簡易檢索 / 詳目顯示

研究生: 鍾子渝
Tzu-Yu Chung
論文名稱: 下行非正交多址系統的基於優先級的用戶分組 和功率分配算法
Priority-Based User Grouping and Power Allocation Algorithm for Downlink Non-Orthogonal Multiple Access (NOMA) Systems
指導教授: 沈中安
Chung-An Shen
口試委員: 王煥宗
Huan-Chun Wang
黃琴雅
Chin-Ya Huang
沈中安
Chung-An Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 35
中文關鍵詞: 非正交多址用戶分組功率分配優先權數據傳輸率最大化
外文關鍵詞: Non-orthogonal multiple access, user grouping, power allocation, priority, maximizing data transmission rate
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著世界對網路的需求增加,網路的資源也愈加的珍貴。為了支援如此龐大的需求,如何去適當利用可用的頻譜變得十分重要。第五代行動通訊技術 (5-th Generation Mobile Network)需要達到比現在的 4G更高的系統效能,因此需要針對 如何 更有效率的 利用 資源 的多重存取 (Multiple Access)技術進行重大改進。具體而言, ,4G主要使用正交頻分多址 (Orthogonal Frequency Division Multiple Access, OFDMA)技術。而 5G則使用擺脫正交限制的非正交多址 (Non-Orthogonal Multiple Access, NOMA)技術來進一步提升頻譜效率。 NOMA跟 OFDMA最大的不同為多了功率域(Power Domain)的利用,並透過不同的功 率分配來區分用戶。在 NOMA中 發射端首先會將多個用戶訊號進行疊加,然後在接收端透過串行干擾消除 (Successive Interference Cancellation, SIC)技術逐一進行訊號解調。這其中有兩個因素會影響到 NOMA系統的資料傳輸率 (Data Rate),分別為 用戶分組(User Grouping)和 功率分配 (Power Allocation)。 由於 NOMA系統中的非正交特性會使用戶之間存在干擾 ,無法供應所有用戶同時使用 ,因此 使用適當的用戶 分組策略可以減少多路復用用戶的數量 和 增加系統 總資料傳輸率 。而藉由不同的功率分配方案能使 NOMA系統達到不同要求的系統性能。而本篇論文 在 NOMA的基礎下, 將根據用戶的 需求 對用戶進行優先級排序,並 依據 優先級的考慮因素 進行用戶分組。 然而受限於用戶本身的通道狀態影響,在高優先權用戶具有極低通道狀態的情況下難以只透過使用用戶分組的方式進行改善。因此 ,提出 了一種 功率分配方法為每個用戶保留了 基於優先權的 比例公平性和 QoS。 在模擬結果中從所提出基於優先權的用戶分組中 可以看出在不同的情況下皆可以使較多具有高優先權的用戶擁有較高的 資料 傳輸率。並且再加入了所提出相應的功 率分配之後,所有用戶皆依據優先 權比例分配,且具有較低優先的用戶也比較其他方法獲得較多的資料傳輸率 。此外,為了驗證系統是否具有依據優先權為用戶分配資料傳輸率的能力 我們定義了一項指標 Ω。 Ω是一個用來 表達用戶可達到的數據傳輸率以及用戶的目標數據傳輸率的差異輸率以及用戶的目標數據傳輸率的差異。。當當Ω越大越大,,代表用戶可達到的數據傳代表用戶可達到的數據傳輸率以及用戶的目標數據傳輸率的差異越大輸率以及用戶的目標數據傳輸率的差異越大;;當當Ω越越小小,,代表用戶可達到的數代表用戶可達到的數據傳輸率以及用戶的目標數據傳輸率的差異越小,也代表系統依據優先權比例為據傳輸率以及用戶的目標數據傳輸率的差異越小,也代表系統依據優先權比例為用戶分配數據傳輸率的性能越高。在模擬報告中顯示,本論文中所提出的用戶分用戶分配數據傳輸率的性能越高。在模擬報告中顯示,本論文中所提出的用戶分組暨功率分配方案較其他方法的組暨功率分配方案較其他方法的Ω值值低低52%~76%。。


As the demand for the Internet increases, the resources of the Internet become much more precious. In order to support such a huge demand, the question of how to make appropriate use of the available spectrum becomes very important. To be specific, the 5-th Generation (5G) mobile network is expected to achieve much enhanced performance than the 4G network. As a result, the multiple access technology which aims to allocate spectrum efficiently requires a significant improvement. In 4G, the orthogonal multiple access scheme such as orthogonal frequency division multiple access (OFDMA) is primarily employed. However, the orthogonal technology results in a disadvantage where the available spectrums cannot be used efficiently. On the other hand, the non-orthogonal multiple access (NOMA) technology is proposed in 5G to relax the strict orthogonality limitation for further enhancing the spectrum efficiency. In particular, in the power-domain NOMA scheme, the users are distinguished by allocating different power levels. In such system, multiple user signals are allocated with different power levels and are superimposed at the transmitter. The mixed signals are transmitted over the wireless channel and are demodulated subsequently using a successive interference cancellation (SIC) technology at the receiver. There are two essential factors for designing the NOMA system, namely user grouping and power allocation. Due to the non-orthogonal characteristic of the NOMA system, the interference between users is caused and the number of users that can be transmitted simultaneously is limited. Using a proper user grouping strategy can reduce the number of multiplexed users and increase the system throughput. In addition, with different power distribution schemes, NOMA system can achieve different system performance requirements. In this paper, a priority-based joint user grouping and power allocation scheme for NOMA system is presented. In the proposed approach, users are prioritized based on their importance and are grouped with the considerations of the priorities. Furthermore, the proposed power allocation approach preserves the certain data rate under user priority constraint and QoS for each user. The detailed outline of the proposed schemes is presented in this paper. In the simulation results, it can be seen from the proposed grouping of users based on priority that under different circumstances, more users with high priority can have a higher data rate. And after adding the corresponding power allocation proposed, all users are allocated power according to the priority ratio, and users with lower priority also obtain more data transmission rates than other methods. In addition, this paper defines an index Ω to measure the difference between the user’s achievable data rate and target rate. The higher the system's ability to allocate rates based on priority, the smaller the Ω value. The simulation report shows that the Ω of the proposed priority-based joint user grouping and power allocation scheme is 52%~76% lower than other schemes.

摘要 .................................. I Abstract .............................. III Table of Contents ..................... V Figures ............................... VI Tables ................................ VII I. Introduction ....................... 1 II. Background and System Model ....... 8 2.1 System Model........................8 2.2 Related Work .......................11 III. Proposed User Grouping Scheme..... 14 3.1 Proposed User-Grouping Scheme ..... 14 3.2 The Power Allocation Scheme ....... 18 IV. Experimental Result and Comparison. 25 V. Conclusion ......................... 32 References ............................ 33

[1] Q. K. U. D. Arshad, A. U. Kashif, and I. M. Quershi, "A Review on the Evolution of Cellular Technologies," in 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 8-12 Jan. 2019 2019, pp. 989-993, doi: 10.1109/IBCAST.2019.8667173.
[2] J. Wang et al., "Spectral Efficiency Improvement With 5G Technologies: Results From Field Tests," IEEE Journal on Selected Areas in Communications, vol. 35, no. 8, pp. 1867-1875, 2017, doi: 10.1109/JSAC.2017.2713498.
[3] K. Alexander, "Types of Mobile Network by Multiple‐Access Scheme," in Introduction to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G: Wiley, 2018, pp. 3-4.
[4] M. Aldababsa, M. Toka, S. Gökçeli, G. K. Kurt, and O. Kucur, "A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond," Wireless Communications and Mobile Computing, vol. 2018, p. 9713450, 2018/06/28 2018, doi: 10.1155/2018/9713450.
[5] S. M. R. Islam, N. Avazov, O. A. Dobre, and K. Kwak, "Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges," IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 721-742, 2017, doi: 10.1109/COMST.2016.2621116.
[6] M. Series, "IMT Vision–Framework and overall objectives of the future development of IMT for 2020 and beyond," Recommendation ITU, pp. 2083-0, 2015.
[7] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, "A Survey of Non-Orthogonal Multiple Access for 5G," IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2294-2323, 2018, doi: 10.1109/COMST.2018.2835558.
[8] J. Axnäs, Y. E. Wang, M. Kamuf, and N. Andgart, "Successive interference cancellation techniques for LTE downlink," in 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, 11-14 Sept. 2011 2011, pp. 1793-1797, doi: 10.1109/PIMRC.2011.6139817.
[9] J. Guo, X. Wang, J. Yang, J. Zheng, and B. Zhao, "User Pairing and Power Allocation for Downlink Non-Orthogonal Multiple Access," in 2016 IEEE Globecom Workshops (GC Wkshps), 4-8 Dec. 2016 2016, pp. 1-6, doi: 10.1109/GLOCOMW.2016.7849074.
[10] Z. Ding, P. Fan, and H. V. Poor, "Impact of User Pairing on 5G Nonorthogonal Multiple-Access Downlink Transmissions," IEEE Transactions on Vehicular Technology, vol. 65, no. 8, pp. 6010-6023, 2016, doi: 10.1109/TVT.2015.2480766.
[11] H. Zhang, D. Zhang, W. Meng, and C. Li, "User pairing algorithm with SIC in non-orthogonal multiple access system," in 2016 IEEE International Conference on Communications (ICC), 22-27 May 2016 2016, pp. 1-6, doi: 10.1109/ICC.2016.7511620.
[12] L. Zhu, J. Zhang, Z. Xiao, X. Cao, and D. O. Wu, "Optimal User Pairing for Downlink Non-Orthogonal Multiple Access (NOMA)," IEEE Wireless Communications Letters, vol. 8, no. 2, pp. 328-331, 2019, doi: 10.1109/LWC.2018.2853741.
[13] M. M. Al-Wani, A. Sali, N. K. Noordin, S. J. Hashim, C. Y. Leow, and I. Krikidis, "Robust
34
Beamforming and User Clustering for Guaranteed Fairness in Downlink NOMA With Partial Feedback," IEEE Access, vol. 7, pp. 121599-121611, 2019, doi: 10.1109/ACCESS.2019.2936911.
[14] D. Ni, L. Hao, Q. T. Tran, and X. Qian, "Transmit Power Minimization for Downlink Multi-Cell Multi-Carrier NOMA Networks," IEEE Communications Letters, vol. 22, no. 12, pp. 2459-2462, 2018, doi: 10.1109/LCOMM.2018.2872991.
[15] M. Dianati, X. Shen, and S. Naik, "A new fairness index for radio resource allocation in wireless networks," in IEEE Wireless Communications and Networking Conference, 2005, 13-17 March 2005 2005, vol. 2, pp. 712-717 Vol. 2, doi: 10.1109/WCNC.2005.1424595.
[16] W. Liang, Z. Ding, Y. Li, and L. Song, "User Pairing for Downlink Non-Orthogonal Multiple Access Networks Using Matching Algorithm," IEEE Transactions on Communications, vol. 65, no. 12, pp. 5319-5332, 2017, doi: 10.1109/TCOMM.2017.2744640.
[17] Y. Tsai and H. Wei, "Quality-Balanced User Clustering Schemes for Non-Orthogonal Multiple Access Systems," IEEE Communications Letters, vol. 22, no. 1, pp. 113-116, 2018, doi: 10.1109/LCOMM.2017.2766618.
[18] M. H. Reddy and B. Rebekka, "Power Allocation Policies for QoS Satisfaction in IoT Using NOMA," in 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), 11-12 May 2018 2018, pp. 576-581, doi: 10.1109/ICOEI.2018.8553911.
[19] K. Long, P. Wang, W. Li, and D. Chen, "Spectrum Resource and Power Allocation With Adaptive Proportional Fair User Pairing for NOMA Systems," IEEE Access, vol. 7, pp. 80043-80057, 2019, doi: 10.1109/ACCESS.2019.2908673.
[20] Z. Q. Al-Abbasi and D. K. C. So, "Resource Allocation in Non-Orthogonal and Hybrid Multiple Access System With Proportional Rate Constraint," IEEE Transactions on Wireless Communications, vol. 16, no. 10, pp. 6309-6320, 2017, doi: 10.1109/TWC.2017.2721936.
[21] L. Salaün, M. Coupechoux, and C. S. Chen, "Weighted Sum-Rate Maximization in Multi-Carrier NOMA with Cellular Power Constraint," in IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, 29 April-2 May 2019 2019, pp. 451-459, doi: 10.1109/INFOCOM.2019.8737495.
[22] R. Chen, X. Wang, and Y. Xu, "Power Allocation Optimization in MC-NOMA Systems for Maximizing Weighted Sum-Rate," in 2018 24th Asia-Pacific Conference on Communications (APCC), 12-14 Nov. 2018 2018, pp. 392-396, doi: 10.1109/APCC.2018.8633549.
[23] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K. Bhargava, "A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends," IEEE Journal on Selected Areas in Communications, vol. 35, no. 10, pp. 2181-2195, 2017, doi: 10.1109/JSAC.2017.2725519.
[24] S. M. R. Islam, M. Zeng, O. A. Dobre, and K. Kwak, "Resource Allocation for Downlink NOMA Systems: Key Techniques and Open Issues," IEEE Wireless Communications, vol. 25, no. 2, pp. 40-47, 2018, doi: 10.1109/MWC.2018.1700099.
[25] Z. Ding, P. Fan, and H. V. Poor, "User Pairing in Non-Orthogonal Multiple Access Downlink
35
Transmissions," in 2015 IEEE Global Communications Conference (GLOBECOM), 6-10 Dec. 2015 2015, pp. 1-5, doi: 10.1109/GLOCOM.2015.7417061.
[26] L. Zhu, J. Zhang, Z. Xiao, and X. Cao, "User Fairness Non-orthogonal Multiple Access (NOMA) in Millimeter-Wave Communications," in 2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops), 16-18 Aug. 2018 2018, pp. 80-84, doi: 10.1109/ICCChinaW.2018.8674488.
[27] S. Boyd, L. Vandenberghe, and L. Faybusovich, "Convex Optimization," IEEE Transactions on Automatic Control, vol. 51, no. 11, pp. 1859-1859, 2006, doi: 10.1109/TAC.2006.884922.
[28] X. Wang, R. Chen, Y. Xu, and Q. Meng, "Low-Complexity Power Allocation in NOMA Systems With Imperfect SIC for Maximizing Weighted Sum-Rate," IEEE Access, vol. 7, pp. 94238-94253, 2019, doi: 10.1109/ACCESS.2019.2926757.

無法下載圖示 全文公開日期 2025/08/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE