簡易檢索 / 詳目顯示

研究生: 李銘儒
Ming-Ju Lee
論文名稱: 利用化學氣相沉積系統於二氧化矽/矽基板成長二硫化鉬及其光電特性研究
Growth and Optoelectronic Characterizations of MoS2 Thin Films on SiO2/Si Substrate by Chemical Vapor Deposition
指導教授: 柯文政
Wen-Cheng Ke
口試委員: 柯文政
Wen-Cheng Ke
蔡孟霖
Meng-Lin Tsai
楊尚達
Shang-Da Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 120
中文關鍵詞: 二硫化鉬化學氣相沉積熱蒸氣沉積熱蒸氣硫化光電特性
外文關鍵詞: MoS2, CVD, TVD, TVS, optoelectronic characterizations
相關次數: 點閱:333下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討利用化學氣相沉積系統於二氧化矽/矽基板上成長二硫化鉬薄膜並分析其光電特性實驗中。分別利用熱蒸氣沉積以及熱蒸氣硫化兩種成長方法製備二硫化鉬薄膜。熱蒸氣沉積製備方法為將三氧化鉬粉末與硫粉在高溫下產生蒸氣反應形成二硫化鉬薄膜。此方法在硫不足量時會有硫化不完全的情形。蒸氣端與基板垂直距離1公分時會成長出具有導電性的氧硫化鉬(MoO1-xSx)化合物;蒸氣端水平距離17公分能成長出約4層的二硫化鉬薄膜,但是附著性不佳。有鑑於該薄膜無法進一步運用於元件製程,本研究另嘗試熱蒸氣硫化製備二硫化鉬薄膜,利用直流磁控濺鍍系統先在基板上成長厚度為1奈米之鉬薄膜,接著在高溫下進行硫化形成二硫化鉬薄膜。該製備在硫化壓力500 torr、時間20分鐘、溫度1000 °C可成長品質較好的二硫化鉬薄膜。樣品由拉曼光譜解析,A1g與E12g譜峰差約為24.5 cm-1,薄膜約為5層薄膜厚度;由室溫光激螢光光譜解析,主要存在可能受硫空位缺陷的施體型束縛激子A(bound exciton, BX)及自由激子B(free exciton, FX)。束縛激子與自由激子譜峰能量分別為1.84 及1.98 eV。透過原子力掃描影像發現二硫化鉬薄膜表面存在三角形與六角形島狀結構,X光光電子能譜中的肩峰顯示鉬與硫可能有不同的鍵結,因此可能有缺陷存在。最後試著將品質較好的二硫化鉬薄膜製作成背閘極式電晶體,經由量測IDS-V¬DS關係圖發現,改變閘極偏壓可調變IDS,已具備電晶體功能。在閘極偏壓高於0 V,IDS在V¬DS=0 V時,仍存在電流,推測為二硫化鉬薄膜內部缺陷如硫空位缺陷造成旁路通道貢獻之電流。


This study presents a process for growth of Molybdenum disulfide (MoS2) thin films on SiO2/Si by chemical vapor deposition. Research included growth and optoelectronics characterizations of MoS2 from two different preparations. One is thermal vapor deposition (TVD) by MoO3 powder, another one is thermal vapor sulfurization (TVS) by sputtering Mo film. TVD preparation of MoS2 by MoO3 powder possibly occur incomplete sulfurization. This preparation can adjust the vertical distance to grow MoO1-xSx, and adjust horizontal distance can grow 4 monolayers MoS2 thin films but bad adhesion. TVS preparation of MoS2 by sputtering 1 nm Mo film can grow better quality at sulfurization pressure of 500 torr, time of 20 min, temperature of 1000 °C. The optical property of MoS2 thin film analyze by Raman spectroscopy and photoluminescence (PL). Results of Raman spectroscopy indicate the frequency difference of A1g and E12g is 24.5 cm-1, which means 5 monolayers thin films. PL shows bound exciton A and free exciton B energy is 1.84 and 1.98 eV. AFM image on the surface of MoS2 thin films shows the triangle and hexagonal island. XPS shows the shoulder peak which means another binding in MoS2 thin film. Finally, the back gate MoS2 transistor was prepared for checking electrical property. IDS-VDS curve indicate the transistor can work by gate control. For VGS>0, V¬DS=0, generating gating current. We assume the S vacancies formed a bypass channel result in the current.

中文摘要 英文摘要 致謝 圖目錄 表目錄 第一章 緒論 1.1前言 1.1.1二硫化鉬成長方式 1.1.2二硫化鉬應用 1.1.3電晶體元件發展 1.2研究動機與目的 第二章 文獻探討 2.1二硫化鉬的晶體結構與性質 2.2二硫化鉬拉曼光譜與光激發螢光光譜分析 2.2.1二硫化鉬拉曼光譜分析 2.2.2二硫化鉬光激發螢光光譜分析 2.3二硫化鉬表面形貌分析 2.4二硫化鉬製備介紹 2.4.1物理製備 2.4.2化學製備 2.5二硫化鉬元件應用 2.5.1 記憶體 2.5.2 光感測器 2.5.3 力感測器 2.5.4 太陽能電池 2.5.5 可撓式薄膜場效電晶體 第三章 實驗方法 3.1實驗流程 3.2二硫化鉬基板選擇與薄膜製備 3.2.1基板選擇 3.2.2熱蒸氣沉積製備二硫化鉬薄膜 3.2.3熱蒸氣硫化製備二硫化鉬薄膜 3.3二硫化鉬於二氧化矽/矽基板上之背閘式電晶體製備 3.3.1黃光微影製程 3.3.2掀離製程 3.4實驗設備以及分析儀器介紹 3.4.1實驗設備 3.4.2分析儀器 第四章 結果與討論 4.1熱蒸氣沉積製備二硫化鉬薄膜及其特性分析 4.2熱蒸氣硫化製備二硫化鉬薄膜及其特性分析 4.3背閘極式二硫化鉬電晶體元件量測與分析 4.3.1光罩圖繪製 4.3.2背閘極式電晶體元件分析 第五章 結論 參考文獻

[1]What are your expectations for the year 2020?, Moore's law, Intel
[2]K. S. Novoselov, et al., Science, Electric Field Effect in Atomically Thin Carbon Films, (2004), 306, 5696, 666-669
[3]B. Radisavljevic, et al., Nature Nanotechnology, Single-layer MoS2 transistors, 6, 147–150 (2011)
[4]神奇的二維材料-graphene與MoS2, 國家奈米元件實驗室
[5]A. K. Geim, et al., Nature, Van der Waals heterostructures, 499, 419-425, (2013)
[6]二維半導體之合成及光電材料, 國家奈米元件實驗室
[7]Changgu Leet, et al., ACS Nano, 2010, Anomalous Lattice Vibrations of Single- and Few-Layer MoS2, 4 (5), 2695–2700
[8]Zhiyuan Zeng, et al., Angew. Chem. Int. Ed., Single‐Layer SemiconductingYongjie
[9]Zhan, et al., small, 2012, Large‐Area Vapor‐Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate, 8, 7, 966–971
[10]Yu-Chuan Lin, et al., Nanoscale, 2012, Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization, 4, 6637–6641
[11]Ku Liu, et al., Nano Lett., 2012, Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates, 12 (3), 1538–1544
[12]Yi‐Hsien, Lee, et al., Adv. Mater. 2012, Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition, 24, 2320–2325
[13]Yi-Hsien, Lee, et al., Nano Lett., 2013, Synthesis and Transfer of Single-Layer Transition Metal Disulfides on diverse surfaces, 13 (4), 1852–1857
[14]B. Sheu, K. Wilcox, A. K. D. Antoniadis,” Moore’s Law Challenges Below 10 nm: Technology Design and Economic Implications”, 2015
[15]A. Brand, SSG Transistor Technology Group,” Precision Material to Meet Scaling Challenges Beyond 14 nm.” 2013
[16]Sujay B. Desai, et al., Science, 2016, MoS2 transistors with 1-nanometer gate lengths, 354, 6308, 99-102
[17]Valentin Alexiev, et al., Phys. Chem. Chem. Phys., 2000, Ab initio study of MoS2 and Li adsorbed on the (10ī0) face of MoS2, 2000, 2, 1815-1827
[18]Transition metal dichalcogenide monolayers. https://en.wikipedia.org/wiki/Transition_metal_dichalcogenide_monolayers
[19]Kuc, A. 2015. Low-dimensional transition-metal dichalcogenides. p. 1–29 in M. Springborg, and J. Joswig, ed. Chemical modelling: volume 11. The Royal Society of Chemistry, London, UK
[20]Intek Song, et al., RSC Adv., 2015, Synthesis and properties of molybdenum disulphide: from bulk to atomic layers, 5, 7495
[21]Andrea Splendiani, et al., Nano Lett, 2010, Emerging Photoluminescence in monolayer MoS2, 10(4), 1271-1275
[22]Priya Johari, et al., ACS Nano, 2012, Tuning the Electronic Properties of Semiconducting Transition Metal Dichalcogenides by Applying Mechanical Strains, 6(6), 5449-5456
[23]Changgu Leet, et al., ACS Nano, 2010, Anomalous Lattice Vibrations of Single- and Few-Layer MoS2, 4 (5), 2695–2700
[24]Yifei Yu, et al., 2013, Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films, 3, 1866
[25]C. Rice, et al., PHYSICAL REVIEW B.2013, Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2, 87, 081307(R)
[26]Michele Buscema, et al., Nano Res, 2014, The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2, 7(4): 561-571
[27]Rauf Shahzad, et al., ACS Nano, 2010, Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS2 synthesis, 4(5): 2695-2700
[28]Kin Fai Mak, et al., Phys. Rev. Lett., 2010, Atomically Thin MoS2: A New Direct-Gap Semiconductor 105, 136805
[29]Sefaattin Tongay, et al., 2013, Defects activated photoluminescence intwo-dimensional semiconductors: I nterplay between bound, charged, and free excitons, 3, 2657
[30]Jason S. Ross1, et al., 2013, Electrical control of neutral and charged excitons in a monolayer semiconductor, 4, 1474
[31]A.K.M. Newaz,et al., 2013 ,Solid State Communications, Electrical control of optical properties of monolayer MoS2, 155, 49–52
[32]Kin Fai Mak, et al., Nature Materials, 2013, Tightly bound trions in monolayer MoS2, 12, 207–211
[33]Haiyan Nan, et al., ACS Nano, 2014, Strong Photoluminescence Enhancement of MoS2 through Defect Engineering and Oxygen Bonding, 8(6), 5738–5745
[34]Goki Eda, et al., Nano Lett. 2011, Photoluminescence from Chemically Exfoliated MoS2, 11, 5111–5116
[35]Sanfeng Wu, et al., ACS Nano, 2013, Vapor–Solid Growth of High Optical Quality MoS2 Monolayers with Near-Unity Valley Polarization, 7(3), 2768–2772
[36]Hongfei Liu, et al., Nanoscale, 2014,Vapor-phase growth and characterization of Mo1-xWxS2 (0 ≦x ≦ 1) atomic layers on 2-inch sapphire substrates, 6, 624–629
[37]H. F. Liu, et al., Chem. Vap. Deposition, 2015, CVD Growth of MoS2‐based Two‐dimensional Materials, 21, 241–259
[38]Masihhur R. Laskar, et al., Appl. Phys. Lett. 102, Large area single crystal (0001) oriented MoS2, 252108 (2013)
[39]Hongfei Liu, et al., Nanotechnology, 2014, Towards large area and continuous MoS2 atomic layers via vapor-phase growth: thermal vapor sulfurization, 25, 40
[40]Shanshan Wang, et al., Chem. Mater. 2014, Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition, 26, 6371−6379
[41]Sachin M Shinde, et al., NPG Asia Materials, 2018, Stacking-controllable interlayer coupling and symmetric configuration of multilayered MoS2, 10, e468
[42]Bo Chen, et al., RSC Adv., 2016, Large-area high quality MoS2 monolayers grown by sulfur vapor counter flow diffusion, 6, 50306–50314
[43]Branimir Radisavljevic, et al., ACS Nano, 2011, Integrated Circuits and Logic Operations Based on Single-Layer MoS2, 5(12),9934–9938
[44]Hai Li, et al., Acc. Chem. Res., 2014, Preparation and Applications of Mechanically Exfoliated Single-Layer and multilayer MoS2 and WSe2 nanosheets,47(4), 1067–1075
[45]Zongyou Yin, et al., ACS Nano, 2012, Single-Layer MoS2 Phototransistors Single-Layer MoS2 Phototransistors, 6(1),74–80
[46]Hee Sung LEE, et al., Nano Lett., 2012, MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap, 12(7), 3695–3700
[47]Yijin Zhang, et al., Nano Lett., 2012, Ambipolar MoS2 Thin Flake Transistors, 12(3), 1136–1140
[48]Jonathan N. Coleman, et al., Science, Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials, 2011, 331, 568
[49]Ronan J. Simth, et al., Adv. Mater. 2011, Large-Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions, 23, 3944–3948
[50]Shuang Zhu, et al., Small Methods, 2017, Design, Synthesis, and Surface Modification of Materials Based on Transition‐Metal Dichalcogenides for Biomedical Applications, 1, 1700220
[51]Yongjie Zhan, et al., small, 2012, Large‐Area Vapor‐Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate, 8, 7, 966–971
[52]Yu-Chuan Lin, et al., Nanoscale, 2012, Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization, 4, 6637–6641
[53]Jung Joon Pyeon, et al., Nanoscale, 2016, Wafer-scale growth of MoS2 thin films by atomic layer deposition, 8, 10792–10798
[54]國立中正大學碩士論文,透過蒸氣控制成長大面積二硫化鉬薄膜暨薄膜電晶體陣列之研究,王祥辰研究團隊
[55]國立交通大學碩士論文,二維晶體異質結構之成長及其元件應用,林時彥研究團隊
[56]國立交通大學碩士論文,利用化學氣相法成長大面積二維晶體及其異直結構,林時彥研究團隊
[57]Simone Bertolazzi, et al., ACS Nano, 2013, Nonvolatile Memory Cells Based on MoS2/Graphene Heterostructures, 7(4), 3246–3252
[58]Min Sup Cho, et al., NATURE COMMUNICATIONS, 2013, Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices, 4:1624
[59]Oriol Lopez-Sanchez, et al., Nature Nanotechnology, 2013, Ultrasensitive photodetectors based on monolayer MoS2, 8, 497–501
[60]Lain-Jong Li, et al., Adv. Mater, 2013, High-Gain Phototransistors Based on a CVD MoS2 Monolayer, 25, 3456–3461
[61]Wenjing Zhang, et al., Scientific Reports, 2014, Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures, 4,3826
[62]Wenzhuo wu, et al., Nature volume, 2014, Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics, 514, 470–474
[63]Junjie Qi, et al., Nature Communications, 2015, Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics, 6, 7430
[64]Marco Bernardi. et al., Nano Lett., 2013, Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials, 13 (8), pp 3664–3670
[65]Meng-Lin Tsai, et al., ACS Nano, 2014, Monolayer MoS2 Heterojunction Solar Cells, 8(8), 8317–8322
[66]Hsiao-Yu Chang, et al., ACS Nano, 2013, High-Performance, Highly Bendable MoS2 Transistors with High-K Dielectrics for Flexible Low-Power Systems, 7 (6), 5446–5452
[67]J. Chen, et al., The Journal of Chemical Thermodynamics 1973, 5, 291-302
[68]Vacuum Compatible Metals and Alloys, March 28, 2012

QR CODE