簡易檢索 / 詳目顯示

研究生: 李姿儀
Tzu-Yi - Li
論文名稱: 利用添加物控制鈦酸鍶晶界結構之研究
Modification of Grain Boundary Structure for SrTiO3 Using Additives
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 吳昌謀
Chang-Mou Wu
王丞浩
Chen-HaoWang
宋振銘
Jenn-Ming Song
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 115
中文關鍵詞: 鈦酸鍶羥基固態氧化物燃料電池Σ3共位晶界噴霧熱裂解法
外文關鍵詞: Strontium titanate (SrTiO3), Hydroxyl functional (OH) group, SOFC, Σ3 grain boundary, Spray pyrolysis (SP)
相關次數: 點閱:296下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鈦酸鍶(Strontium titanate, SrTiO3)為一鈣鈦礦型結構之功能性陶瓷材料,其同時具有高化學穩定性和高熱穩定性,故廣泛應用於機械、電子及陶瓷等領域。亦因其具備介電損失低、介電常數高、電子與離子之混和傳導體等特性,故適用於之固態氧化物燃料電池之陽極材料。
本研究之目的即增加多晶SrTiO3的(111)平面以提升Σ3共位晶界之比例,實驗方法是藉由添加含有羥基(⸻ OH)的不同醇類添加物製備SrTiO3粉體,於起始粉體之表面形成較多的(111)平面。實驗中使用硝酸鍶與異丙醇氧鈦作為前驅物,並分別添加硝酸及硝酸與丙三醇、1,2-丙二醇等兩種含OH基之醇類添加物,利用噴霧熱裂解法製備SrTiO3粉體,以X光繞射分析儀(XRD)、場發射掃描式電子顯微鏡(FE-SEM)、場發射穿透式電子顯微鏡(FE-TEM)、氮氣吸/脫附分析儀(BET)、背向散射電子繞射儀(EBSD)等儀器分別研究粉體與塊材之相鑑定、粒子表面型態與其內部晶體形貌、比表面積、晶粒取向與晶界分析等。另,以阿基米得(Archimedes)浮力原理分析塊材之相對密度,續利用恆電位恆電流儀量測其阻抗值,進而計算分析導電度。
由實驗結果得知,前驅物添加硝酸及含OH基的不同醇類添加物所製備之SrTiO3粉體,經生胚製程與高溫燒結後,皆較前驅物添加硝酸所製備之塊材擁有較高Σ3共位晶界所佔比例和較高導電度。


Strontium titanate (SrTiO3) is one of the anode candidates for solid oxide fuel cell (SOFC) applications due to its crucial properties inclusive of high thermal and chemical stability, and mixed ionic and electric conduction behavior. The early studies reported that hydroxyl (OH) groups manipulate the shape of SrTiO3 surface; furthermore, they can control the crystal growth by changing the surface energy. This concept may be used to increase the population of (111) surfaces, and then more (111) surfaces form more Σ3 grain boundaries which have the lower energy for high ionic conductvity. In this study, the two common OH addtives of glycerol and 1,2-Propanediol were used to prepare the starting powders of SrTiO3. SrTiO3 powders were synthesized by ultrasonic spray pyrolysis and then sintered to form polycrystalline SrTiO3. Characterizations for SrTiO3 including the Archimedes method, X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), field-emission transmission electron microscopy (FE-TEM), Brunauer-emmett-teller (BET) and the electrochemical impendence spectroscopy method (EIS) were required to observe the density, phase composition, particle morphology, specific surface area, and conductivity, respectively. Also, the grain boundaries orientations were characterized by electron back-scattered diffraction (EBSD). The experimental results show that the specimens of additive-treated SrTiO3 powders have higher population of (111) planes and exhibit higher conductivity than un-treated one. In addition, the highest population of Σ3 grain boundaries is generated by 1,2-Propanediol treatment (11.0  0.8%) SrTiO3 and followed by glycerol treatment (10.0  0.3%) and pure treatment (2.5  0.2%), respectively.

ABSTRACT I 摘要 II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第1章 緒論 1 第2章 文獻回顧 3 2.1 燃料電池 3 2.1.1 固態氧化物燃料電池 5 2.1.2 固態氧化物燃料電池之發電機制 5 2.2 鈦酸鍶之特性 9 2.2.1 物理性質 9 2.2.2 晶體結構 10 2.3 晶界 13 2.3.1 一般晶界 15 2.3.2 共位晶界 17 2.3.3 Σ3共位晶界 19 2.4 噴霧熱裂解法 22 2.5 研究目的 24 第3章 實驗方法 32 3.1 實驗設計 32 3.2 實驗藥品 34 3.3 實驗儀器 35 3.4 樣品製備 36 3.4.1 鈦酸鍶粉體製備 36 3.4.2 生胚成型與燒結 38 3.5 粉體與塊材的特性量測 39 3.5.1 X光繞射分析(X-ray diffraction, XRD) 39 3.5.2 場發射掃描式電子顯微鏡 (Field-emission scanning electron microscopy, FE-SEM) 44 3.5.3 場發射穿透式電子顯微鏡 (Field-emission transmission electron microscopy, FE-TEM) 46 3.5.4 氮氣吸/脫附分析 (Brunauer-emmett-teller, BET) 52 3.5.5 塊材密度量測 52 3.5.6 背向散射電子繞射 (Electron back-scattered diffraction, EBSD) 55 3.5.7 電化學電流阻抗圖譜 (Electrochemical impedance spectroscopy, EIS) 60 3.5.7.1 電化學電流阻抗圖譜之原理 60 3.5.7.2 恆電位恆電流之試片製備 62 第4章 結果與討論 65 4.1 結果 65 4.1.1 鈦酸鍶粉體性質之分析 65 4.1.1.1 X光繞射晶相鑑定分析 65 4.1.1.2 場發射掃描式電子顯微鏡表面形貌分析 67 4.1.1.3 場發射穿透式電子顯微鏡形貌分析 69 4.1.1.4 氮氣吸/脫附分析 75 4.1.2 鈦酸鍶塊材之性質分析 77 4.1.2.1 X光繞射晶相鑑定分析 77 4.1.2.2 阿基米德浮力原理相對密度分析 79 4.1.2.3 背向散射電子繞射晶界分析 81 4.1.2.4 電化學電流阻抗電性分析 87 4.2 討論 91 第5章 結論 95 第6章 未來工作 97 參考文獻 98

[1] Marina, O. A., Canfield, N. L., & Stevenson, J. W. (2002). Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics, 149(1), 21-28.
[2] Blennow, P., Hagen, A., Hansen, K. K., Wallenberg, L. R., & Mogensen, M. (2008). Defect and electrical transport properties of Nb-doped SrTiO3. Solid State Ionics, 179(35), 2047-2058.
[3] Marques, A. C. L. S. (2009). Advanced Si pad detector development and SrTiO3 studies by emission channeling and hyperfine interaction experiments.
[4] Handbook, F. C. (2004). 7th edn, Report prepared by EG&G Technical Services, Inc. under contract no. DE-AM26-99FT40575 for the US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory.
[5] Radev, I., Koutzarov, K., Lefterova, E., & Tsotridis, G. (2013). Influence of failure modes on PEFC stack and single cell performance and durability. International Journal of Hydrogen Energy, 38(17), 7133-7139.
[6] McLean, G. F., Niet, T., Prince-Richard, S., & Djilali, N. (2002). An assessment of alkaline fuel cell technology. International Journal of Hydrogen Energy, 27(5), 507-526.
[7] Ganguly, S., Das, S., Kargupta, K., & Bannerjee, D. (2012). Optimization of performance of phosphoric acid fuel cell (PAFC) stack using reduced order model with integrated space marching and electrolyte concentration inferencing.
[8] S Bagotsky, V., M Skundin, A., & M Volfkovich, Y. (2015). Molten carbonate fuel cells (MCFC). Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors, 191-198.
[9] Shao, Z., & Haile, S. M. (2004). A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 431(7005), 170-173.
[10] Garland, N. L. (2010, May). US department of energy fuel cell technologies program. In 18th World Hydrogen Energy Conference 2010–WHEC 2010 Proceedings Speeches and Plenary Talks.
[11] Badwal, S. P. S., Giddey, S., Munnings, C., & Kulkarni, A. (2015). Review of progress in high temperature solid oxide fuel cells. ChemInform, 46(31).
[12] Sun, C., & Stimming, U. (2007). Recent anode advances in solid oxide fuel cells. Journal of Power Sources, 171(2), 247-260.
[13] Singhal, S. C. (2000). Advances in solid oxide fuel cell technology. Solid State Ionics, 135(1), 305-313.
[14] Teraoka, Y., Nobunaga, T., Okamoto, K., Miura, N., & Yamazoe, N. (1991). Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics, 48(3-4), 207-212.
[15] McIntosh, S., & Gorte, R. J. (2004). Direct hydrocarbon solid oxide fuel cells. Chemical Reviews, 104(10), 4845-4866.
[16] Gorte, R. J., & Vohs, J. M. (2003). Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. Journal of Catalysis, 216(1), 477-486.
[17] Kang, H. W., Park, S. B., & Park, A. H. A. (2013). Effects of charge balance with Na+ on SrTiO3: Mo6+ prepared by spray pyrolysis for H2 evolution under visible light irradiation. International Journal of Hydrogen Energy, 38(22), 9198-9205.
[18] Kumar, A., & Manavalan, S. G. (2005). Characterization of barium strontium titanate thin films for tunable microwave and DRAM applications. Surface and Coatings Technology, 198(1), 406-413.
[19] Kang, Y. C., Seo, D. J., Park, S. B., & Park, H. D. (2002). Direct synthesis of strontium titanate phosphor particles with high luminescence by flame spray pyrolysis. Materials Research Bulletin, 37(2), 263-269.
[20] Tzeng, W. L. (2016). Study of SrTiO3 powder morphology control and the influences on microstructure (Doctoral dissertation).
[21] Bell, R. O., & Rupprecht, G. (1963). Elastic constants of strontium titanate. Physical Review, 129(1), 90.
[22] Okazaki, A., & Kawaminami, M. (1973). Lattice constant of strontium titanate at low temperatures. Materials Research Bulletin, 8(5), 545-550.
[23] Kim, H. K., Ko, W. S., Lee, H. J., Kim, S. G., & Lee, B. J. (2011). An identification scheme of grain boundaries and construction of a grain boundary energy database. Scripta Materialia, 64(12), 1152-1155.
[24] Hasson, G., Boos, J. Y., Herbeuval, I., Biscondi, M., & Goux, C. (1972). Theoretical and experimental determinations of grain boundary structures and energies: Correlation with various experimental results. Surface Science, 31, 115-137.
[25] Saylor, D. M., Morawiec, A., & Rohrer, G. S. (2002). Distribution and energies of grain boundaries in magnesia as a function of five degrees of freedom. Journal of the American Ceramic Society, 85(12), 3081-3083.
[26] Hull, D., & Bacon, D. J. (2011). Introduction to dislocations (Vol. 37). Elsevier.
[27] Lartigue, S., & Priester, L. (1985). Grain boundaries in polycrystalline alumina. Le Journal de Physique Colloques, 46(C4), C4-101.
[28] Brandon, D. G., Ralph, B., Ranganathan, S. T., & Wald, M. S. (1964). A field ion microscope study of atomic configuration at grain boundaries. Acta Metallurgica, 12(7), 813-821.
[29] Brandon, D. G. (1966). The structure of high-angle grain boundaries. Acta Metallurgica, 14(11), 1479-1484.
[30] Hinz, D. C., & Szpunar, J. A. (1995). Modeling the effect of coincidence site lattice boundaries on grain growth textures. Physical Review B, 52(14), 9900.
[31] Dimou, G., & Aust, K. T. (1974). Relative energies of grain boundaries near a coincidence orientation relationship in high-purity lead. Acta Metallurgica, 22(1), 27-32.
[32] Denk, I., Claus, J., & Maier, J. (1997). Electrochemical investigations of SrTiO3 boundaries. Journal of the Electrochemical Society, 144(10), 3526-3536.
[33] Waser, R. (1992). TrI4: The role of grain boundaries in conduction and breakdown of perovskite-type titanates. Ferroelectrics, 133(1), 109-114.
[34] Leonhardt, M., Jamnik, J., & Maier, J. (1999). In situ monitoring and quantitative analysis of oxygen diffusion through schottky‐barriers in SrTiO3 bicrystals. Electrochemical and Solid-state Letters, 2(7), 333-335.
[35] Shih, S. J., Wu, Y. Y., Chen, C. Y., & Yu, C. Y. (2012). Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis. Journal of Nanoparticle Research, 14(5), 1-9.
[36] Messing, G. L., Zhang, S. C., & Jayanthi, G. V. (1993). Ceramic powder synthesis by spray pyrolysis. Journal of the American Ceramic Society, 76(11), 2707-2726.
[37] Kraemer, H. F., & Johnstone, H. F. (1955). Collection of aerosol particles in presence of electrostatic fields. Industrial & Engineering Chemistry, 47(12), 2426-2434.
[38] Kienzle, O., Exner, M., & Ernst, F. (1998). Atomistic structure of Σ= 3,(111) grain boundaries in strontium titanate. Physica Status Solidi (a), 166(1), 57-71.
[39] Sano, T., Saylor, D. M., & Rohrer, G. S. (2003). Surface energy anisotropy of SrTiO3 at 1400°C in air. Journal of the American Ceramic Society, 86(11), 1933-1939.
[40] Shih, S. J., Bishop, C., & Cockayne, D. J. (2009). Distribution of Σ3 misorientations in polycrystalline strontium titanate. Journal of the European Ceramic Society, 29(14), 3023-3029.
[41] Tzeng, W. L., Sun, T. L., & Shih, S. J. (2016). Grain boundary engineering by shape-control of SrTiO3 nanocrystals. Advanced Powder Technology, 27(3), 799-807.
[42] H eifets, E., Eglitis, R. I., Kotomin, E. A., Maier, J., & Borstel, G. (2001). Ab initio modeling of surface structure for SrTiO3 perovskite crystals. Physical Review B, 64(23), 235417.
[43] Eglitis, R. I. (2012). Ab initio calculations of SrTiO3 (111) surfaces. In Nanodevices and Nanomaterials for Ecological Security (pp. 125-132). Springer Netherlands.
[44] Dong, L., Shi, H., Cheng, K., Wang, Q., Weng, W., & Han, W. (2014). Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals. Nano Research, 7(9), 1311-1318.
[45] Viswanath, B., Kundu, P., Halder, A., & Ravishankar, N. (2009). Mechanistic aspects of shape selection and symmetry breaking during nanostructure growth by wet chemical methods. The Journal of Physical Chemistry C, 113(39), 16866-16883.
[46] Shih, S. J., Wu, Y. Y., Chen, C. Y., & Yu, C. Y. (2012). Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis. Journal of Nanoparticle Research, 14(5), 1-9.
[47] Bragg, W. H., & Bragg, W. L. (1913). The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 88(605), 428-438.
[48] Ishikawa, K., Yoshikawa, K., & Okada, N. (1988). Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Physical Review B, 37(10), 5852.
[49] Christie, G. M., & Van Berkel, F. P. F. (1996). Microstructure—ionic conductivity relationships in ceria-gadolinia electrolytes. Solid State Ionics, 83(1), 17-27.

QR CODE