簡易檢索 / 詳目顯示

研究生: 陳威智
Wei-Chih Chen
論文名稱: 以理論計算設計前鋒軌域具非鍵結性質之多環共軛分子
Theoretical molecular design of polycyclic pi-conjugated systems with small internal reorganization energy
指導教授: 趙奕姼
Ito Chao
江志強
Jyh-Chiang Jiang
口試委員: 鄭原忠
Yuan-Chung Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 115
中文關鍵詞: 密度泛函計算有機場效電晶體電荷傳遞分子內部重組能
外文關鍵詞: Density functional calculations, Organic field-effect transistors, Charge transfer, Internal reorganization energy
相關次數: 點閱:206下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

分子內重組能是分子的一個基本性質,此性質可影響電荷傳遞之速率。本實驗室在先前的研究表示分子的前鋒軌域將有助於了解分子內重組能的變化,並且歸納出幾個設計原則,其中若分子在前鋒軌域有著很強的局部非鍵結特性,則可以有著很低的分子內重組能。因此如何設計出分子本身在前鋒軌域就具有很好的非鍵結特性是我們有興趣的一個課題。
在本論文的第一個部份是在了解zero sum rule 之後,我們知道odd alternant hydrocarbons (AHs)的前鋒軌域在特定原子上的波函數係數為零,在該原子與臨近原子間會存在著非鍵結性質,可預期odd AHs 可以有相當低的分子內重組能,因此我們探索了不同的odd AHs 結構與分子內重組能的關係。結果發現若整個分子在前鋒軌域有電子分佈的地方都是均勻分佈或者對稱分佈者,其分子內重組能可以有著極小的值。
在論文的第二個部份,我們利用符合pairing theorem 的萘做為延伸共軛pi鍵之單位,來找尋前鋒軌域具有很強的非鍵結性質之分子結構,透過了解每個碎片分子軌域間的軌域交互作用,我們可以有系統地解釋同分異構物之間分子內重組能的變化,並且設計出前鋒軌域有相當比重之非鍵結特性的結構。


As internal reorganization energy is an important fundamental property of a molecule, our lab has been interested in its structure-property relationship. Previously, we have shown that a molecule with strong local nonbonding character in frontier orbitals will have small internal reorganization energy. In this study, we aim to develop strategies to maintain or introduce local nonbonding character in frontier orbitals.
According to zero sum rule, the wave function coefficient of singly occupied molecular orbital of odd alternant hydrocarbons is zero at some specific atoms. This ensures the local nonbonding character in the orbital. Therefore, we have explored the singly occupied molecular orbital and internal reorganization energy of several series of phenalenyl-based odd alternant hydrocarbons. We found that structures with even distribution of spin density have the lowest internal reorganization energy.
For even alternant and nonalternant hydrocarbons, we employed naphthalene as a building block to construct structures with local nonbonding character in frontier orbitals. For naphthalene, the sign of wave function coefficient at specific sites is opposite between highest occupied and lowest unoccupied molecular orbitals. This feature provides an opportunity to build up nonbonding character through multiple orbital interactions between building blocks. Better ways to connect naphthalene units in the overall molecular construct are described.

中文摘要 ……………………………………………………………… I 英文摘要 ……………………………………………………………… II 誌謝 ……………………………………………………………… III 目錄 ……………………………………………………………… IV 表目錄 ……………………………………………………………… VI 圖目錄一 ……………………………………………………………… VII 圖目錄二 ……………………………………………………………… XII 縮寫說明 ……………………………………………………………… XIV 第一章 緒論 1-1 研究緣起 ………………………………………………………… 1 1-2 分子內部重組能與前鋒軌域的關聯 …………………………… 11 1-3 分子設計原則的統整 …………………………………………… 26 第二章 研究背景理論與理論計算方法 ……………………………… 28 第三章 Theoretical study of internal reorganization energy of odd alternant hydrocarbons 3-1 簡介 ………………………………………………………… 39 3-2 結果與討論 3-2.1 C21H13的lamda值討論 …………………………………………… 41 3-2.2 利用軌域交互作用設計在SOMO上具有均勻電子分佈的 Odd AHs ……………… 45 3-2.3 利用phenalenyl radical的拓樸性質設計在SOMO上具有均勻電子分佈的Odd AHs ………………………… 50 3-3 結論 ………………………………………………………… 56 第四章 Designing nonbonding character in frontier orbital through orbital interactions 4-1 簡介 …………………………………………………………… 58 4-2 結果與討論 4-2.1 萘以1,8位置和2,3位置相接時的軌域交互作用 ……………… 60 4-2.2 萘以1,4,5,8位置和2,3,6,7位置相接時的軌域交互作用 ………………… 66 4-2.3 探討以萘為結構基礎的同分異構物 …………………………… 71 4-2.4 設計在前鋒軌域具相當比重的非鍵結性質之分子 ……………… 76 4-3 結論 …………………………………………………………… 79 參考文獻 ……………………………………………………………… 81 附錄A ……………………………………………………………… 88 附錄B ……………………………………………………………… 99

(1) Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Journal of the Chemical Society, Chemical Communications 1977, 578.
(2) Tsumura, A.; Koezuka, H.; Ando, T. Applied Physics Letters 1986, 49, 1210.
(3) Gelinck, G. H.; Huitema, H. E. A.; van Veenendaal, E.; Cantatore, E.; Schrijnemakers, L.; van der Putten, J. B. P. H.; Geuns, T. C. T.; Beenhakkers, M.; Giesbers, J. B.; Huisman, B.-H.; Meijer, E. J.; Benito, E. M.; Touwslager, F. J.; Marsman, A. W.; van Rens, B. J. E.; de Leeuw, D. M. Nature Materials 2004, 3, 106.
(4) Facchetti, A. Materials Today 2007, 10, 28.
(5) Anthony, J. E. Chemical Reviews 2006, 106, 5028.
(6) For a review see : Anthony, J. E. Angewandte Chemie International Edition 2008, 47, 452.
(7) For a review see : Briseno, A. L.; Mannsfeld, S. C. B.; Jenekhe, S. A.; Bao, Z.; Xia, Y. Materials Today 2008, 11, 38.
(8) For a review see : Dong, H.; Wang, C.; Hu, W. Chemical Communications 2010,
46, 5211.
(9) Wu, W.; Liu, Y.; Zhu, D. Chemical Society Reviews 2010, 39, 1489.
(10) Di, C.-a.; Liu, Y.; Yu, G.; Zhu, D. Accounts of Chemical Research 2009, 42, 1573.
(11) Mas-Torrent, M.; Rovira, C. Chemical Reviews 2011, DOI: 10.1021/cr100142w.
(12) Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Brédas, J.-L.; Ewbank, P. C.; Mann, K. R. Chemistry of Materials 2004, 16, 4436.
(13) Sirringhaus, H. Advanced Materials 2005, 17, 2411.
(14) Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Radlik, W.; Weber, W. Journal of Applied Physics 2002, 92, 5259.
(15) Dimitrakopoulos, C. D.; Malenfant, P. R. L. Advanced Materials 2002, 14, 99.
(16) Takeya, J.; Yamagishi, M.; Tominari, Y.; Hirahara, R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.; Ogawa, S. Applied Physics Letters 2007, 90, 102120.
(17) Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J.-L. Chemical Reviews 2007, 107, 926.
(18) For a review see : Cheung, D. L.; Troisi, A. Physical Chemistry Chemical Physics 2008, 10, 5941.
(19) Wang, L.; Nan, G.; Yang, X.; Peng, Q.; Li, Q.; Shuai, Z. Chemical Society Reviews 2010, 39, 423.
(20) Shuai, Z.; Wang, L.; Li, Q. Advanced Materials 2011, 23, 1145.
(21) Troisi, A. Chemical Society Reviews 2011, 40, 2347.
(22) Podzorov, V.; Menard, E.; Rogers, J. A.; Gershenson, M. E. Physical Review Letters 2005, 95, 226601.
(23) Jurchescu, O. D.; Baas, J.; Palstra, T. T. M. Applied Physics Letters 2004, 84, 3061.
(24) Karl, N. Synthetic Metals 2003, 133, 649.
(25) Cheng, Y. C.; Silbey, R. J.; Filho, D. A. d. S.; Calbert, J. P.; Cornil, J.; Bredas, J. L. The Journal of Chemical Physics 2003, 118, 3764.
(26) Nan, G.; Yang, X.; Wang, L.; Shuai, Z.; Zhao, Y. Physical Review B 2009, 79, 115203.
(27) Cheng, Y.-C.; Silbey, R. J. The Journal of Chemical Physics 2008, 128, 114713.
(28) Marcus, R. A. Reviews of Modern Physics 1993, 65, 599.
(29) Gsänger, M.; Oh, J. H.; Könemann, M.; Höffken, H. W.; Krause, A.-M.; Bao, Z.; Würthner, F. Angewandte Chemie International Edition 2010, 49, 740.
(30) Norton, J. E.; Brédas, J.-L. Journal of the American Chemical Society 2008, 130, 12377.
(31) Martinelli, N. G.; Idé, J.; Sánchez-Carrera, R. S.; Coropceanu, V.; Brédas, J.-L.; Ducasse, L.; Castet, F. d. r.; Cornil, J. r. m.; Beljonne, D. The Journal of Physical Chemistry C 2010, 114, 20678.
(32) McMahon, D. P.; Troisi, A. The Journal of Physical Chemistry Letters 2010, 1, 941.
(33) Guldi, D. M.; Prato, M. Accounts of Chemical Research 2000, 33, 695.
(34) Imahori, H.; Tamaki, K.; Guldi, D. M.; Luo, C.; Fujitsuka, M.; Ito, O.; Sakata, Y.; Fukuzumi, S. Journal of the American Chemical Society 2001, 123, 2607.
(35) El-Khouly, M. E.; Ito, O.; Smith, P. M.; D'Souza, F. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2004, 5, 79.
(36) D'Souza, F.; Ito, O. Coordination Chemistry Reviews 2005, 249, 1410.
(37) Fukuzumi, S. Physical Chemistry Chemical Physics 2008, 10, 2283.
(38) Garg, V.; Kodis, G.; Chachisvilis, M.; Hambourger, M.; Moore, A. L.; Moore, T. A.; Gust, D. Journal of the American Chemical Society 2011, 133, 2944.
(39) Hutchison, G. R.; Ratner, M. A.; Marks, T. J. Journal of the American Chemical Society 2005, 127, 2339.
(40) Song, Y.; Di, C. a.; Yang, X.; Li, S.; Xu, W.; Liu, Y.; Yang, L.; Shuai, Z.; Zhang, D.; Zhu, D. Journal of the American Chemical Society 2006, 128, 15940.
(41) Yang, X.; Wang, L.; Wang, C.; Long, W.; Shuai, Z. Chemistry of Materials 2008, 20, 3205.
(42) Chen, H.-Y.; Chao, I. Chemical Physics Letters 2005, 401, 539.
(43) Chen, H.-Y.; Chao, I. ChemPhysChem 2006, 7, 2003.
(44) Kuo, M.-Y.; Chen, H.-Y.; Chao, I. Chemistry – A European Journal 2007, 13, 4750
(45) Chang, Y.-C.; Chao, I. The Journal of Physical Chemistry Letters 2010, 1, 116.
(46) Tang, M. L.; Reichardt, A. D.; Wei, P.; Bao, Z. Journal of the American Chemical Society 2009, 131, 5264.
(47) For a review see : Tang, M. L.; Bao, Z. Chemistry of Materials 2010, 23, 446.
(48) Bao, Z.; Lovinger, A. J.; Dodabalapur, A. Applied Physics Letters 1996, 69, 3066.
(49) Garnier, F.; Horowitz, G.; Fichou, D.; Yassar, A. Synthetic Metals 1996, 81, 163.
(50) Bao, Z.; Lovinger, A. J.; Brown, J. Journal of the American Chemical Society 1998, 120, 207.
(51) Sakamoto, Y.; Komatsu, S.; Suzuki, T. Journal of the American Chemical Society 2001, 123, 4643.
(52) Sakamoto, Y.; Suzuki, T.; Kobayashi, M.; Gao, Y.; Fukai, Y.; Inoue, Y.; Sato, F.; Tokito, S. Journal of the American Chemical Society 2004, 126, 8138.
(53) Coropceanu, V.; Malagoli, M.; da Silva Filho, D. A.; Gruhn, N. E.; Bill, T. G.; Bredas, J. L. Physical Review Letters 2002, 89, 275503.
(54) Gruhn, N. E.; da Silva Filho, D. A.; Bill, T. G.; Malagoli, M.; Coropceanu, V.; Kahn, A.; Brédas, J.-L. Journal of the American Chemical Society 2002, 124, 7918.
(55) Malagoli, M.; Coropceanu, V.; Filho, D. A. d. S.; Bredas, J. L. The Journal of Chemical Physics 2004, 120, 7490.
(56) Delgado, M. C. R.; Pigg, K. R.; da Silva Filho, D. t. A.; Gruhn, N. E.; Sakamoto, Y.; Suzuki, T.; Osuna, R. M.; Casado, J.; Hernández, V. c.; Navarrete, J. T. L. p.; Martinelli, N. G.; Cornil, J.; Sánchez-Carrera, R. S.; Coropceanu, V.; Brédas, J.-L. Journal of the American Chemical Society 2009, 131, 1502.
(57) Tang, M. L.; Oh, J. H.; Reichardt, A. D.; Bao, Z. Journal of the American Chemical Society 2009, 131, 3733.
(58) Ling, M.-M.; Bao, Z.; Erk, P. Applied Physics Letters 2006, 89, 163516.
(59) Ansyln, E. K.; Dougherty, D. A. Modern Physical Organic Chemistry; University Science Books: Sausalito, CA, 2006.
(60) Winkler, M.; Houk, K. N. Journal of the American Chemical Society 2007, 129, 1805.
(61) Miao, S.; Appleton, A. L.; Berger, N.; Barlow, S.; Marder, S. R.; Hardcastle, K. I.; Bunz, U. H. F. Chemistry – A European Journal 2009, 15, 4990.
(62) Tang, Q.; Liu, J.; Chan, H. S.; Miao, Q. Chemistry – A European Journal 2009, 15, 3965.
(63) Liang, Z.; Tang, Q.; Liu, J.; Li, J.; Yan, F.; Miao, Q. Chemistry of Materials 2010, 22, 6438.
(64) Tang, Q.; Liang, Z.; Liu, J.; Xu, J.; Miao, Q. Chemical Communications 2010, 46, 2977.
(65) Weng, S.-Z.; Shukla, P.; Kuo, M.-Y.; Chang, Y.-C.; Sheu, H.-S.; Chao, I.; Tao, Y.-T. ACS Applied Materials & Interfaces 2009, 1, 2071.
(66) Liu, Y.-Y.; Song, C.-L.; Zeng, W.-J.; Zhou, K.-G.; Shi, Z.-F.; Ma, C.-B.; Yang, F.; Zhang, H.-L.; Gong, X. Journal of the American Chemical Society 2010, 132, 16349.
(67) Islam, M. M.; Pola, S.; Tao, Y.-T. Chemical Communications 2011, 47, 6356.
(68) Liang, Z.; Tang, Q.; Xu, J.; Miao, Q. Advanced Materials 2011, 23, 1535.
(69) Song, C.-L.; Ma, C.-B.; Yang, F.; Zeng, W.-J.; Zhang, H.-L.; Gong, X. Organic Letters 2011, 13, 2880.
(70) Appleton, A. L.; Brombosz, S. M.; Barlow, S.; Sears, J. S.; Bredas, J.-L.; Marder, S. R.; Bunz, U. H. F. Nat Communications 2010, 1, 91.
(71) Moon, H.; Zeis, R.; Borkent, E.-J.; Besnard, C.; Lovinger, A. J.; Siegrist, T.; Kloc, C.; Bao, Z. Journal of the American Chemical Society 2004, 126, 15322.
(72) Li, A.; Wen, S.-H.; Song, J.-L.; Deng, W.-Q. Organic Electronics 2009, 10, 1054.
(73) Katsuta, S.; Miyagi, D.; Yamada, H.; Okujima, T.; Mori, S.; Nakayama, K.-i.; Uno, H. Organic Letters 2011, 13, 1454.
(74) Jones, B. A.; Ahrens, M. J.; Yoon, M.-H.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R. Angewandte Chemie International Edition 2004, 43, 6363.
(75) Jones, B. A.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R. Chemistry of Materials 2007, 19, 2703.
(76) Wang, Z.; Kim, C.; Facchetti, A.; Marks, T. J. Journal of the American Chemical Society 2007, 129, 13362.
(77) Li, L.; Tang, Q.; Li, H.; Yang, X.; Hu, W.; Song, Y.; Shuai, Z.; Xu, W.; Liu, Y.; Zhu, D. Advanced Materials 2007, 19, 2613.
(78) Norton, J. E.; Bredas, J.-L. The Journal of Chemical Physics 2008, 128, 034701.
(79) Cai, X.; Zhang, Y.; Qi, D.; Jiang, J. The Journal of Physical Chemistry A 2009, 113, 2500.
(80) Zhong, A.; Bian, Y.; Zhang, Y. The Journal of Physical Chemistry C 2010, 114, 3248.
(81) Dewar, M. J. S. The Molecular Orbital Theory of Organic Chemistry; McGraw-Hill: New York, 1969.
(82) Bendikov, M.; Duong, H. M.; Starkey, K.; Houk, K. N.; Carter, E. A.; Wudl, F. Journal of the American Chemical Society 2004, 126, 7416.
(83) Hachmann, J.; Dorando, J. J.; Aviles, M.; Chan, G. K.-L. The Journal of Chemical Physics 2007, 127, 134309.
(84) Jiang, D.-e.; Dai, S. The Journal of Physical Chemistry A 2007, 112, 332.
(85) Konishi, A.; Hirao, Y.; Nakano, M.; Shimizu, A.; Botek, E.; Champagne, B. t.; Shiomi, D.; Sato, K.; Takui, T.; Matsumoto, K.; Kurata, H.; Kubo, T. Journal of the American Chemical Society 2010, 132, 11021.
(86) Inoue, J.; Fukui, K.; Kubo, T.; Nakazawa, S.; Sato, K.; Shiomi, D.; Morita, Y.; Yamamoto, K.; Takui, T.; Nakasuji, K. Journal of the American Chemical Society 2001,
123, 12702.
(87) Longuet-Higgins, H. C. The Journal of Chemical Physics 1950, 18, 265.
(88) Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
(89) da Silva Filho, D. A.; Friedlein, R.; Coropceanu, V.; Ohrwall, G.; Osikowicz, W.; Suess, C.; Sorensen, S. L.; Svensson, S.; Salaneck, W. R.; Bredas, J.-L. Chemical Communications 2004, 1702.
(90) Mealli, C.; Proserpio, D. M. Journal of Chemical Education 1990, 67, 399.
(91) Goto, K.; Kubo, T.; Yamamoto, K.; Nakasuji, K.; Sato, K.; Shiomi, D.; Takui, T.; Kubota, M.; Kobayashi, T.; Yakusi, K.; Ouyang, J. Journal of the American Chemical Society 1999, 121, 1619.
(92) Morita, Y.; Ohba, T.; Haneda, N.; Maki, S.; Kawai, J.; Hatanaka, K.; Sato, K.; Shiomi, D.; Takui, T.; Nakasuji, K. Journal of the American Chemical Society 2000, 122, 4825.
(93) Koutentis, P. A.; Chen, Y.; Cao, Y.; Best, T. P.; Itkis, M. E.; Beer, L.; Oakley, R. T.; Cordes, A. W.; Brock, C. P.; Haddon, R. C. Journal of the American Chemical Society 2001, 123, 3864.
(94) Morita, Y.; Aoki, T.; Fukui, K.; Nakazawa, S.; Tamaki, K.; Suzuki, S.; Fuyuhiro, A.; Yamamoto, K.; Sato, K.; Shiomi, D.; Naito, A.; Takui, T.; Nakasuji, K. Angewandte Chemie International Edition 2002, 41, 1793.
(95) Nishida, S.; Morita, Y.; Fukui, K.; Sato, K.; Shiomi, D.; Takui, T.; Nakasuji, K. Angewandte Chemie International Edition 2005, 44, 7277.
(96) Zheng, S.; Thompson, J. D.; Tontcheva, A.; Khan, S. I.; Rubin, Y. Organic Letters 2005, 7, 1861.
(97) Nishida , S.; Kariyazono, K.; Yamanaka, A.; Fukui, K.; Sato, K.; Takui, T.; Nakasuji, K.; Morita, Y. Chemistry – An Asian Journal 2011, 6, 1188.
(98) Chikamatsu, M.; Mikami, T.; Chisaka, J.; Yoshida, Y.; Azumi, R.; Yase, K.; Shimizu, A.; Kubo, T.; Morita, Y.; Nakasuji, K. Applied Physics Letters 2007, 91, 043506.
(99) Morita, Y.; Nishida, S.; Kawai, J.; Fukui, K.; Nakazawa, S.; Sato, K.; Shiomi, D.; Takui, T.; Nakasuji, K. Organic Letters 2002, 4, 1985.
(100) Morita, Y.; Nishida, S.; Kawai, J.; Fukui, K.; Nakazawa, S.; Sato, K.; Shiomi, D.; Takui, T.; Nakasuji, K. Polyhedron 2003, 22, 2209.
(101) Viruela-Martin, R.; Viruela-Martin, P. M.; Orti, E. The Journal of Chemical Physics 1992, 97, 8470.
(102) Yamamura, K.; Miyake, H.; Murata, I. The Journal of Organic Chemistry 1986, 51, 251.
(103) For a review see : Pisula, W.; Feng, X.; Müllen, K. Chemistry of Materials 2010, 23, 554.
(104) Yoshida, M.; Fujita, M.; W. Fowler, P.; C. Kirby, E. Journal of the Chemical Society, Faraday Transactions 1997, 93, 1037.
(105) Dötz, F.; Brand, J. D.; Ito, S.; Gherghel, L.; Müllen, K. Journal of the American Chemical Society 2000, 122, 7707.
(106) Feng, X.; Wu, J.; Ai, M.; Pisula, W.; Zhi, L.; Rabe, J. P.; Müllen, K. Angewandte Chemie International Edition 2007, 46, 3033.
(107) Sancho-Garcia, J. C.; Perez-Jimenez, A. J. Physical Chemistry Chemical Physics 2009, 11, 2741.
(108) Huang, J.; Kertesz, M. Journal of the American Chemical Society 2007, 129, 1634.
(109) Kubo, T.; Goto, Y.; Uruichi, M.; Yakushi, K.; Nakano, M.; Fuyuhiro, A.; Morita, Y.; Nakasuji, K. Chemistry – An Asian Journal 2007, 2, 1370.
(110) Yoshizawa, K.; Yahara, K.; Tanaka, K.; Yamabe, T. The Journal of Physical Chemistry B 1998, 102, 498.
(111) Wehmeier, M.; Wagner, M.; Müllen, K. Chemistry – A European Journal 2001, 7, 2197.
(112) Kung, Y.-H.; Cheng, Y.-S.; Tai, C.-C.; Liu, W.-S.; Shin, C.-C.; Ma, C.-C.; Tsai, Y.-C.; Wu, T.-C.; Kuo, M.-Y.; Wu, Y.-T. Chemistry – A European Journal 2010, 16, 5909.
(113) Bohnen, A.; Koch, K.-H.; Lüttke, W.; Müllen, K. Angewandte Chemie International Edition in English 1990, 29, 525.
(114) Nakanishi, W.; Yoshioka, T.; Taka, H.; Xue, J. Y.; Kita, H.; Isobe, H. Angewandte Chemie International Edition 2011, 50, 5323.
(115) Zander, M. Chemische Berichte 1959, 92, 2740.
(116) Lang, K. F.; Zander, M. Chemische Berichte 1961, 94, 1871.

QR CODE