簡易檢索 / 詳目顯示

研究生: 李政庭
Cheng-Ting Lee
論文名稱: 結合慣質之斜面滾動式隔震支承研發
Research and development of slope rolling-type seismic isolators combined with inerter
指導教授: 許丁友
Ting-Yu Hsu
口試委員: 張家銘
Chia-Ming Chang
汪向榮
Shiang-Jung Wang
陳沛清
Pei-Ching Chen
游忠翰
Chung-Han Yu
許丁友
Ting-Yu Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 112
中文關鍵詞: 斜面滾動支承被動隔震支承慣質變慣質最大地表速度性能測試
外文關鍵詞: slope rolling-type seismic isolators, passive control, inerter, variable inerter, PGV, Performance Testing
相關次數: 點閱:276下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 斜面滾動隔震支承(SRI)能使上傳的加速度值極值不隨著地震強度而增加,且無自振頻率,所以不易與輸入擾動產生共振反應。而前人研究發現,當最大地表速度(PGV)較大時,最大位移反應可能會超出設計位移並發生碰撞。為了降低SRI在PGV大的地震發生的位移反應,本研究使用由飛輪、齒輪、齒條所建立之慣質系統,當SRI產生相對運動時,慣質能產生與相對加速度相關之慣質力,使得SRI的相對加速度反應降低,進而達到降低速度及位移反應的作用,而慣質雖然能夠有效的抑制位移反應,但過大的慣質力可能會導致犧牲掉上傳的加速度反應。而為了能讓SRI在PGV大的地震中能發揮慣質作用,降低位移反應,且在PGV小的地震中也不會有過多的慣質力影響其上傳加速度,於是設計出由滑軌、彈簧及質量塊所構成的變慣質系統,當變慣質系統旋轉時,質量塊因慣性力及彈簧力作用下,能夠於滑軌上變換位置,因而改變慣質的大小。本研究主要利用數值模擬方式,探討定慣質和變慣質在不同地震特性下的反應,而最後則初步嘗試設計慣質機構與斜面滾動支承結合,進行定慣質性能測試,驗證力學行為。
    而於數值模擬結果可知,在相同的超出位移反應限制的地震數量下(相同PO數),定慣質在PGV較小(小於20.7cm/sec)的地震下加速度反應比(R)為86.95優於SRI,而變慣質於PGV較小的地震下,R值能比定慣質低21.86%,達到更好的加速度效果。而實驗方面,理論上由於性能測試下其相對加速度很小,慣質力較不明顯,而在辨識慣質機構的出力情形時,遲滯迴圈有「負勁度」之現象產生,代表慣質機構具有一定程度上的發揮。


    Sloping rolling-type seismic isolators (SRI) can make uploaded acceleration value not increase with the earthquake intensity. Because SRI not have natural vibration frequency, it is not easy to have resonance reaction with the input horizontal acceleration excitation. However, previous studies have found that when the peak ground velocity (PGV) is large, the maximum displacement response may exceed the design displacement and cause a collision. In order to reduce the displacement response of SRI in earthquakes with large PGV, the inerter system is established by flywheel, gear and rack is used in this study. When SRI produces relative motion, inerter can generate inerter force related to relative acceleration. The relative acceleration response of SRI is reduced, thereby reducing the speed and displacement response. Although the inerter can effectively reduce the displacement response, excessive inerter force may sacrifice the uploaded acceleration response. In order to enable inerter only operate on SRI in earthquakes with large PGV and reduce the displacement response and not have too much inerter force to affect its upload acceleration in earthquakes with small PGV. In this study, variable inerter system is formed by slide rails, springs and the mass block, when the variable inerter system rotates, the mass block can change the position on the slide rail due to the inertia force and the spring force. And numerical simulation method is used to discuss the fixed inerter and variable inerter. In the end, a preliminary attempt was made to design the inerter mechanism combined with SRI, and experiment fixed inerter performance tests to verify the mechanical behavior.
    From the numerical simulation results under the same number of earthquakes beyond the displacement response limit (same number of PO), it can be seen that the average acceleration response ratio (R) of fixed inerter is 86.95% under earthquakes with small PGV(<20.7cm/sec), which is better than SRI. The R value of variable inerter can lower than fixed inerter 21.86% under earthquakes with small PGV to achieve better acceleration response. In terms of experiments, Because the relative acceleration is small in performance test, inerter force did not have obvious effect. When identifying force of the inerter mechanism, the hysteresis loop had a phenomenon of "negative stiffness", which represented inerter mechanism have a certain degree of usability.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章緒論 1 第二章慣質結合斜面式滾動隔震支承(iSRI) 7 第三章地震資料介紹 26 第四章數值模擬 29 第五章試驗模型及性能測試 65 第六章 結論與未來研究方向 85 參考文獻 89 附錄 91

    [1] 內政部營建署, "建築物耐震設計規範及解說," 民國一百十一年十月.
    [2] M. Hamidi and M. H. El Naggar, "On the performance of SCF in seismic isolation of the interior equipment of buildings," Earthquake Engineering & Structural Dynamics, vol. 36, no. 11, pp. 1581-1604, 2007/09/01 2007.
    [3] T. M. Al-Hussaini, M. C. Constantinou, and V. A. Zayas, Seismic isolation of multi-story frame structures using spherical sliding isolation systems. National Center for Earthquake Engineering Research, 1994.
    [4] R. I. Skinner, An introduction to seismic isolation/R. Ivan skinner, William h. Robinson, and graeme h. mcverry. 1993.
    [5] T. W. Lin, C. C. Chern, C. C. J. E. e. Hone, and s. dynamics, "Experimental study of base isolation by free rolling rods," vol. 24, no. 12, pp. 1645-1650, 1995.
    [6] Q. Zhou, X. Lu, Q. Wang, D. Feng, Q. J. E. e. Yao, and s. dynamics, "Dynamic analysis on structures base‐isolated by a ball system with restoring property," vol. 27, no. 8, pp. 773-791, 1998.
    [7] S. J. Wang et al., "Sloped multi‐roller isolation devices for seismic protection of equipment and facilities," vol. 43, no. 10, pp. 1443-1461, 2014.
    [8] M.-H. Tsai, S.-Y. Wu, K.-C. Chang, and G. C. J. E. s. Lee, "Shaking table tests of a scaled bridge model with rolling-type seismic isolation bearings," vol. 29, no. 5, pp. 694-702, 2007.
    [9] 許志隆, "斜面式滾動隔震支承之地震力位移反應探討," 碩士, 營建工程系, 國立臺灣科技大學, 2015.
    [10] S.-J. Wang, C.-H. Yu, C.-Y. Cho, and J.-S. Hwang, "Effects of design and seismic parameters on horizontal displacement responses of sloped rolling-type seismic isolators," Structural Control and Health Monitoring, vol. 26, no. 5, p. e2342, 2019/05/01 2019.
    [11] S.-J. Wang, C.-H. Yu, W.-C. Lin, J.-S. Hwang, and K.-C. Chang, "A generalized analytical model for sloped rolling-type seismic isolators," Engineering Structures, vol. 138, pp. 434-446, 2017/05/01/ 2017.

    [12] 洪家翔, "斜面式滾動隔震支承之分析模型建立與驗證," 碩士, 營建工程系, 國立臺灣科技大學, 2013.
    [13] 王耀萱, "斜面式滾動隔震支承之位移反應分析探討," 碩士, 營建工程系, 國立臺灣科技大學, 2014.
    [14] 黃治華, "強震預警技術應用於半主動斜面式滾動隔震支承之研究," 碩士, 營建工程系, 國立臺灣科技大學, 2019.
    [15] 戴珮珊, "利用震波最大速度推估值決定半主動斜面式滾動隔震支承阻尼力之研究," 碩士, 營建工程系, 國立臺灣科技大學, 2020.
    [16] P.-C. Chen and S.-J. Wang, "Improved control performance of sloped rolling-type isolation devices using embedded electromagnets," Structural Control and Health Monitoring, vol. 24, no. 1, p. e1853, 2017/01/01 2017.
    [17] 羅俊雄, "九二一集集大地震全面勘災精簡報告," 國家地震工程研究中心報告, 1975.
    [18] 王聖閔, "具多重控制性能斜面滾動隔震支承之設計、分析與試驗研究," 碩士, 營建工程系, 國立臺灣科技大學, 2021.
    [19] M. C. Smith, "Synthesis of mechanical networks: the inerter," vol. 47, no. 10, pp. 1648-1662, 2002.
    [20] M. C. Smith and F.-C. J. V. s. d. Wang, "Performance benefits in passive vehicle suspensions employing inerters," vol. 42, no. 4, pp. 235-257, 2004.
    [21] 林子婷, "雙向具慣質電磁式調諧質量阻尼器之最佳設計與振動台試驗," 碩士, 土木工程學系所, 國立中興大學, 2018.
    [22] K. Ikago, K. Saito, N. J. E. E. Inoue, and S. Dynamics, "Seismic control of single‐degree‐of‐freedom structure using tuned viscous mass damper," vol. 41, no. 3, pp. 453-474, 2012.
    [23] X. Liu, J. Z. Jiang, B. Titurus, A. J. M. S. Harrison, and S. Processing, "Model identification methodology for fluid-based inerters," vol. 106, pp. 479-494, 2018.

    無法下載圖示 全文公開日期 2027/09/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2027/09/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE