簡易檢索 / 詳目顯示

研究生: 張立
Li - Chang
論文名稱: 以複合式左右手合成傳輸線實現雙天線整合信號回溯/波束切換相位陣列天線
Two-element Integrated Retrodirective/Beam-switching Phased Array Using Dual-operational mode Composite Right/Left-handed Synthesized Transmission Lines
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 楊成發
Chang-Fa Yang
廖文照
Wen-Jiao Liao
曾昭雄
Chao-Hsiung Tseng
賴季暉
Chi-hui Lai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 90
中文關鍵詞: 複合式左右手傳輸線雙模態操作枝幹耦合器鼠競器雙工器信號回溯波束切換異質整合
外文關鍵詞: Composite right/left handed synthesized transmis, dual-operational mode, branch line coupler, rat-race coupler, diplexer, retrodirective, beam-switching, heterogeneous integrated phased array
相關次數: 點閱:464下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一創新雙天線整合雙模態相位陣列系統。此系統在饋入網路不引入主動元件之前提下,使相位陣列於低頻帶操作為信號回溯陣列,而高頻帶則為波束切換陣列。若與前人所提出之數款整合相位陣列系統比較,有效簡化異質整合多模態相位陣列系統之饋入網路電路面積,有利於未來實現整合於可攜式無線通訊系統之目標。
為實現該雙模態相位陣列系統,本論文先提出具創新效能之雙模態複合式左右手合成傳輸線。該合成傳輸線以傳輸線、線電感、表面黏著電容所組成。若與文獻中常見的複合式左右手傳輸線相比較,此傳輸線最大之不同,乃在於特徵阻抗可依操作頻帶之不同而獨立設計,並以此獨特電路特性實現異質整合雙模態陣列之操作。
本論文將複合式合成傳輸線進行整合,成功實現雙天線整合陣列餽入電路之核心元件:雙模態分合波器。將此分和波器與其它輔助元件如:天線、雙工器、增益放大器及環路器等進行整合設計,即完成此雙模態雙天線相位陣列系統。經電路與輻射場型之實驗量測,吾人充分驗證其信號回溯與波束切換之功能。
本論文詳盡討論此創新系統架構之設計概念、電路佈局,及模擬與量測結果,並進行適當分析討論。


Without the need of active switches, in this thesis, a two elements integrated retrodirective/beam-switching phased array is developed and verified. The feeding network is equivalent to a reflection-type retrodirective array in the lower band, but automatically turns into a beam-switching array in the upper band. The proposed system features a reduced architecture but still functions as a dual-operational mode heterogeneous integrated phased array.
The key component for successfully integrating the unique phased array, namely the dual-mode coupler, is introduced. This essential component is realized by composite right/left-handed (CRLH) synthesized transmission lines consisting of traditional microstrip lines and artificial left-handed lines. Compared with conventional CRLH lines, the characteristic impedance of the proposed one can be independently designed at different operation frequencies.
By integrating the core building blocks and a number of auxiliary commercial components, the dual-model two-element phased array system is realized and experimentally demonstrated. Measured circuit responses and radiation characteristics of the proposed array are introduced through experiments to validate this unique concept.

摘要 i Abstract iii 目錄 v 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 研究貢獻 3 1.4 論文組織 4 第二章 雙天線整合信號回溯/波束切換相位陣列天線之原理 5 2.1 前言 5 2.2 電路架構與設計原理 6 2.2.1雙天線整合信號回溯陣列/波束切換陣列設計原理 7 2.2.2電路架構 6 2.3 結語 10 第三章 雙天線整合信號回溯/波束切換相位陣列天線之構成元件 12 3.1 前言 12 3.2 複合式雙模態左右手合成傳輸線 12 3.2.1 複合式左右手合成傳輸線A 12 3.2.2 複合式左右手合成傳輸線B 19 3.2.3 複合式左右手合成傳輸線C 26 3.3 雙模態耦合器 32 3.3.1 耦合器 32 3.4 雙工器 37 3.4.1 右手合成傳輸線D 37 3.4.2 左手合成傳輸線E 42 3.4.3 雙工器 47 3.5 輔助元件 49 3.5.1 天線 49 3.5.2 增益放大器 53 3.5.3 環路器 55 3.6 結語 57 第四章 雙天線整合信號回溯/波束切換相位陣列天線之實驗驗證 58 4.1 前言 58 4.2 信號回溯陣列/波束切換陣列 58 4.2.1 餽入網路之電路驗證 58 4.2.1.1 低頻帶系統之電氣響應 60 4.2.1.2 高頻帶系統之電氣響應 61 4.2.2 輻射場型量測驗證 64 4.2.2.1 相位陣列餽入網路與天線之整合 64 4.2.2.1 低頻帶系統之輻射場型量測 66 4.2.2.2 高頻帶系統之輻射場型量測 70 4.3 結語 72 第五章 結論 74 5.1 總結 74 5.2 未來發展 74 參考文獻 75

[1] J.-Y. Zou, C. H. Wu, and T.-G. Ma, “Heterogeneous integrated beam-switching/retrodirective array using synthesized transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 8, pp. 3128-3139, Aug. 2013.
[2] J.-W. Tsai, C.-H. Wu, and T.-G. Ma, "Novel dual-mode retrodirective array using synthesized microstrip lines," IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3375-3388, Dec. 2011.
[3] Cheng-Hsun Wu, Guan-Ting Zhou, and Tzyh-Ghuang Ma, “Integrated Retrodirective/Beam-switching Phased Array Using Dual-mode Left-handed Synthesized Transmission Lines,” in Proc. 2014 IEEE Int’l Workshop on Electromagnetics, Applications and Student Innovation (iWEM), Hokkaido, Japan, Aug. 4-6, 2014.
[4] C.H. Lai, C.-Y. Shiau, T.-G. MA, “Tri-mode heterogeneous integrated beam-switching/Van Atta/phase-conjugating array using synthesized transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 9, pp. 2180-2192, Sep. 2014.
[5] S.-C. Yen, T.-H. Chu, “A Beam-Scanning and Polarization-Agile Antenna Array Using Mutually Coupled Oscillating Doublers,” IEEE Trans. Antennas Propaga., vol. 53, no. 12, pp. 4051-4057, Dec. 2005.
[6] R. Vescovo, “Reconfigurability and Beam Scanning With Phase-Only Control for Antenna Arrys,” IEEE Trans. Antennas Propaga., vol. 56, no. 6, pp. 1555-1565, June. 2008
[7] A. R. Dion, L. J. Ricardi, “A variable-coverage satellite antenna system, ” Proc. IEEE, vol. 59, no. 2, pp. 252-262, Feb. 1971.
[8] C.-C. Chang, R.-H. Lee, and T.-Y. Shih, “Design of a beam switching/steering Butler matrix for phased array system,” IEEE Trans. Antennas Propaga., vol. 58, no. 2, pp. 367-374, Feb. 2010.
[9] S. J. Chung, S. M. Chen and Y. C. Lee, “A novel bi-directional amplifier with applications in active Van Atta retrodirective arrays,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 542-547, Feb. 2003.
[10] Y. Li and V. Jandhyala, “Design of retrodirective antenna arrays for short-range wireless power transmission,” IEEE Trans. Antennas Propaga., vol. 60, no. 1, pp. 206–211, Jan. 2012.
[11] S. N. Hsieh and T. H. Chu, “Linear Retro-directive array antenna using 90° hybrids,” IEEE Trans. Antennas Propaga., vol. 56, no. 6, pp. 1573-1580, Jun. 2008.
[12] S. J. Chung, S. M. Chen and Y. C. Lee, “A novel bi-directional amplifier with applications in active Van Atta retrodirective arrays,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 542–547, Feb. 2003.
[13] Y. Li and V. Jandhyala, “Design of retrodirective antenna arrays for short-range wireless power transmission,” IEEE Trans. Antennas Propaga., vol. 60, no. 1, pp. 206-211, Jan. 2012.
[14] Y.-J. Ren and K. Chang, “New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2970-2976, Jul. 2006.
[15] L. Chiu, Q. Xue, and C. H. Chan, “Phase-conjugated arrays using low conversion-loss resistive phase-conjugating mixers and stub-loaded patch antennas,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp.1764-1773, Aug. 2008.
[16] S. C. Yen and T. H. Chu, “A Retro-directive array antenna with phase conjugation circuit using sub-harmonically injection-locked self-oscillating mixers,” IEEE Trans. Antennas Propaga., vol. 52, no. 1, pp. 154-164, Jan. 2004.
[17] T. Brabetz, V.F. Fusco, and S. Karode, “Balanced subharmonic mixers for retrodirective-array applications,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 3, pp. 465-469, Mar. 2001.
[18] R. Y. Miyamoto, Y. Qian, and T. Itoh, “An active integrated retrodirective transponder for remote information retrieval-on-demand,” IEEE Trans. Microw. Theory Tech., vol. 49, no.9, pp. 1658-1662, Sept. 2001.
[19] R. Y. Miyamoto and T. Itoh, “Retrodirective arrays for wireless communications,” IEEE Microw. Mag., vol. 3, pp. 71–79, Mar. 2002.
[20] S. N. Hsieh and T. H. Chu, “Linear Retro-directive array antenna using 90° hybrids,” IEEE Trans. Antennas Propaga., vol. 56, no. 6, pp. 1573-1580, Jun. 2008.
[21] T. N. Kaifas, J. N. Sahalos, “On the design of a single-layer wideband Butler matrix for switched-beam UMTS system applications,” IEEE Antennas Propagt. Mag., vol. 48, no. 6, pp. 193-204, Dec. 2006.
[22] P. Chen, W. Hong, Z. Kuai, and J. Xu, “A Double Layer Substrate Integrated Waveguide Blass Matrix for Beamforming Applications,” IEEE Trans Microw. Wireless Compon. Lett., vol.19, no.6, pp. 374-376, Jun. 2009.
[23] T. Djerafi, N. J. G. Fonseca, and K. Wu, “Planar ku-Band 4 × 4 Nolen Matrix in SIW Technology,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 2, pp. 259-266, Feb. 2010.
[24] S. Lim, K. M. K. H. Leong, and T. Itoh, “Adaptive power controllable retrodirective array system for wireless sensor server applications,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3735–3743, Dec. 2005.
[25] M. Cohn, “A millimeter wave retrodirective transponder for collision/obstacle avoidance and navigation/location,” in Proc. IEEE-IEE Vehicle Navigation Information Systems Conf., Ottawa, ON, Canada, pp.534–538, Oct. 1993.
[26] P.-L. Chi, T. Itoh, “Miniaturized Dual-Band Directional Couplers Using Composite Right/Left-Handed Transmission Structures and Their Applications in Beam Pattern Diversity Systems,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 5, pp. 1207-1215, May. 2009.
[27] P.-L. Chi, T. Itoh, “A Compact Dual-Band Metamaterial-Based Rat-Race Coupler for a MIMO System Applications,” in 2008 IEEE MTT-S Int. Microw. Symp. Dig., pp. 667-670, June. 2008.
[28] Y. Qian, W. R. Deal, N. Kaneda, and T. Itoh, “Microstrip-fed quasi-Yagi antenna with broadband characteristics,” Electron. Lett., vol. 34, no. 23, pp. 2194–2196, Nov. 1998.
[29] D. M. Pozar, Microwave Engineering, 3rd ed. Wiley, 2005.
[30] G. Guillermo, Microwave Transistor Amplifier Analysis and Design, 2nd Ed., Prentice Hall.
[31] http://www.avagotech.com/docs/AV02-0847EN
[32] http://www.uiy.com.cn/Datasheet/UIYSC20A.pdf
[33] R. G. Vaughan and J. B. Andersen, “Antenna diversity in mobile communications,” IEEE Trans. Veh. Techn., vol. 36, no. 4, pp. 149–172, Nov. 1987.

QR CODE