簡易檢索 / 詳目顯示

研究生: 倪志諭
Chih-Yu Ni
論文名稱: 傳導性電磁干擾雜訊之分析與量測
Analysis and Measurement of Conducted Electromagnetic Interference Noise
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
林景源
謝耀慶
張佑丞
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 129
中文關鍵詞: 傅立葉轉換傳導路徑阻抗電磁干擾濾波器
外文關鍵詞: Fourier transform, noise source impedance, EMI filter
相關次數: 點閱:195下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對切換式電源之傳導性電磁干擾做一研究。分別針對雜訊源、傳導路徑與其傳導阻抗,以及濾波器的設計,這三個方向來做分析。
    在雜訊源部分,使用傅立葉轉換分析其雜訊源之頻譜,探討雜訊訊號之上升、下降斜率,以及其脈波寬度分別對於雜訊頻譜上的表現。在傳導路徑部分,介紹差模與共模干擾之傳導路徑與平衡電容之功用。而在傳導路徑阻抗的量測方面,分別引用兩篇文獻:輸入及反射電流探棒量測法與傳輸參數量測法。針對此兩種方式,補充一詳細且完整原理分析的數學推導,並評比了兩種方式的優缺點。
    然而,在實際實驗驗證中,傳輸參數量測法所量測之結果不符合理論之推導且具有大量之雜訊。在無法釐清是否為量測儀器的問題或量測平台的問題下,研究方向轉為使用模擬軟體的方式來進行轉換器的傳導路徑阻抗的量測。
    在模擬軟體的實驗環境中,本論文提出另一簡易式傳導路徑阻抗量測法。其方法僅需量測兩個電壓與兩個電流訊號,即可反推出傳導路徑阻抗與雜訊源的分量。與既有文獻的量測方式相比,因不須使用網路分析儀,以及繁雜的數學轉換。所以本文提出之簡易式量測法具有低成本與高可靠性之優點,並在本論文中以數學與模擬相互驗證,證明此方法的正確性。
    本論文最終提出一濾波器設計流程,依據由本文所提出之簡易量測法所求得知傳導路徑阻抗為依據,使用插入損失的概念,逐步的由理論選擇合適的濾波器形式、濾波器設計的方法。最終提供一設計範例以供讀者參考。其理論計算與模擬結果相互吻合。


    This thesis is to provide an analysis of noise source of conductive electromagnetic interference. Then the thesis divides into three directions: Noise source, conduction path, noise source impedance, and filter design.
    In the part of noise source, this thesis use Fourier transform to observe the noise source in frequency domain and analyze the noise source results by changing its rise time, fall time, and bandwidth. In the part of conduction path, this thesis introduce the DM mode, CM mode, and the function of balance capacitor. In the part of noise source impedance, this thesis introduce two papers of measuring the noise source impedance: The direct clamping two-probe measurement and ABCD parameters applying in a noise source impedance extraction method. Add complete details of calculation, figure, advantages, and disadvantages of these two papers.
    However, according to the experiment results, the way of ABCD parameters applying in a noise source impedance extraction method can’t match the calculation method and has a lot of noise on the results. Because the problems of results can’t find the reasons coming from the device or measurement, the research direction changes to use simulation to measure the noise source impedance.
    In the simulation, this thesis provide a simplify noise source impedance extraction method that needs only two voltage and current signals to get the noise source and noise source impedance. The difference between the simplify noise source impedance extraction method and ABCD parameters applying in a noise source impedance extraction method is that the simplify noise source impedance extraction method doesn’t need to use Vector Network Analyzer and hasn’t the complex calculation. So the advantages of the simplify noise source impedance extraction method are low cost and high reliability, and this thesis proves the correctness of this method by verifying results between calculation and simulation.
    Finally, this thesis provides the process of filter design that finished by using insertion loss that needs noise source impedance coming from the simplify noise source impedance extraction method. And the reason how to choose filter is explained step by step in this thesis. The final results between calculation and simulation are matched.

    摘要 Abstract 致謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 章節大綱 第二章 雜訊源以及傳導路徑分析 2.1 雜訊源的傅立葉轉換 2.2 差模及共模路徑 2.2.1 差模及共模干擾 2.2.2 實際電路傳導路徑分析 第三章 傳導路徑阻抗量測法 3.1 輸入及反射電流探棒量測法 3.1.1 量測原理 3.1.2 量測步驟 3.2 傳輸參數量測法 3.2.1 共模傳導路徑阻抗量測 3.2.2 差模傳導路徑阻抗量測 3.3 簡易式量測法 第四章 電磁干擾濾波器設計 4.1 插入損失 4.2 常用濾波器架構分析 4.3 濾波器之共模與差模等效分析 4.4 濾波器元件設計流程 4.4.1 共模濾波器設計 4.4.2 差模濾波器設計 第五章 不同量測法之驗證結果 5.1 傳輸參數量測法之共模量測結果 5.2 簡易式量測法之模擬結果 5.2.1 共模及差模傳導路徑阻抗結果 5.2.2 濾波器設計範例 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

    Wang, C., Xu, M., Lee, F. C., & Lu, B. “EMI study for the inter-leaved multi-channel PFC,” IEEE Power Electronics Specialists Con-ference (pp. 1336-1342). IEEE. June, 2007.
    Wang, C., Xu, M., & Lee, F. C. “Asymmetrical interleaving strategy for multi-channel PFC,” Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition (pp. 1409-1415). IEEE. Feb-ruary, 2008.
    Wang, S., Kong, P., & Lee, F. C. (2007). Common mode noise reduction for boost converters using general balance technique. IEEE transactions on power electronics, 22(4), 1410-1416.
    Kong, P., Wang, S., & Lee, F. C. (2008, June). Improving balance technique for high frequency common mode noise reduction in boost PFC converters. In 2008 IEEE Power Electronics Specialists Conference (pp. 2941-2947). IEEE.
    李鴻麒,適用於任何波形之EMI頻譜包絡解析分析法,國立台灣科技大學電子工程所博士論文,中華民國102年。
    Paul, C. R. (2006). Introduction to electromagnetic compatibil-ity (Vol. 184). John Wiley & Sons.
    Wang, S. (2005). Characterization and cancellation of high-frequency parasitics for EMI filters and noise separators in power electronics applications (Doctoral dissertation, Virginia Tech).
    Hu, J., Von Bloh, J., & De Doncker, R. W. (2004, June). Typical impulses in power electronics and their EMI characteristics. In 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551) (Vol. 4, pp. 3021-3027). IEEE.
    LI, Hong, et al. Common-mode EMI suppression based on chaotic SPWM for a single-phase transformerless photovoltaic inverter. In: 2014 16th European conference on power electronics and applications. IEEE, 2014. p. 1-7.
    Tarateeraseth, V. (2012). EMI filter design: Part III: Selection of filter topology for optimal performance. IEEE Electromagnetic Compatibility Magazine, 1(2), 60-73.
    See, K. Y., & Deng, J. (2004). Measurement of noise source im-pedance of SMPS using a two probes approach. IEEE transactions on Power Electronics, 19(3), 862-868.
    Tarateeraseth, V. (2012). EMI filter design: Part II: Meas-urement of noise source impedances. IEEE Electromagnetic Compati-bility Magazine, 1(1), 42-49.
    Shang, X., Su, D., Xu, H., & Peng, Z. (2016). A noise source impedance extraction method for operating SMPS using modified LISN and simplified calibration procedure. IEEE Transactions on Power Electronics, 32(6), 4132-4139.
    Zhang, D., Chen, D. Y., Nave, M. J., & Sable, D. (2000). Meas-urement of noise source impedance of off-line converters. IEEE Transactions on Power Electronics, 15(5), 820-825.
    Charles, K. A., & Matthew, N. O. (2017). Fundamentals of electric circuits. McGraw-hill Education.
    Hsieh, H. I. (2008, September). A procedure including mix-mode noise for designing EMI filters for off-line applications. In 2008 IEEE Vehicle Power and Propulsion Conference (pp. 1-6). IEEE.
    Ye, S., Eberle, W., & Liu, Y. F. (2004). A novel EMI filter design method for switching power supplies. IEEE Transactions on Power Electronics, 19(6), 1668-1678.
    Shih, F. Y., Chen, D. Y., Wu, Y. P., & Chen, Y. T. (1996). A pro-cedure for designing EMI filters for AC line applications. IEEE transac-tions on power electronics, 11(1), 170-181.
    WILLIAMS, Tim. EMC for product designers. Newnes, 2016.
    POZAR, David M. Microwave engineering. John wiley & sons, 2011.
    Agilent 4395A Network/Spectrum/Impedance Analyzer Operation Manual, 2008

    無法下載圖示 全文公開日期 2026/08/08 (校內網路)
    全文公開日期 2026/08/08 (校外網路)
    全文公開日期 2026/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE