簡易檢索 / 詳目顯示

研究生: 池安妮
Anne Thymotie
論文名稱: 排煙脫硫石膏在改性高摻量飛灰混合物中作為激發劑之應用
The application of flue gas desulfurization gypsum as an activation agent in the modified high-volume fly ash mixtures
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 詹穎雯
Yin-Wen Chan
楊仲家
Chung-Chia Yang
林宜清
Yi-Ching Lin
施正元
Jeng-Ywan Shih
邱建國
Chien-Kuo Chiu
陳君弢
Chun-Tao Chen
張大鵬
Ta-Peng Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 199
中文關鍵詞: 排煙脫硫石膏半水化合物高摻量飛灰鈣礬石耐久性硫酸鹽侵蝕激發劑
外文關鍵詞: flue gas desulfurization gypsum, hemihydrate, high volume fly ash, ettringite, durability, sulfate attack, activation agent
相關次數: 點閱:173下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用處理過之排煙脫硫石膏以半水石膏化合物(CaSO4∙0.5H2O)形式作為硫酸鹽激發劑,探討在摻有爐石粉之改性高摻量飛灰(HVFA)膠結材中之應用。首先探討摻有半水石膏化合物之HVFA漿體工程性能,添加3%之半水石膏化合物可使50% HVFA膠結材1天抗壓強度由6.8 MPa提高46%至10.0 MPa,而添加10%之半水石膏化合物則對90天後期抗壓強度提高13% ,影響更顯著,當爐石粉摻入膠結材時,半水石膏化合物之硫酸鹽激發提昇HVFA漿體工程性能。由47.5%飛灰,2.5%半水石膏化合物,10%爐石粉及40% 水泥組成之HVFA膠結材,56天齡期抗壓強度為55 MPa,與相同齡期水泥漿體抗壓強度相當。半水石膏化合物與鋁反應產生鈣礬石,減少硬固漿體乾縮值,提供體積穩定性。最後通過吸水率,表面電阻率,氯化物快速滲透性測試和硫酸鹽侵蝕探討HVFA混凝土耐久性。HVFA混凝土與水泥混凝土相比具有優越耐久性,為模擬曝露在富硫酸鹽環境下現場澆置場鑄混凝土之工程性質變化,將澆置24小時後之ϕ10×200 mm2混凝土圓柱試體及 100×100×285 mm3矩形體試體浸入硫酸鹽溶液中,並由28天至180天齡期進行混凝土性能試驗,試驗結果發覺試體經浸入硫酸鹽溶液後鈣礬石晶體密度較高,從早期至180天齡期所有試體力學性能提升,乾縮率降低。


    This study investigated the utilization of treated flue gas desulfurization gypsum in the form of hemihydrate (CaSO4∙0.5H2O) as a sulfate activator in modified high-volume fly ash (HVFA) mixtures incorporating slag. The research began by the inspection of the performance of HVFA paste incorporating hemihydrate. The addition of 3% hemihydrate enhanced the 1-day compressive strength of 50% HVFA mixture by up to 46% from 6.8 MPa to 10.0 MPa, while the addition of 10% hemihydrate was more prominent on the later age strength. The performance of sulfate-activated HVFA pastes was increased when slag was incorporated to the mixture. HVFA mixture consisted of 47.5% fly ash, 2.5% hemihydrate, 10% slag, and 40% cement had a compressive strength of 55 MPa on 56 days, which was comparable to the strength of the cement paste on the same age. Shrinkage due to the drying of moisture was mitigated by the addition of hemihydrate that reacted with aluminum in binder to form ettringite, which provided dimensional stability of matrix. Durability of HVFA concrete was investigated through water absorption, surface electrical resistivity, rapid chloride permeability tests, and sulfate attack. HVFA concrete had a superior durability compared to that of OPC concrete. To simulate the variation of engineering properties of the cast-in-situ concrete exposed sulfate-rich environment, cylindrical concrete specimens of ϕ100×200 mm and rectangular prismatic concrete specimens of 100×100×285 mm were immersed into the sulfate solution 24 hours after cast and the properties of concrete on 28 to 180 days were investigated. The immersion of specimen in the sulfate solution resulted in higher intensity of ettringite crystals which led to the increase of all mechanical properties and the reduction of shrinkage from early age until 180 days.

    摘要 Abstract Personal Acknowledgements Tables of contents List of symbols and abbreviations List of tables List of figures Chapter 1 Introduction Chapter 2 Literature review Chapter 3 Materials and Experimental Methods Chapter 4 Properties of high-volume fly ash paste incorporating hemihydrate Chapter 5 Properties of modified high-volume fly ash paste incorporating hemihydrate and slag Chapter 6 Properties of sulfate-activated modified high-volume fly ash concrete Chapter 7 Conclusions and suggestions References Appendix A

    [1] ACI 211.1-91, Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. American Concrete Institute, Reapproved 2002.
    [2] ASTM C39/C39M, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. USA: ASTM International.
    [3] ASTM C109, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). USA: ASTM International.
    [4] ASTM C127, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. USA: ASTM International.
    [5] ASTM C143/143M, Standard Test Method for Slump of Hydraulic-Cement Concrete. USA: ASTM International
    [6] ASTM C150, Standard Specification for Portland Cement. USA: ASTM International.
    [7] ASTM C157, Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete. USA: ASTM International.
    [8] ASTM C188, Standard Test Method for Density of Hydraulic Cement. USA: ASTM International.
    [9] ASTM C191, Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle. USA: ASTM International.
    [10] ASTM C230/230M, Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. USA: ASTM International
    [11] ASTM C596, Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement. USA: ASTM International.
    [12] ASTM C597, Standard Test Method for Pulse Velocity Through Concrete. USA: ASTM International.
    [13] ASTM C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. USA: ASTM International.
    [14] ASTM C1012, Standard Test Method for Length Change of Hydrulic-Cement Mortars Exposed to a Sulfate Solution. USA: ASTM International.
    [15] ASTM C1202, Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration. USA: ASTM International.
    [16] ASTM C1437, Standard Test Method for Flow of Hydraulic Cement Mortar. USA: ASTM International
    [17] ASTM E1876, Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impluse Excitation of Vibration. USA: ASTM International.
    [18] BS 1881-122:2011 Testing concrete. Method for determination of water absorption. London, UK.
    [19] Cement in Building Materials in Civil Engineering, Ch. (2011), 46-80,
    [20] Global cement market (production, consumption, imports & exports): Inside, trends and forecast (2019-2021), Koncept Analytics (2019)
    [21] https://www.mine.gov.tw/Download/ePInfo/e000181A.pdf. visited at May 2021,
    [22] Resource Potential of Natural and Synthetic Gypsum Waste in Environmental Materials and Waste, Ch. 14, (2016), 315-316, Candice G. Janco,
    [23] Ahmaruzzaman, M., A review on the utilization of fly ash, Prog. Energy Combust. Sci. 36 (3) (2010) 327-363, https://doi.org/10.1016/j.pecs.2009.11.003.
    [24] Aimin, X. and S.L. Sarkar, Microstructural study of gypsum activated fly ash hydration in cement paste, Cem. Concr. Res. 21 (6) (1991) 1137-1147, https://doi.org/10.1016/0008-8846(91)90074-R.
    [25] Alaka, H.A. and L.O.Oyedele, High volume fly ash concrete: The practical impact of using superabundant dose of high range water reducer, J. Build. Eng. 8 (2016) 81-90, https://doi.org/10.1016/j.jobe.2016.09.008.
    [26] Alarcon-Ruiz, L., G. Platret, E. Massieu and A. Ehrlacher, The use of thermal analysis in assessing the effect of temperature on a cement paste, Cem. Concr. Res. 35 (3) (2005) 609-613, https://doi.org/10.1016/j.cemconres.2004.06.015.
    [27] Ali, B., M.A. Gulzar and A. Raza, Effect of sulfate activation of fly ash on mechanical and durability properties of recycled aggregate concrete, Constr. Build. Mater. 277 (2021) 122329, https://doi.org/10.1016/j.conbuildmat.2021.122329.
    [28] Andrade, M.C., F. Bolzoni and J. Fullea, Analysis of the relation between water and resistivity isotherms in concrete, Mater. Corros. 62 (2011) 130-138, https://doi.org/10.1002/maco.201005777.
    [29] Aparna, S., D. Sathyan and K.B. Anand, Microstructural and rate of water absorption study on fly-ash incorporated cement mortar, Mater. Today: Proc. 5 (11, Part 3) (2018) 23692-23701, https://doi.org/10.1016/j.matpr.2018.10.159.
    [30] Asadi, I., P. Shafigh, Z.F.B.A. Hassan and N.B. Mahyuddin, Thermal conductivity of concrete – A review, J. Build. Eng. 20 (2018) 81-93, https://doi.org/10.1016/j.jobe.2018.07.002.
    [31] Atiş, C.D., High-Volume Fly Ash Concrete with High Strength and Low Drying Shrinkage, J. Mater. Civ. Eng. 15 (2) (2002) 153-156, https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(153).
    [32] Atiş, C.D. and C. Bilim, Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag, Build. Environ. 42 (8) (2007) 3060-3065, https://doi.org/10.1016/j.buildenv.2006.07.027.
    [33] Bahdedh, M.A. and M.S. Jaafar, Ultra high-performance concrete utilizing fly ash as cement replacement under autoclaving technique, Case Stud. Constr. Mater. 9 (2018) e00202, https://doi.org/10.1016/j.cscm.2018.e00202.
    [34] Balakrishnan, B. and A.S.M.A. Awal, Durability properties of concrete containing high volume Malaysian fly ash, IJRET 3 (4) (2014) 529-533,
    [35] Bankir, M.B., M. Ozturk, U.K. Sevim and T. Depci, Effect of n-CaCO3 on fresh, hardened properties and acid resistance of granulated blast furnace slag added mortar, J. Build. Eng. 29 (2020) 101209, https://doi.org/10.1016/j.jobe.2020.101209.
    [36] Barnes, P. and J. Bensted. Structure and Performance of Cements 2nd ed. Abingdon, UK: CRC Press (2001)
    [37] Barreira, E. and V.P.d. Freitas, Evaluation of building materials using infrared thermography, Constr. Build. Mater. 21 (1) (2007) 218-224, https://doi.org/10.1016/j.conbuildmat.2005.06.049.
    [38] Bazaldúa-Medellín, M.E., A.F. Fuentes, A. Gorokhovsky and J.I. Escalante-García, Early and late hydration of supersulphated cements of blast furnace slag with fluorgypsum, Mater. Construcc. 65 (317) (2015) e043, http://dx.doi.org/10.3989/mc.2015.06013.
    [39] Bensted, J., Some applications of conduction calorimetry to cement hydration, Adv. Cem. Res. 1 (1) (1987) 35-44, https://doi.org/10.1680/adcr.1987.1.1.35.
    [40] Bentz, D.P. and C.F. Ferraris, Rheology and setting of high volume fly ash mixtures, Cem. Concr. Com. 32 (4) (2010) 265-270, https://doi.org/10.1016/j.cemconcomp.2010.01.008.
    [41] Bentz, D.P., K.A. Snyder and A. Ahmed, Anticipating the setting time of high-volume fly ash concretes using electrical measurements: feasibility studies using pastes, J. Mater. Civ. Eng. 27 (3) (2015) https://doi.org/10.1061/(ASCE)MT.1943-5533.0001065.
    [42] Bhatty, J.I., Hydration versus strength in a Portland cement developed from domestic mineral wastes - A comparative study, Thermochim. Acta 106 (1986) 93-103,
    [43] Björnström, J., A. Martinelli, A. Matic, L. Börjesson and I. Panas, Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement, Chem. Phys. Lett. 392 (2004) 242-248, 10.1016/j.cplett.2004.05.071.
    [44] Bouzoubaâ, N., M.H. Zhang, A. Bilodeau and V.M. Malhotra, Laboratory-produced high-volume fly ash blended cements: physical properties and compressive strength of mortars, Cem. Concr. Res. 28 (11) (1998) 1555-1569, https://doi.org/10.1016/S0008-8846(98)00132-X.
    [45] Bouzoubaâ, N., M.H. Zhang and V.M. Malhotra, Laboratory-produced high-volume fly ash blended cements: compressive strength and resistance to the chloride-ion penetration of concrete, Cem. Concr. Res. 30 (7) (2000) 1037-1046, https://doi.org/10.1016/S0008-8846(00)00299-4.
    [46] Brogren, C. and H.T. Karlsson, Modeling the absorption of SO2 in a spray scrubber using the penetration theory, Chem. Eng. Sci. 52 (18) (1997) 3085-3099, https://doi.org/10.1016/S0009-2509(97)00126-7.
    [47] Brown, P.W., C.L. Harner and E.J. Prosen, The effect of inorganic salts on tricalcium silicate hydration, Cem. Concr. Res. 16 (1) (1986) 17-22, https://doi.org/10.1016/0008-8846(86)90063-3.
    [48] Bui, P.T., Y. Ogawa, K. Nakarai and K. Kawai, A study on pozzolanic reaction of fly ash cement paste activated by an injection of alkali solution, Constr. Build. Mater. 94 (2015) 28-34, https://doi.org/10.1016/j.conbuildmat.2015.06.046.
    [49] Bullard, J.W., H.M. Jennings, R.A. Livingston, A. Nonat, G.W. Scherer, J.S. Schweitzer, et al., Mechanisms of cement hydration, Cem. Concr. Res. 41 (12) (2011) 1208-1223, https://doi.org/10.1016/j.cemconres.2010.09.011.
    [50] Burden, D., The durability of concrete containing high levels of fly ash, University of New Brunswick Department of Civil Engineering (2006)
    [51] Camarini, G. and J.A.D. Milito, Gypsum hemihydrate-cement blends to improve rendering durability, Constr. Build. Mater. 25 (2011) 4121-4125, https://doi.org/10.1016/j.conbuildmat.2011.04.048.
    [52] Cao, C., W. Sun and H. Qin, The analysis on strength and fly ash effect of roller-compacted concrete with high volume fly ash, Cem. Concr. Res. 30 (1) (2000) 71-75, https://doi.org/10.1016/S0008-8846(99)00203-3.
    [53] Chen, Y., J. Gao, L. Tang and X. Li, Resistance of concrete against combined attack of chloride and sulfate under drying-wetting cycles, Constr. Build. Mater. 106 (2016) 650-658, https://doi.org/10.1016/j.conbuildmat.2015.12.151.
    [54] Cheng, H., T. Liu, D. Zou and A. ZHou, Compressive strength assessment of sulfate-attacked concrete by using sulfate ions distributions, Constr. Build. Mater. 293 (2021) 123550, https://doi.org/10.1016/j.conbuildmat.2021.123550.
    [55] Chern, J.-C. and Y.-W. Chan, Deformations of concretes made with blast-furnace slag cement and ordinary Portland cement, ACI Mater. J. 86 (4) (1989) 372-382,
    [56] Chung, C.-W., P. Suraneni, J.S. Popovics and L.J. Struble, Setting time measurement using ultrasonic wave reflection, ACI Mater. J. 109 (2012) 109-118,
    [57] Collier, N.C., X. Li, Y. Bai and N.B. Milestone, The effect of sulfate activation on the early age hydration of BFS:PC composite cement, J. Nuclear Mater. 464 (2015) 128-134, https://doi.org/10.1016/j.jnucmat.2015.04.044.
    [58] Cuesta, A., I. Santacruz, A.G.D.l. Torre, M. Dapiaggi, J.D. Zea-Garcia and M.A.G. Aranda, Local structure and Ca/Si ratio in C-S-H gels from hydration of blends of tricalcium silicate and silica fume, Cem. Concr. Res. 143 (2021) 106405, ttps://doi.org/10.1016/j.cemconres.2021.106405.
    [59] Dakhane, A., S. Tweedley, S. Kailas, R. Marzke and M. Neithalath, Mechanical and microstructural characterization of alkali sulfate activated high volume fly ash binders, Mater. Des 122 (2017) 236-246, https://doi.org/10.1016/j.matdes.2017.03.021.
    [60] Damtoft, J.S., J. Lukasik, D. Herfort, D. Sorrentino and E.M. Gartner, Sustainable development and climate change initiatives, Cem. Concr. Res. 38 (2) (2008) 115-127, https://doi.org/10.1016/j.cemconres.2007.09.008.
    [61] Dave, N., A.K. Misra, A. Srivastava and S.K. Kaushik, Setting time and standard consistency of quaternary binders: The influence of cementitious material addition and mixing, Int. J. Sustain. Built Environ. 6 (1) (2017) 30-36, https://doi.org/10.1016/j.ijsbe.2016.10.004.
    [62] Deboucha, W., N. Leklou, A. Khelidj and M.N. Oudjit, Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): Methodology of calculating the degree of hydration, Constr. Build. Mater. 146 (2017) 687-701, https://doi.org/10.1016/j.conbuildmat.2017.04.132.
    [63] Demirboğa, R., İ. Türkmen and M. B.Karakoç, Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete, Cem. Concr. Res. 34 (12) (2004) 2329-2336, https://doi.org/10.1016/j.cemconres.2004.04.017.
    [64] Dongxu, L., W. Xuequan, S. Jinlin and W. Yujiang, The influence of compound admixtures on the properties of high-content slag cement, Cem. Concr. Res. 30 (1) (2000) 45-50, https://doi.org/10.1016/S0008-8846(99)00210-0.
    [65] Du, J., Z. Tsng, G. Li, H. Yang and L. Li, Key inhibitory mechanism of external chloride ions on concrete sulfate attack, Constr. Build. Mater. 225 (2019) 611-619, https://doi.org/10.1016/j.conbuildmat.2019.07.263.
    [66] Du, S., Y. Ge and X. Shi, A targeted approach of employing nano-materials in high-volume fly ash concrete, Cem. Concr. Com. 104 (2019) 103390, https://doi.org/10.1016/j.cemconcomp.2019.103390.
    [67] Durán-Herrera, A., C.A. Juárez, P. Valdez and D.P. Bentz, Evaluation of sustainable high-volume fly ash concretes, Cem. Concr. Com. 33 (1) (2011) 39-45, https://doi.org/10.1016/j.cemconcomp.2010.09.020.
    [68] Escalante-Garcı́a, J.I. and J.H. Sharp, Effect of temperature on the hydration of the main clinker phases in portland cements: part ii, blended cements, Cem. Concr. Res. 28 (9) (1998) 1259-1274, https://doi.org/10.1016/S0008-8846(98)00107-0.
    [69] Fan, J. and B. Zhang, Repair of ordinary Portland cement concrete using alkali activated slag/fly ash: Freeze-thaw resistance and pore size evolution of adhesive interface, Constr. Build. Mater. 300 (2021) 124334, https://doi.org/10.1016/j.conbuildmat.2021.124334.
    [70] Fan, Y., S. Yin, Z. Wen and J. Zhong, Activation of fly ash and its effects on cement properties, Cem. Concr. Res. 29 (4) (1999) 467-472, https://doi.org/10.1016/S0008-8846(98)00178-1.
    [71] Feldman, R.F., Non-Destructive Testing of Concrete, CBD-187, National Research Council of Canada, Ottawa, Ontario Available from http://archive.nrc-cnrc.gc.ca/eng/ibp/irc/cbd/building-digest-187.html (1977) 6,
    [72] Filho, J.H., M.H.F. Medeiros, E. Pereira and P. Helene, High-Volume Fly Ash Concrete with and without Hydrated Lime: Chloride Diffusion Coefficient from Accelerated TestJ., J. Mater. Civ. Eng. 25 (3) (2012) 411-418,
    [73] Franus, W., R. Panek and M. Wdowin, SEM Investigation of Microstructures in Hydration Products of Portland Cement in 2nd International Multidisciplinary Microscopy and Microanalysis Congress, Ch. (2015), 105,
    [74] Güçlüer, K., Investigation of the effects of aggregate textural properties on compressive strength (CS) and ultrasonic pulse velocity (UPV) of concrete, J. Build. Eng. 27 (2020) 100949, https://doi.org/10.1016/j.jobe.2019.100949.
    [75] Gajda, J., M. Weber and I. Diaz-Loya, A Low Temperature Rise Mixture for Mass Concrete, ACI Conc. Inter. 36 (8) (2014) 48-53,
    [76] Gasso, B.M., Impact of Alkali Salts on the Kinetics and Microstructural Development of Cementitious Systems, EPFL Scientific Publications (2015) 10.5075/epfl-thesis-6763.
    [77] Grazia, M.T.d., H. Deda and L.F.M. Sanchez, The influence of the binder type & aggregate nature on the electrical resistivity of conventional concrete, J. Build. Eng. 43 (2021) 102540, https://doi.org/10.1016/j.jobe.2021.102540.
    [78] Han, X., J. yang, J. Feng, C. Zhou and X. Wang, Research on hydration mechanism of ultrafine fly ash and cement composite, Constr. Build. Mater. 227 (2019) 116697, https://doi.org/10.1016/j.conbuildmat.2019.116697.
    [79] Hannesson, G., K. Kuder, R. Shogren and D. Lehman, The influence of high volume of fly ash and slag on the compressive strength of self-consolidating concrete, Constr. Build. Mater. 30 (2012) 161-168, https://doi.org/10.1016/j.conbuildmat.2011.11.046.
    [80] Havard, J., Effect of gypsum-hemihydrate ratio in cement on rheological properites of fresh concrete, ACI Mater. J. 94 (2) (1997) 142-146,
    [81] He, P., C. Shi, Z. Tu, C.S. Poon and J. Zhang, Effect of further water curing on compressive strength and microstructure of CO2-cured concrete, Cem. Concr. Com. 72 (2016) 80-88, https://doi.org/10.1016/j.cemconcomp.2016.05.026.
    [82] Hemalatha, T., M. Mapa, N. George and S. Sasmal, Physico-chemical and mechanical characterization of high volume fly ash incorporated and engineered cement system towards developing greener cement, J. Clean. Prod. 125 (2016) 269-281, https://doi.org/10.1016/j.jclepro.2016.03.118.
    [83] Hemalatha, T. and A. Ramaswamy, A review on fly ash characteristics – Towards promoting high volume utilization in developing sustainable concrete, J. Clean. Prod. 147 (2017) 546-559, https://doi.org/10.1016/j.jclepro.2017.01.114.
    [84] Hoang, K., H. Justnes and M. Geiker, Early age strength increase of fly ash blended cement by a ternary hardening accelerating admixture, Cem. Concr. Res. 81 (2016) 59-69, https://doi.org/10.1016/j.cemconres.2015.11.004.
    [85] Hosan, A. and F.U.A. Shaikh, Compressive strength development and durability properties of high volume slag and slag-fly ash blended concretes containing nano-CaCO3, J. Mater. Res. Technol. 10 (2021) 1310-1322, https://doi.org/10.1016/j.jmrt.2021.01.001.
    [86] Hsu, S., M. CHi and R. Huang, Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar, Constr. Build. Mater. 176 (2018) 250-258, https://doi.org/10.1016/j.conbuildmat.2018.05.060.
    [87] Huang, C.-H., S.-K. Lin, C.-S. Chang and H.-J. Chen, Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash, Constr. Build. Mater. 46 (2013) 71-78, https://doi.org/10.1016/j.conbuildmat.2013.04.016.
    [88] Jelle, B.P., Traditional, state-of-the-art and future thermal building insulation materials and solutions – Properties, requirements and possibilities, Energy Build. 43 (10) (2011) 2549-2563, https://doi.org/10.1016/j.enbuild.2011.05.015.
    [89] Jeon, D., W.S. Yum, Y. Jeong and J.E. Oh, Properties of quicklime(CaO)-activated Class F fly ash with the use of CaCl2, Cem. Concr. Res. 111 (2018) 147-156, https://doi.org/10.1016/j.cemconres.2018.05.019.
    [90] Jo, B.-W., C.-H. Kim, G. Tae and J.-B. Park, Characteristics of cement mortar with nano-SiO2 particles, Constr. Build. Mater. 21 (2007) 1351-1355, 10.1016/j.conbuildmat.2005.12.020.
    [91] John, E., T. Matschei and D. Stephan, Nucleation seeding with calcium silicate hydrate – A review, Cem. Concr. Res. 113 (2018) 74-85, https://doi.org/10.1016/j.cemconres.2018.07.003.
    [92] Joseph, S., R. Snellings and Ö. Cizer, Activation of Portland cement blended with high volume of fly ash using Na2SO4, Cem. Concr. Com. 104 (2019) 103417, https://doi.org/10.1016/j.cemconcomp.2019.103417.
    [93] Juenger, M.C.G., F. Winnefeld, J.L. Provis and J.H. Ideker, Advances in alternative cementitious binders, Cem. Concr. Res. 41 (2011) 1232-1243, https://doi.org/10.1016/j.cemconres.2010.11.012.
    [94] Junior, J.R.H., C.E.T. Balestra and R.A. Medeiors-Junior, Comparison of test methods to determine resistance to chloride penetration in concrete: Sensitivity to the effect of fly ash, Constr. Build. Mater. 277 (2021) 122265, https://doi.org/10.1016/j.conbuildmat.2021.122265.
    [95] Kallinikos, L.E., E.I. Farsari, D.N. Spartinos and N.G. Papayannakos, Simulation of the operation of an industrial wet flue gas desulfurization system, Fuel Process. Technol. 91 (12) (2010) 1794-1802, https://doi.org/10.1016/j.fuproc.2010.07.020.
    [96] Khunthongkeaw, J., S. Tangtermsirikul and T. Leelawat, A study on carbonation depth prediction for fly ash concrete, Constr. Build. Mater. 20 (9) (2006) 744-753, https://doi.org/10.1016/j.conbuildmat.2005.01.052.
    [97] Kim, J., D. Honda, H. Choi and Y. Hama, Investigation of the Relationship between Compressive Strength and Hydrate Formation Behavior of Low-Temperature Cured Cement upon Addition of a Nitrite-Based Accelerator, Materials 12 (23) (2019) 3936, https://doi.org/10.3390/ma12233936.
    [98] Kim, K.-H., S.-E. Jeon, J.-K. Kim and S. Yang, An experimental study on thermal conductivity of concrete, Cem. Concr. Res. 33 (3) (2003) 363-371, https://doi.org/10.1016/S0008-8846(02)00965-1.
    [99] Kocak, Y. and S. Nas, The effect of using fly ash on the strength and hydration characteristics of blended cements, Constr. Build. Mater. 73 (2014) 25-32, https://doi.org/10.1016/j.conbuildmat.2014.09.048.
    [100] Kumar, B., G.K. Tike and K. Nanda, Evaluation of properties of high-volume flyash concrete for pavements, J. Mater. Civ. Eng. 19 (10) (2007) 906-911, https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(906).
    [101] Kurda, R., J.d. Brito and J.D. Silvestre, Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash, Cem. Concr. Com. 95 (2019) 169-182, https://doi.org/10.1016/j.cemconcomp.2018.10.004.
    [102] Lammertijn, S. and N.D. Belie, Porosity, gas permeability, carbonation and their interaction in high-volume fly ash concrete, Mag. Concr. Res. 60 (7) (2008) 535-545, https://doi.org/10.1680/macr.2008.60.7.535.
    [103] Lee, B., G. Kim, J. Nam, K. Lee, G. Kim, S. Lee, et al., Influence of α-Calcium Sulfate Hemihydrate on Setting, Compressive Strength, and Shrinkage Strain of Cement Mortar, Materials 12 (1) (2019) 163, https://doi.org/10.3390/ma12010163.
    [104] Lee, C.Y., H.K. Lee and K.M. Lee, Strength and microstructural characteristics of chemically activated fly ash-cement systems, Cem. Concr. Res. 33 (3) (2003) 425-431, https://doi.org/10.1016/S0008-8846(02)00973-0.
    [105] Lee, M.H., B.S. Khil and H.D. Yun, Influence of cement type on heat of hydration and temperature rise of mass concrete, Indian J. Eng. Mater. Sci. 21 (5) (2014) 536-542,
    [106] Leslie, J.R. and W.J. Cheesman, An ultrasonic method for studying deterioration and cracking in concrete structures, ACI J. Proc. 46 (9) (1949) 17-36,
    [107] Li, G., Properties of high-volume fly ash concrete incorporating nano-SiO2, Cem. Concr. Res. 34 (6) (2004) 1043-1049, https://doi.org/10.1016/j.cemconres.2003.11.013.
    [108] Li, G. and X. Wu, Influence of fly ash and its mean particle size on certain engineering properties of cement composite mortars, Cem. Concr. Res. 35 (6) (2005) 1128-1134, https://doi.org/10.1016/j.cemconres.2004.08.014.
    [109] Li, G. and X. Zhao, Properties of concrete incorporating fly ash and ground granulated blast-furnace slag, Cem. Concr. Com. 25 (3) (2003) 293-299, https://doi.org/10.1016/S0958-9465(02)00058-6.
    [110] Li, P., W. Li, T. Yu, F. Qu and V.W.Y. Tam, Investigation on early-age hydration, mechanical properties and microstructure of seawater sea sand cement mortar, Constr. Build. Mater. 249 (2020) 118776, https://doi.org/10.1016/j.conbuildmat.2020.118776.
    [111] Ling, X.H., S. Setunge and I. Patnaikuni, Effect of different concentrations of lime water on mechanical properties of high volume fly ash concrete, In book: From Materials to Structures: Advancement through Innovation (2012) 1135-1141, 10.1201/b15320-202.
    [112] Liu, M., Self-compacting concrete with different levels of pulverized fuel ash, Constr. Build. Mater. 24 (7) (2010) 1245-1252, https://doi.org/10.1016/j.conbuildmat.2009.12.012.
    [113] Lushnikova, N. and L. Dvorkin, Sustainability of gypsum products as a construction material in Sustainability of Construction Materials (Second Edition), Ch. 25, (2016), Woodhead Publishing Series in Civil and Structural Engineering, https://doi.org/10.1016/B978-0-08-100370-1.00025-1.
    [114] Lv, S.H., High-performance superplasticizer based on chitosan in Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials, Ch. (2016), 131-150, Woodhead Publishing Series in Civil and Structural Engineering, https://doi.org/10.1016/B978-0-08-100214-8.00007-5.
    [115] M.A.Caronge, M.W. Tjaronge, H. Hamada and R. Irmawaty, Effect of water curing duration on strength behaviour of portland composite cement (PCC) mortar, IOP Conference Series: Materials Science and Engineering 271 (2017) https://doi.org/10.1088/1757-899X/271/1/012018.
    [116] Maddalena, R., J.J. Roberts and A. Hamilton, Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements, J. Clean. Prod. 186 (2018) 93-942, https://doi.org/10.1016/j.jclepro.2018.02.138.
    [117] Magallanes-Rivera, R.X. and J.I. Escalante-García, Anhydrite/hemihydrate-blast furnace slag cementitious composites: Strength development and reactivity, Constr. Build. Mater. 65 (2014) 20-28, https://doi.org/10.1016/j.conbuildmat.2014.04.056.
    [118] Magallanes-Rivera, R.X. and J.I. Escalante-García, Hemihydrate or waste anhydrite in composite binders with blast-furnace slag: Hydration products, microstructures and dimensional stability, Constr. Build. Mater. 71 (2014) 317-326, https://doi.org/10.1016/j.conbuildmat.2014.08.054.
    [119] Majdi, H.S., A.A. Shubbar, M.S. Nasr, Z.S. Al-Khafaji, H. Jafer, M. Abdulredha, et al., Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations, Data in Brief 31 (2020) 105961, https://doi.org/10.1016/j.dib.2020.105961.
    [120] Maltais, Y. and J. Marchand, Influence of curing temperature on cement hydration and mechanical strength development of fly ash mortars, Cem. Concr. Res. 27 (7) (1997) 1009-1020, https://doi.org/10.1016/S0008-8846(97)00098-7.
    [121] Mancio, M., J.R. Moore, Z. Brooks, P.J.M. Monteiro and S.D. Glaser, Instantaneous in-situ determination of water-cement ratio of fresh concrete, ACI Mater. J. 107 (2010) DOI: 10.14359/51664045.
    [122] Manmohan, D. and P.K. Mehta, Influence of pozzolanic, slag, and chemical admixtures on pore size distribution and permeability of hardened cement pastes, Cem. Concr. Aggr. 3 (1) (1981) 63-67,
    [123] Matschei, T., B. Lothenbach and F.P. Glasser, The role of calcium carbonate in cement hydration, Cem. Concr. Res. 37 (2007) 551-558, https://doi.org/10.1016/j.cemconres.2006.10.013.
    [124] Mei, J., B. Ma, H. Tan, H. Li, X. Liu, W. Jiang, et al., Influence of steam curing and nano silica on hydration and microstructure characteristics of high volume fly ash cement system, Constr. Build. Mater. 171 (2018) 83-95, https://doi.org/10.1016/j.conbuildmat.2018.03.056.
    [125] Mobasher, N., S.A. Bernal and J.L. Provis, Structural evolution of an alkali sulfate activated slag cement, J. Nuclear Mater. 468 (2016) 97-104, https://doi.org/10.1016/j.jnucmat.2015.11.016.
    [126] Mohammed, A., W. Mahmood and K. Ghafor, TGA, rheological properties with maximum shear stress and compressive strength of cement-based grout modified with polycarboxylate polymers, Constr. Build. Mater. 235 (2020) 117534, https://doi.org/10.1016/j.conbuildmat.2019.117534.
    [127] Monteiro, P. Concrete: microstructure, properties, and materials: McGraw-Hill Publishing (2006)
    [128] Namluk, M. and T. Nawa, Effect of fly ash on the kinetics of Portland cement hydration at different curing temperatures, Cem. Concr. Res. 41 (6) (2011) 579-589, https://doi.org/10.1016/j.cemconres.2011.02.005.
    [129] Nawaz, M.A., B. Ali, L.A. Qureshi, H.M.U. Aslam, I. Hussain, B. Masood, et al., Effect of sulfate activator on mechanical and durability properties of concrete incorporating low calcium fly ash, Case Stud. Constr. Mater. 13 (2020) e00407, https://doi.org/10.1016/j.cscm.2020.e00407.
    [130] Nie, L., J. Xu and E. Bai, Dynamic stress-strain relationship of concrete subjected to chloride and sulfate attack, Constr. Build. Mater. 165 (2018) 232-240, https://doi.org/10.1016/j.conbuildmat.2018.01.044.
    [131] Péra, J., S. Husson and B. Guilhot, Influence of finely ground limestone on cement hydration, Cem. Concr. Com. 21 (2) (1999) 99-105, https://doi.org/10.1016/S0958-9465(98)00020-1.
    [132] Palomo, A., A. Fernández-Jiménez, G. Kovalchuk, L.M. Ordoñez and M.C. Naranjo, Opc-fly ash cementitious systems: study of gel binders produced during alkaline hydration, Adv. Geopol. Sci. Technol. 42 (2007) 2958-2966,
    [133] Palomo, A., M.W. Grutzeck and M.T. Blanco, Alkali-activated fly ashes. A cement for the future, Cem. Concr. Res. 29 (8) (1999) 1323-1329, https://doi.org/10.1016/S0008-8846(98)00243-9.
    [134] Patel, H.H., C.H. Bland and A.B. Poole, The microstructure of concrete cured at elevated temperatures, Cem. Concr. Res. 25 (3) (1995) 485-490, https://doi.org/10.1016/0008-8846(95)00036-C.
    [135] Pelletier, L., F. Winnefeld and B. Lothenbach, The ternary system Portland cement–calcium sulphoaluminate clinker–anhydrite: Hydration mechanism and mortar properties, Cem. Concr. Com. 32 (7) (2010) 497-507, https://doi.org/10.1016/j.cemconcomp.2010.03.010.
    [136] Polder, R., Test methods for on-site measurement of resistivity of concrete, RILEM TC 154-EMC: electrochemical techniques for measuring metallic corrosion, Mater. Struct. 33 (2000) 603-611,
    [137] Poon, C.S., S.C. Kou, L. Lam and Z.S. Lin, Activation of fly ash/cement system using calcium sulfate anhydrite (CaSO4), Cem. Concr. Res. 31 (2001) 873-881, https://doi.org/10.1016/S0008-8846(01)00478-1.
    [138] Poon, C.S., L. Lam and Y.L. Wong, A study on high strength concrete prepared with large volumes of low calcium fly ash, Cem. Concr. Res. 30 (3) (2000) 447-455, https://doi.org/10.1016/S0008-8846(99)00271-9.
    [139] Prasad, B.K.R., H. Eskandari and B.V.V. Reddy, Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN, Constr. Build. Mater. 23 (1) (2009) 117-128, https://doi.org/10.1016/j.conbuildmat.2008.01.014.
    [140] Puertas, F., S. Martı́nez-Ramı́rez, S. Alonso and T. Vázquez, Alkali-activated fly ash/slag cements: Strength behaviour and hydration products, Cem. Concr. Res. 30 (10) (2000) 1625-1632, ttps://doi.org/10.1016/S0008-8846(00)00298-2.
    [141] Qian, J., C. Shi and Z. Wang, Activation of blended cements containing fly ash, Cem. Concr. Res. 31 (8) (2001) 1121-1127, https://doi.org/10.1016/S0008-8846(01)00526-9.
    [142] Qing, Y., Z. Zenan, K. Deyu and C. Rongshen, Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume, Constr. Build. Mater. 21 (2007) 539-545, 10.1016/j.conbuildmat.2005.09.001.
    [143] Rashad, A.M., Y. Bai, P.A.M. Basheer, N.C. Collier and N.B. Milestone, Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature, Cem. Concr. Res. 42 (2) (2012) 333-343, https://doi.org/10.1016/j.cemconres.2011.10.007.
    [144] Rashad, A.M., H.E.-D.H. Seleem and A.F. Shaheen, Effect of Silica Fume and Slag on Compressive Strength and Abrasion Resistance of HVFA Concrete, Int. J. Conc. Struc. Mater. 8 (2014) 69-81,
    [145] Ravina, D. and P.K. Mehta, Properties of fresh concrete containing large amounts of fly ash, Cem. Concr. Res. 16 (2) (1986) 227-238, https://doi.org/10.1016/0008-8846(86)90139-0.
    [146] Reinhardt, H.-W. and M. Stegmaier, Influence of heat curing on the pore structure and compressive strength of self-compacting concrete (SCC), Cem. Concr. Res. 36 (5) (2006) 879-885, https://doi.org/10.1016/j.cemconres.2005.12.004.
    [147] Şahin, M., M. Mahyar and S.T. Erdoğan, Mutual activation of blast furnace slag and a high-calcium fly ash rich in free lime and sulfates, Constr. Build. Mater. 126 (2016) 466-475, https://doi.org/10.1016/j.conbuildmat.2016.09.064.
    [148] Şahin, R., R. Demirboğa, H. Uysal and R. Gül, The effects of different cement dosages, slumps and pumice aggregate ratios on the compressive strength and densities of concrete, Cem. Concr. Res. 33 (8) (2003) 1245-1249, https://doi.org/10.1016/S0008-8846(03)00048-6.
    [149] Sajedi, F. and H.A. Razak, The effect of chemical activators on early strength of ordinary Portland cement-slag mortars, Constr. Build. Mater. 24 (10) (2010) 1944-1951, https://doi.org/10.1016/j.conbuildmat.2010.04.006.
    [150] Sakai, E., S. Miyahara, S. Ohsawa, S.-H. Lee and M. Daimon, Hydration of fly ash cement, Cem. Concr. Res. 35 (6) (2005) 1135-1140, https://doi.org/10.1016/j.cemconres.2004.09.008.
    [151] Sanchez, F. and K. Sobolev, Nanotechnology in concrete – A review, Constr. Build. Mater. 24 (11) (2010) 2060-2071, https://doi.org/10.1016/j.conbuildmat.2010.03.014.
    [152] Scrivener, K.L., T. Füllman, E. Gallucci, G. Walenta and E. Bermejo, Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods, Cem. Concr. Res. 34 (2004) 1541-1547, https://doi.org/10.1016/j.cemconres.2004.04.014.
    [153] Seto, K.E., C.J. Churchill and D.K. Panesar, Influence of fly ash allocation approaches on the life cycle assessment of cement-based materials, J. Clean. Prod. 157 (2017) 65-75, https://doi.org/10.1016/j.jclepro.2017.04.093.
    [154] Shahedan, N.F., M.M.A.B. Abdullah, N. Mahmed, A. Kusbiantoro, M. Binhussain and S.N. Zailan, Review on thermal insulation performance in varios type of concrete, AIP Conference Proceedings 1835 (2017) 020046, https://doi.org/10.1063/1.4981868.
    [155] Shaikh, F.U.A. and S.W.M. Supit, Chloride induced corrosion durability of high volume fly ash concretes containing nano particles, Constr. Build. Mater. 99 (2015) 208-225, https://doi.org/10.1016/j.conbuildmat.2015.09.030.
    [156] Shaikh, F.U.A. and S.W.M. Supit, Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA), Constr. Build. Mater. 82 (2015) 182-205, https://doi.org/10.1016/j.conbuildmat.2015.02.068.
    [157] Shaikh, F.U.A. and S.W.M. Supit, Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles, Constr. Build. Mater. 70 (2014) 309-321, https://doi.org/10.1016/j.conbuildmat.2014.07.099.
    [158] Shariq, M., J. Prasad and H. Abbas, Creep and drying shrinkage of concrete containing GGBFS, Cem. Concr. Com. 68 (2016) 35-45, https://doi.org/10.1016/j.cemconcomp.2016.02.004.
    [159] Shariq, M., J. Prasad and A. Masood, Studies in ultrasonic pulse velocity of concrete containing GGBFS, Constr. Build. Mater. 40 (2013) 944-950, https://doi.org/10.1016/j.conbuildmat.2012.11.070.
    [160] Shi, C., P.V. Krivenko and D. Roy. Alkali-Activated Cements and Concretes: Taylor & Francis (2006) 64-65.
    [161] Shi, C. and J. Qian, Activated blended cement containing high volume coal fly ash, Adv. Cem. Res. 13 (4) (2001) 157-163, https://doi.org/10.1680/adcr.2001.13.4.157.
    [162] Siddique, R., Performance characteristics of high-volume Class F fly ash concrete, Cem. Concr. Res. 34 (3) (2004) 487-493, https://doi.org/10.1016/j.cemconres.2003.09.002.
    [163] Silva, P.R.D. and J.D. Brito, Experimental study of the porosity and microstructure of self-compacting concrete (SCC) with binary and ternary mixes of fly ash and limestone filler, Constr. Build. Mater. 86 (1) (2015) 101-112, https://doi.org/10.1016/j.conbuildmat.2015.03.110.
    [164] Singh, M. and M. Garg, Calcium sulfate hemihydrate activated low heat sulfate resistant cement, Constr. Build. Mater. 16 (2002) 181-186, https://doi.org/10.1016/S0950-0618(01)00026-5.
    [165] Singh, N., P. Kumar and P. Goyal, Reviewing the behaviour of high volume fly ash based self compacting concrete, J. Build. Eng. 26 (2019) 100882, https://doi.org/10.1016/j.jobe.2019.100882.
    [166] Singh, N.B. and B. Middendorf, Calcium sulphate hemihydrate hydration leading to gypsum crystallization, Prog. Cryst. Growth Charact. Mater. 53 (1) (2007) 57-77, https://doi.org/10.1016/j.pcrysgrow.2007.01.002.
    [167] Sivasundaram, V., G.G. Carette and V.M. Malhotra, Long-term strength development of high-volume fly ash concrete, Cem. Concr. Com. 12 (4) (1990) 263-270, https://doi.org/10.1016/0958-9465(90)90005-I.
    [168] Skibsted, J. and R. Snellings, Reactivity of supplementary cementitious materials (SCMs) in cement blends, Cem. Concr. Res. 124 (2019) 105799, https://doi.org/10.1016/j.cemconres.2019.105799.
    [169] Solikin, M., S. Setunge and I. Patnaikuni, Experimental design analysis of ultra fine fly ash, lime water, and basalt fibre in mix proportion of high volume fly ash concrete, Pertanika J. Sci. Technol. 21 (2) (2013) 589-699,
    [170] Stolz, J., Y. Boluk and V. Bindiganavile, Mechanical, thermal and acoustic properties of cellular alkali activated fly ash concrete, Cem. Concr. Com. 94 (2018) 24-32, https://doi.org/10.1016/j.cemconcomp.2018.08.004.
    [171] Sujjavanich, S., V. Sida and P. Suwanvitaya, Chloride permeability and corrosion risk of high-volume fly ash concrete with mid-range water reducer, ACI Mater. J. 102 (3) (2005) 177-182,
    [172] Sun, Y. and H. Lee, Research on properties evolution of ultrafine fly ash and cement composite, Constr. Build. Mater. 261 (2020) 119935, https://doi.org/10.1016/j.conbuildmat.2020.119935.
    [173] Supit, S.W.M., F.U.A. Shaikh and P.K. Sarker, Effect of ultrafine fly ash on mechanical properties of high volume fly ash mortar, Constr. Build. Mater. 51 (2014) 278-286, https://doi.org/10.1016/j.conbuildmat.2013.11.002.
    [174] Swamy, R.N., Dynamic Poisson's ratio of Portland cement paste, mortar and concrete, Cem. Concr. Res. 1 (1971) 559-583, https://doi.org/10.1016/0008-8846(71)90060-3.
    [175] Swamy, R.N. and H.H. Hung, Engineering Properties of High Volume Fly Ash Concrete, ACI Symposium Paper 178 (1998) 331-360,
    [176] Tang, F.J. and E.M. Gartner, Influence of sulphate source on Portland cement hydration, Adv. Cem. Res. 1 (2) (1988) 67-74, https://doi.org/10.1680/adcr.1988.1.2.67.
    [177] Tang, S.W., H.G. Zhu, Z.J. Li, E. Chen and H.Y. Shao, Hydration stage identification and phase transformation of calcium sulfoaluminate cement at early age, Constr. Build. Mater. 75 (2015) 11-18, https://doi.org/10.1016/j.conbuildmat.2014.11.006.
    [178] Thymotie, A., T.-P. Chang and H.-A. Nguyen, Improving properties of high-volume fly ash cement paste blended with β-hemihydrate from flue gas desulfurization gypsum, Constr. Build. Mater. 261 (2020) 120494, https://doi.org/10.1016/j.conbuildmat.2020.120494.
    [179] Tumidajski, P.J., A.S. Schumacher, S. Perron, P. Gu and J.J. Beaudoin, On the relationship between porosity and electrical resistivity in cementitious systems, Cem. Concr. Res. 26 (1996) 539-544, https://doi.org/10.1016/0008-8846(96)00017-8.
    [180] Ulykbanov, A., E. Sharafutdinov, C.-W. Chung, D. Zhang and C.-S. Shon, Performance-based model to predict thermal conductivity of non-autoclaved aerated concrete through linearization approach, Constr. Build. Mater. 196 (2019) 555-563, https://doi.org/10.1016/j.conbuildmat.2018.11.147.
    [181] Varga, I.D.l., J. Castro, D.P. Bentz, F. Zunino and J. Weiss, Evaluating the hydration of high volume fly ash mixtures using chemically inert fillers, Constr. Build. Mater. 161 (2018) 221-228, https://doi.org/10.1016/j.conbuildmat.2017.11.132.
    [182] Vasanelli, E., D. Colangiuli, A. Calia, M. Sileo and M.A. Aiello, Ultrasonic pulse velocity for the evaluation of physical and mechanical properties of a highly porous building limestone, Ultrasonics 60 (2015) 33-40, https://doi.org/10.1016/j.ultras.2015.02.010.
    [183] Vodák, F., K. Trtı́k, O. Kapičková, Š. Hošková and P. Demo, The effect of temperature on strength –porosity relationship for concrete, Constr. Build. Mater. 18 (7) (2004) 529-534, https://doi.org/10.1016/j.conbuildmat.2004.04.009.
    [184] Vogel, F., R. Sovják and Š. Pešková, Static response of double shell concrete lining with a spray-applied waterproofing membrane, Tunn. Undergr. Sp. Tech. 68 (2017) 106-112, https://doi.org/10.1016/j.tust.2017.05.022.
    [185] Wakili, K.G., E. Hugi, L. Wullschleger and T. Frank, Gypsum Board in Fire - Modeling and Experimental Validation, J. Fire Sci. 25 (3) (2007) 267-282, https://doi.org/10.1177/0734904107072883.
    [186] Wang, X., Y. Lei, L. Yan, T. Liu, Q. Zhang and K. He, A unit-based emission inventory of SO2, NOx and PM for the Chinese iron and steel industry from 2010 to 2015, Sci. Total Environ. 676 (2019) 18-30, https://doi.org/10.1016/j.scitotenv.2019.04.241.
    [187] Wei, X., H. Zhu, G. Li, C. Zhang and L. Xiao, Properties of high volume fly ash concrete compensated by metakaolin or silica fume, J. Wuhan University of Tech.-Mater. Sci. 22 (2007) 728-732,
    [188] Winnefeld, F. and B. Lothenbach, Hydration of calcium sulfoaluminate cements — Experimental findings and thermodynamic modelling, Cem. Concr. Res. 40 (8) (2010) 1239-1247, https://doi.org/10.1016/j.cemconres.2009.08.014.
    [189] Wu, Q., Q. Xue and Z. Yu, Research status of super sulfate cement, J. Clean. Prod. 294 (2021) 125228, https://doi.org/10.1016/j.jclepro.2021.126228.
    [190] Xi, F., S.J. Davis, P. Ciais, D. Crawford-Brown, D. Guan, C. Pade, et al., Substantial global carbon uptake by cement carbonation, Nat. Geosci. 9 (2016) 880-883, https://doi.org/10.1038/ngeo2840.
    [191] Xie, F., J. Li, G. Zhao, C. Wang, Y. Wang and P. Zhou, Experimental investigations on the durability and degradation mechanism of cast-in-situ recycled aggregate concrete under chemical sulfate attack, Constr. Build. Mater. 297 (2021) 123771, https://doi.org/10.1016/j.conbuildmat.2021.123771.
    [192] Xu, A. and S.L. Sarkar, Microstructural Development in High‐Volume Fly‐Ash Cement System, J. Mater. Civ. Eng. 6 (1) (1994) 117-136, https://doi.org/10.1061/(ASCE)0899-1561(1994)6:1(117).
    [193] Xu, C., W. Ni, K. Li, S. Zhang and D. Xu, Activation mechanisms of three types of industrial by-product gypsums on steel slag–granulated blast furnace slag-based binders, Constr. Build. Mater. 288 (2021) 123111, https://doi.org/10.1016/j.conbuildmat.2021.123111.
    [194] Xu, Y., X. Liu, Y. Zhang, B. Tang and E. Mukiza, Investigation on sulfate activation of electrolytic manganese residue on early activity of blast furnace slag in cement-based cementitious material, Constr. Build. Mater. 229 (2019) 116831, https://doi.org/10.1016/j.conbuildmat.2019.116831.
    [195] Yang, G., T. Wu, C. Fu and H. Ye, Effects of activator dosage and silica fume on the properties of Na2SO4-activated high-volume fly ash, Constr. Build. Mater. 278 (2021) 122346, https://doi.org/10.1016/j.conbuildmat.2021.122346.
    [196] Yazıcı, H., The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze–thaw resistance of self-compacting concrete, Constr. Build. Mater. 22 (4) (2008) 456-462, https://doi.org/10.1016/j.conbuildmat.2007.01.002.
    [197] Yazıcı, H., S. Aydın, H. Yiğiter and B. Baradan, Effect of steam curing on class C high-volume fly ash concrete mixtures, Cem. Concr. Res. 35 (6) (2005) 1122-1127, https://doi.org/10.1016/j.cemconres.2004.08.011.
    [198] Yu, Z., C. Ni, M. Tang and X. Shen, Relationship between water permeability and pore structure of Portland cement paste blended with fly ash, Constr. Build. Mater. 175 (2018) 458-466, https://doi.org/10.1016/j.conbuildmat.2018.04.147.
    [199] Zhang, L. and F.P. Glasser, Hydration of calcium sulfoaluminate cement at less than 24 h, Adv. Cem. Res. 14 (4) (2002) 141-155, https://doi.org/10.1680/adcr.2002.14.4.141.
    [200] Zhang, M.-H. and J. Islam, Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag, Constr. Build. Mater. 29 (2012) 573-580, https://doi.org/10.1016/j.conbuildmat.2011.11.013.
    [201] Zhao, G., J. Li, F. Han, M. Shi and H. Fan, Sulfate-induced degradation of cast-in-situ concrete influenced by magnesium, Constr. Build. Mater. 199 (2019) 194-206, https://doi.org/10.1016/j.conbuildmat.2018.12.022.
    [202] Zhao, G., J. Li and W. Shao, Effect of mixed chlorides on the degradation and sulfate diffusion of cast-in-situ concrete due to sulfate attack, Constr. Build. Mater. 181 (2018) 49-58, https://doi.org/10.1016/j.conbuildmat.2018.05.251.
    [203] Zhao, G., J. Li, M. Shi, J. Cui and F. Xie, Degradation of cast-in-situ concrete subjected to sulphate-chloride combined attack, Constr. Build. Mater. (2020) https://doi.org/10.1016/j.conbuildmat.2019.117995.
    [204] Zhao, G., M. Shi, H. Fan, J. Cui and F. Xie, The influence of multiple combined chemical attack on cast-in-situ concrete: Deformation, mechanical development and mechanisms, Constr. Build. Mater. 251 (2020) https://doi.org/10.1016/j.conbuildmat.2020.118988.
    [205] Zhao, H., X. Qin, J. Liu, L. Zhou, Q. Tian and P. Wang, Pore structure characterization of early-age cement pastes blended with high-volume fly ash, Constr. Build. Mater. 189 (2018) 934-946, https://doi.org/10.1016/j.conbuildmat.2018.09.023.
    [206] Zheng, C., C. Xu, Y. Zhang, J. Zhang, X. Gao, Z. Luo, et al., Nitrogen oxide absorption and nitrite/nitrate formation in limestone slurry for WFGD system, Appl. Energy 129 (2014) 187-194, https://doi.org/10.1016/j.apenergy.2014.05.006.
    [207] Zhu, Q., L. Jiang, Y. Chen, J. Xu and L. Mo, Effect of chloride salt type on chloride binding behavior of concrete, Constr. Build. Mater. 37 (2012) 512-517, https://doi.org/10.1016/j.conbuildmat.2012.07.079.

    無法下載圖示 全文公開日期 2031/08/25 (校內網路)
    全文公開日期 2031/08/25 (校外網路)
    全文公開日期 2031/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE