and Z. Lu, Journal of Vacuum Science & Technology A, 29, 011019 (2011)
    54. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J. E. Moser, Scientific Reports, 2, 591 (2012)
    55. D. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, E. M. Johansson, and A. Hagfeldt, Nanoscale, 5, 11686 (2013)
    56. X. Gao, J. Li, J. Baker, Y. Hou, D. Guan, J. Chen, and C. Yuan, Chemical Communications, 50, 6368 (2014)
    57. M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix, and N. Mathews, Chemical Communications, 49, 11089 (2013)
    58. J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, and S. Yang, Nanoscale, 5, 3245 (2013)
    59. D.-Y. Son, J.-H. Im, H.-S. Kim, and N.-G. Park, The Journal of Physical Chemistry C, 118, 16567 (2014)
    60. J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, Energy & Environmental Science, 6, 1739 (2013)
    61. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, Advanced Functional Materials, 24, 151 (2014)
    62. J. A. Christians, R. C. Fung, and P. V. Kamat, Journal of the American Chemical Society, 136, 758 (2013)
    63. K.-C. Wang, P.-S. Shen, M.-H. Li, S. Chen, M.-W. Lin, P. Chen, and T.-F. Guo, ACS Applied Materials & Interfaces, 6, 11851 (2014)
    64. P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin, and M. Grätzel, Nature Communications, 5, 3834 (2014)
    65. H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science, 345, 542 (2014)
    66. Y. S. Kwon, J. Lim, H.-J. Yun, Y.-H. Kim, and T. Park, Energy & Environmental Science, 7, 1454 (2014)
    67. T. Salim, S. Sun, Y. Abe, A. Krishna, A. C. Grimsdale, and Y. M. Lam, Journal of Materials Chemistry A, 3, 8943 (2015)
    68. H.-S. Kim and N.-G. Park, The Journal of Physical Chemistry Letters, 5, 2927 (2014)
    69. Z. Lifeng, S. Jiangjian, L. Dongmei, and M. Qingbo, Acta Chimica Sinica, 73, 261 (2015)
    70. D. Bi, A. M. El-Zohry, A. Hagfeldt, and G. Boschloo, ACS Photonics, 2, 589 (2015)
    71. S. Do Sung, D. P. Ojha, J. S. You, J. Lee, J. Kim, and W. I. Lee, Nanoscale, 7, 8898 (2015)
    72. H. Huang, J. Shi, S. Lv, D. Li, Y. Luo, and Q. Meng, Chemical Communications, 51, 10306 (2015)
    73. H.-S. Ko, J.-W. Lee, and N.-G. Park, Journal of Materials Chemistry A, 3, 8808 (2015)
    74. N. Marinova, W. Tress, R. Humphry-Baker, M. I. Dar, V. Bojinov, S. M. Zakeeruddin, M. K. Nazeeruddin, and M. Grätzel, ACS Nano, 9, 4200 (2015)
    75. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, Nature Communications, 4, 2761 (2013)
    76. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, Energy & Environmental Science, 7, 2619 (2014)
    77. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Advanced Functional Materials, 24, 3250 (2014)
    78. P. Schulz, E. Edri, S. Kirmayer, G. Hodes, D. Cahen, and A. Kahn, Energy & Environmental Science, 7, 1377 (2014)
    79. J. Seo, S. Park, Y. C. Kim, N. J. Jeon, J. H. Noh, S. C. Yoon, and S. I. Seok, Energy & Environmental Science, 7, 2642 (2014)
    80. B. Conings, L. Baeten, C. De Dobbelaere, J. D'Haen, J. Manca, and H. G. Boyen, Advanced Materials, 26, 2041 (2014)
    81. H.-B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, and J. Y. Kim, Nanoscale, 6, 6679 (2014)
    82. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, Advanced Materials, 26, 6503 (2014)
    83. S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui, Chemistry of Materials, 26, 1485 (2014)
    84. J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, Nature Nanotechnology, 9, 927 (2014)
    85. Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, and L. Han, Energy & Environmental Science, 7, 2934 (2014)
    86. D. B. Mitzi, M. Prikas, and K. Chondroudis, Chemistry of Materials, 11, 542 (1999)
    87. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, Journal of the American Chemical Society, 136, 622 (2013)
    88. T. Leijtens, S. D. Stranks, G. E. Eperon, R. Lindblad, E. M. Johansson, I. J. McPherson, H. Rensmo, J. M. Ball, M. M. Lee, and H. J. Snaith, ACS Nano, 8, 7147 (2014)
    89. O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, Nature Photonics, 8, 128 (2014)
    90. J. T.-W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. n. Mora-Sero, J. Bisquert, and H. J. Snaith, Nano Letters, 14, 724 (2013)
    91. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, Nature materials, (2014)
    92. C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, and M. Grätzel, Energy & Environmental Science, Advance Article (2015)
    93. J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, and S. H. Im, Energy & Environmental Science, 8, 1602 (2015)
    94. S. Aharon, S. Gamliel, B. El Cohen, and L. Etgar, Physical Chemistry Chemical Physics, 16, 10512 (2014)
    95. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, and Y. Yang, Science, 345, 295 (2014)
    96. V. D’Innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, Nature Communications, 5, 3586 (2014)
    97. E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes, and D. Cahen, Nature Communications, 5, 3461 (2014)
    98. P. Docampo, F. C. Hanusch, S. D. Stranks, M. Döblinger, J. M. Feckl, M. Ehrensperger, N. K. Minar, M. B. Johnston, H. J. Snaith, and T. Bein, Advanced Energy Materials, 4, 1400355 (2014)
    99. C. Momblona, O. Malinkiewicz, C. Roldán-Carmona, A. Soriano, L. Gil-Escrig, E. Bandiello, M. Scheepers, E. Edri, and H. Bolink, APL Materials, 2, 081504 (2014)
    100. Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, and Y. Yang, Nano Letters, 14, 4158 (2014)
    101. G. Li, K. L. Ching, J. Y. Ho, M. Wong, and H. S. Kwok, Advanced Energy Materials, 5, 1401775 (2015)
    102. J. M. Frost, K. T. Butler, and A. Walsh, APL Materials, 2, 081506 (2014)
    103. F. Fabregat-Santiago, J. Bisquert, L. Cevey, P. Chen, M. Wang, S. M. Zakeeruddin, and M. Grätzel, Journal of the American Chemical Society, 131, 558 (2008)

    無法下載圖示 全文公開日期 2020/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE