簡易檢索 / 詳目顯示

研究生: 黃孝村
Siao-Cun Huang
論文名稱: 下照式動態光罩快速成型系統製作3D PCL組織工程支架
Research on 3D PCL Tissue Engineering Scaffolds by Upward-Lighting Dynamic Mask Rapid Prototyping System
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 蔡明忠
Ming-Jong Tsai
戴念梓
Niann-Tzyy Dai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 120
中文關鍵詞: 快速成型技術組織工程支架動態光罩聚己內酯數位投影技術
外文關鍵詞: Rapid prototyping technology, tissue engineering scaffold, Dynamic mask, PCL, DLP
相關次數: 點閱:288下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗室先前研究,以快速成型技術概念自行設計生醫動態光罩快速成型系統,將每層2D pattern偏移或旋轉一個角度的方式,光聚合成型PLGA多孔性支架。但製作過程中PLGA支架持續浸泡於有機溶劑中易產生二次溶解,再加上PLGA材料昂貴且分子量分佈範圍大,不容易精準掌控其性質。於是本研究擬直接使用生物相容性佳的PCL,搭配PEG-HEMA、光起始劑及活性單體(HEMA)所混合而成的光聚合生醫材料,製作適合細胞生長的3D立體孔連通組織工程支架。
    將原系統由上照式改為下照式,直接採用DLP投影機為光源,針對其光源照射方式、鏡頭成像距離及成型板、成型槽做相關機構的設計變更,並將控制程式與動態光罩產生程式修改整合。用新系統光聚合而成的PCL薄膜,進行靜態降解實驗與細胞(Human adult fibroblasts for foreskin cell)的體外培養(in vitro) 以了解其生物相容性,透過MTT assay及ICC測試評估是否適合細胞生長。從MTT assay測試結果可看出一至十天內的OD值及細胞數量一直都有成長趨勢;而ICC測試及SEM觀察中可以看出細胞在薄膜上有貼附的情況。
    藉由製作不同條寬、相同間距之單層支架來測試此系統的加工精度,最小誤差值可達4.6%。然而在製作3D支架時,因已固化材料為白色會反射,會使部分孔洞封閉。透過改變後層的曝光時間,可有效改善此問題。目前已可製作出孔徑形狀為正方形、梯形的3D多孔性支架,以及可用來做大量細胞複製的30°、45°、60°圓錐形結構支架。本研究成功成型數種具生物相容性的3D立體PCL支架,未來不僅可應用於組織工程細胞生長,亦可協助大量細胞複製。


    In the previous research in our laboratory, rapid prototyping technology concept was applied to create a Biomedical Dynamic Mask Rapid Prototyping System. PLGA porous scaffolds were fabricated through this system by photo-curing offset or rotated 2D patterns in each layer. The cured PLGA layers encountered re-dissolution issue during the process, and the expensive PLGA has wide molecular weight range, increasing the difficulty in controlling its properties precisely. Therefore, in this research, bio-compatible PCL replaced PLGA and mixed with PEG-HEMA, photo-initiator, and active monomer (HEMA) in chloroform to form the photo-curable biomaterial. Complete 3D scaffolds with interconnected pore network, instead of 2D-pattern offsetting, were fabricated.
    The original system was changed from downward-lighting to upward-lighting and DLP (Digital Light Projection) projector was used directly as a light source. The optical path, lens distance, and the material tank were modified. Control program and dynamic mask generation program were revised and integrated. The new system fabricated PCL thin films for static degradation tests and cell culture (human adult fibroblasts for foreskin cell) in vitro to understand its bio-compatibility. In the MTT assay test from 1 to 10 days, the results showed the trend that OD values and cell numbers increased, while the ICC test and the SEM observation indicated that cells had attached to the thin film.
    Single-layer scaffolds with identical spacing but different strip width were fabricated to evaluate system’s capability The minimal error may reach 4.6%. However, when fabricating the 3D scaffolds, due to the reflection of the white cured material, some pores were closed. Adjusting exposure time of the later layers can improve this problem effectively. In this study, fabricated pore shapes of 3D scaffolds included square, trapezoid, and cone (30°, 45°, 60°). This research has successfully generated several bio-compatible 3D PCL scaffolds. In the future, it can be not only used in tissue engineering cell growth, but also applicable to mass cell duplication.

    摘要...............................................................................................................................I Abstract......................................................................................................................II 誌謝..............................................................................................................................IV 目錄...............................................................................................................................V 圖目錄.......................................................................................................................VIII 表目錄........................................................................................................................XII 第一章 緒論..............................................................................................................1 1.1 前言………………………………………………………………………….1 1.2 研究背景與動機…………………………………………………………….2 1.3 研究目的和方法…………………………………………………………….3 1.4 論文架構……………………………………………………………………..4 第二章 文獻探討…………………………………………………………………..6 2.1 組織工程(Tissue Engineering)介紹………………………………………...6 2.1.1 支架材料之特性……………………………………………………10 2.1.2 高分子生醫材料……………………………………………………11 2.1.3 一般支架製作技術…………………………………………………17 2.2 應用快速原型技術製造組織工程之支架………………………………...22 2.2.1 快速原型加工原理…………………………………………………22 2.2.2 快速原型技術應用於組織工程支架之製造………………………24 2.3 面成型RP系統應用於3D工件之製造…………………………...……..31 第三章系統簡介與機構改善…………………………………………………….….35 3.1生醫動態光罩快速成型系統……………………………………………....35 3.1.1先前上照式系統架構……………………………………………….35 3.1.2 上照式系統與下照式之系統差異比較……………………………37 3.2下照式生醫動態光罩快速成型系統……………………………………....38 3.2.1動態光罩控制軟體……………………………………………….…39 3.2.2 動態光罩產生器……………………………………………………43 3.3 系統相關機械變更………………………………………………………...46 3.3.1 動態光罩之光源照射方式變更……………………………………47 3.3.2 成型板及成型槽變更………………………………………………52 第四章 生醫材料調配與材料性質檢測及細胞培養結果…………………………55 4.1 實驗藥品與設備…………………………………………………………...55 4.2 材料系統介紹……………………………………………………………...56 4.2.1 光起始劑……………………………………………………………56 4.2.2 光交聯劑……………………………………………………………58 4.2.3 2-hydroxyethyl mathacrylate (HEMA) 單體.....................................59 4.2.4 PCL(聚己內酯)—活性寡聚體……………………………………..60 4.2.5 光聚合生醫材料……………………………………………………61 4.3 材料性質檢測……………………………………………………………...62 4.3.1 實驗藥品……………………………………………………………63 4.3.2 材料性質檢測……………………………………………………....65 4.3.2.1 材料含水率(Water Absorption Ration)……………………..65 4.3.2.2 靜態降解測試……………………………………………….67 4.4 細胞培養與生物相容性檢測……………………………………………...70 4.4.1 細胞培養……………………………………………………………70 4.4.2 生物毒性檢測(MTT assay)………………………………………...74 4.4.3 免疫細胞化學染色法(Immunocytochemistry—ICC)……………..78 4.4.4 掃描式電子顯微觀察(SEM)……………………………………….81 第五章 製作多孔性3D組織工程支架…………………………………………….84 5.1 系統加工流程與支架加工參數…………………………………………...84 5.1.1 加工參數……………………………………………………………85 5.2 單層支架製作……………………………………………………………...88 5.2.1 系統製作單層支架最小尺寸測試…………………………………90 5.3 3D支架設計與製作……..…………………………………………………92 5.3.1 3D支架設計……..………………………………………………….92 5.3.2 3D支架製作…………………………………………………………95 第六章 結論與未來工作…………………………………………………………..104 6.1 結論……………………………………………………………………….104 6.2 未來工作………………………………………………………………….105 參考文獻……………………………………………………………………………107 附錄一………………………………………………………………………………112 附錄二………………………………………………………………………………113 附錄三………………………………………………………………………………117

    1. 宋信文 梁晃千,"建立人類的身體工房--組織工程",科學發展(326期), 2003年2月。

    2. 徐善慧 陳俊宇,"巧奪天工的人類智慧--組織工程",科學發展(356期), 2002年8月。

    3. 李宣書,"淺談組織工程",物理雙月刊(廿四卷三期),2001年6月。

    4. 張根源,”組織工程技術與應用”,化工科技與商情第33 期,2002 年6 月。

    5. 曾清秀 呂恒綜 李永全,"幫細胞蓋一個家--組織工程用支架",科學發展 (356期),2002年8月。

    6. Shoufeng Yang, Kah-Fai Leong, Zhaohui DU, and Chee-Kai Chua, “The design of scaffolds for use in tissue engineering. Part I.Traditional Factors,” Tissue Engineering, Volume 7, Number 6 (2001) 679-689.

    7. 俞耀庭,生物醫用材料,初版,新文京,2004。

    8. D.K. Gilding, and A.M. Reed, “Biodegradable polymers for use in surgery -Poly(glycolic acid)/Poly(lactide acid)homo-and copolymers.2.In vitro degradation, ” Polymer, Volume 22 (1981) 494-498.

    9. 工業技術研究院,”生醫材料與組織工程”
    (http://www.itri.org.tw/chi/rnd/focused_rnd/biotech_medicine/e003.jsp)

    10. 張根源,”生物吸收性PLGA材料合成與應用技術”,工業技術與資訊第112 期,2001年2月。
    11. 興技生物科技公司, (http://www.bio-invigor.com)

    12. 蔡秉宏,”以聚殼醣合成光交聯性衍生物之探討”,國立成功大學化學工程 研究所,碩士論文,1999。

    13. Dumitriu S, ”Medical application of synthetic polymers,” Marcel Dekker, NewYork (1994) 725.

    14. 許芳豪,”以快速原型技術研究組織工程支架孔徑大小對細胞成長之影響”,國立台灣科技大學機械工程研究所,碩士論文,2006。

    15. Hae Yong Kweon, Mi Kyong Yoo, In KyuPark, Tae Hee Kim, Hyun Chul Lee, Hyun-Sook Lee, Jong-Suk Oh, Toshihiro Akaike, and Chong-SuCho, “A novel degradable poly caprolactone networks for tissue engineering,” Biomaterials 24 (2003) 801-808.

    16. JM Taboas, RD Maddox, PH Krebsbach, SJ Hollister, “Indirect solid free form fabrication of local and global porous,biomimetic and composite 3D polymer-ceramic scaffolds,” Biomaterials 24 (2003)181-194.

    17. K. Whang, C. H. Thomas, K. E. Healy, and G. Nuber, “A novel method to fabricate bioabsorbable scaffolds,” Polymer 36 (1995) 837-842.

    18. Si-Nae Park, Jong-Chul Park, Hea Ok Kim, Min Jung Song and Hwal Suh, “Characterization of porous collagen/hyaluronic acid scaffold modified by 1-eyhyl-3-(3-dimethylaminopropyl) carbodiimide,” Biomaterials 23
    (2002) 1205-1212.

    19. K. Whang, C. H. Thomas, K. E. Healy, and G. Nuber, “A novel method to fabricate bioabsorbable scaffolds,”Polymer 36 (1995) 837-842.

    20. Markus S. Widmer, Puneet K. Gupta, Lichun Lu, Rudolf K. Meszlenyi, Gregory R. D. Evans, Keith Brandt, Tom Savel, Ali Gurlek, Charles W. PatrickJr and Antonios G. Mikos, “Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration,” Biomaterials 19 (1998) 1945-1955.
    21. Kwangsok Kim, Meiki Yu, Xinhua Zong, Jonathan Chiu, Dufei Fang, Young-Soo Seo, Benjamin S. Hsiao, Benjamin Chu and Michael Hadjiargyrou, “Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide) nanofiber scaffolds for biomedical applications,” Biomaterials 24 (2003) 4977-4985.
    22. Guobao Wei and Peter X. Ma, “Structure and properties of nano-hydroxyapatite/
    polymer composite scaffolds for bone tissue engineering,” Biomaterials 25 (2004)
    4749-4757.

    23. 國立台灣科技大學雷射實驗室( http://140.118.198.70/RP.html)

    24. A Bertsch, P Bernhard, C Vogt, P Renaud, “Rapid Prototyping of small size objects,” Rapid Prototyping Journal, V6, N4 (2000) 259-266.

    25. Zein, IW, Hutmacher, DW, Tan, KC and Toch,SH, ”Fused deposition modeling of novel scaffold architecture for tissue engineering application,” Biomaterials 23 (2002) 1169-1185.

    26. T. H. Ang, F. S. A. Sultana, D. W. Hutmacher, Y. S. Wong, J. Y. H. Fuh, X. M. Mo, H. T. Loh, E. Burdet and S. H. Teoh, “Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system,” Materials Science and Engineering C 20 (2002) 35-42.

    27. Giovanni Vozzi, Christopher Flaim, Arti Ahluwalia and Sangeeta Bhatia, “Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition,”Biomaterials 24 (2003) 2533–2540.

    28. K.F. Leong, C.M. Cheah, C.K. Chua, “Solid freeform fabrication of 3D scaffolds for engineering replacement tissue and organs,” Biomaterials 24 (2003) 2363–2378.

    29. Park, Ann; Ben Wu; Griffith, Linda G, “Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) substrates allowing regionally selective cell adhesion, ” J. Biomater. Sci., Polym. Ed. 9 (1998) 89– 110.
    30. C. X. F. Lam, X. M. Mo, S. H. Teoh and D. W. Hutmacher, “Scaffold development using 3D printing with a starch-based polymer,” Materials Science and Engineering C 20 (2002) 49-56.
    31. Rapid Prototyping Center, (http://www.rpc.msoe.edu/machines.php)

    32. Jessica M. Williams, Adebisi Adewunmi, Rachel M. Schek, Colleen L. Flanagan, Paul H. Krebsbach, Stephen E. Feinberg, Scott J. Hollister and Suman Das, “Bone tissue engineering using polycaprolactoe scaffolds fabricated via selective laser sintering,” Biomaterials, Volume 26 (2005) 4817-4827.

    33. Malcolm N. Cooke et al. “Use of Stereolithography to Manufacture Critical-Sized 3D Biodegradable Scaffolds for Bone Ingrowth,” Biomaterials 27 (2002) 2519-5254.

    34. He Jiankang, Li Dichen, Liu Yaxiong, Yao Bo, Lu Bingheng and Lian Qin.“Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures,” Polymer 48 (2007) 4578-4588

    35. 李惟聖,”DLP式液態快速原形系統之模糊控制研究”,國立台灣科技大學自動化及控制研究所,碩士論文,2005。

    36. 沈昌和,”動態光罩技術研發與其於微小3D元件之製作”,國立台灣科技大學機械工程研究所,碩士論文,2003。

    37. 德州儀器, (http://www.ti.com)

    38. 奧圖碼科技, (http://www.optoma.com.tw)

    39. 陳俊豪,”光固化快速原型技術製作組織工程支架之研究”,國立台灣科技大學機械工程研究所,碩士論文,2006。
    40. 許端容,”具紫外光交聯性的聚胺酯二醇樹酯合成及應用於組織工程之研
    究”,國立清華大學材料科學與工程研究所,碩士論文,2004。

    41. 林建宏,”面成形快速原型系統光罩校正技術之研究”,國立台灣科技大學自動化及控制研究所,碩士論文,2004。

    42. 呂恒宗,”組織工程用精密支架之製造”,國立中央大學機械工程研究所,碩士論文,2002。(P.11)

    43. 黎坤瓚,”在細胞育成環境中使用快速成型技術製作組織工程支架之可行性 研究”,國立台灣科技大學機械工程研究所,碩士論文,2005。

    44. Shoufeng Yang, Kah-Fai Leong, Zhaohui Du, Chee-Kai Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional Factors,” Tissue Engineering, Volume 7, Number 6 (2001) 679-689.

    QR CODE