簡易檢索 / 詳目顯示

研究生: 吳懿璋
Yi-jhang Wu
論文名稱: 強化相粒徑與含量對AZ61/SiCp鎂合金複合材料於擠製加工及後續退火製程在機械性質影響之研究
Study of effect of particle size and particle percentage of AZ61/SiCp magnesium matrix composites on their mechanical properties due to extrusion and subsequent annealing
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 汪俊延
Jun-Yen Uan
洪子倫
Tzyy-Leng Horng
向四海
Su-Hai Hsiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 122
中文關鍵詞: 鎂基複合材料(Mg MMCs)碳化矽顆粒擠製退火處理機械性質多重品質特性
外文關鍵詞: Magnesium metal matrix composites (Mg MMCs), SiC particles (SiCp), Extrusion, Annealing, Mechanical properties, Multiple performance characteristics index(MPCI)
相關次數: 點閱:271下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鎂基複合材料 (Magnesium metal matrix composites, Mg MMCs) 具有比鎂合金相對優異的力學性能,經由在基材中加入如微型顆粒、短纖維和連續纖維等強化相,使基材和強化相在擁有良好的結合性的情況下,以提升機械性質。本研究探討添加不同強化相粒徑 (1 μm、10 μm、50 nm) 與重量百分含量 (0.5、1、2 wt.%) 之SiCp碳化矽顆粒所製備的AZ61/SiCp鎂合金複材擠製平板,針對碳化矽顆粒在機械性質所造成的影響,以及平板在擠製後的後續退火處理所造成的微觀結構演變,材料強度、延展性及成形性等機械性質的改變進行深入探討。最後,再以「田口方法」結合「模糊邏輯理論」方法,在顧及各項材料性質的多重品質特性指標 (Multiple performance characteristics index, MPCI) 條件下,提出最適化製程參數組合,並以實驗來驗證其結果,設計出具備各項重要指標性能的材料。

本研究結果顯示,隨著強化相顆粒的添加,擠板在各項機械性質皆能有效的提升,且強化相粒徑尺寸越小,對晶粒的細化效果越明顯,各項機械性質提升幅度也愈大。其中以1 wt.% SiCp/50 nm的組合具有相對優異的機械性質,其極限強度331 MPa、降伏強度136.4 MPa、伸長率43.1%、硬度62 HV、晶粒尺寸3.3 μm、I.E.值1.69 mm,相較於未添加SiCp的鎂基複材擠製板材分別提升 (細化) 了6.4%、3.4%、83.4%、2%及13.2%,但成形性則下降了9.1%。

在施以250℃/ 1 hr的退火處理後,添加1 μm與50 nm的組合在硬度及強度部分皆有所提升,而延展性則因析出的β相導致小幅下降; 添加10 μm強化相的擠板雖然在0.5 wt.%時各項性質皆有所提升,但隨著添加量的上升會使析出物產生過多,進而導致強度、延展性與成形性急遽的下降; 無添加強化相的AZ61擠板在經過退火處理後,各項性質的提升幅度皆勝過有添加強化相的組合,但添加1 μm與50 nm強化相的組合在強度上仍舊勝過無添加強化相的AZ61擠板,且同時保有相近的延展性與成形性,故添加強化相的組合在此製程上依舊有其優勢存在。


Magnesium metal matrix composites (Mg MMCs) possess relatively better mechanical properties than magnesium alloy, by adding reinforcements such as small particles, short fiber or continous fiber into the matrix. This study investigated the influence by addition of different size and proportion of SiCp for manufacturing AZ61/SiCp magnesium alloy composites extrusion plate, against the mechanical properties of silicon carbide particles caused by the impact, and carried depth discussion evolution of microstructure, changes of material strength, ductility, formability and other mechanical properties caused by subsequent annealing treatment after extrusion of plate. Fuzzy theory and Taguchi method were combined to analyzed the hot extrusion process and subsequent annealing of the magnesium alloy composite sheets. Under the condition of the MPCI, the optimal combination of process parameters was decided, the results were verified by experiments.

The results showed that the mechanical properties of plates can be improved with the addtion of reinforcement particles, and the more obvious effects of grain refinement due to the smaller reinforcement particles size, the enhancing rate of mechanical properties were greater. Among them, the combination of 1 wt.% SiCp/50 nm having a relatively excellent mechanical properties. The ultimate tensile strength, yielding strength, ductility, hardness and grain size of AZ61/1 wt.% SiCp/50 nm plate are 331 MPa, 136.4 MPa, 43.1%, 62 HV and 3.3 μm, respectively. Compared with the SiCp free Mg MMCs plate were enhance(or refinement) 6.4%, 3.4%, 83.4%, 2% and 13.2%, but formability decreased by 9.1%.

After subjected to annealing treatment at 250℃/ 1 hr, AZ61/SiCp/1 μm and AZ61/SiCp/50 nm MMCs plate exhibited improvement on hardness and strength in every particle percentage. However, due to the over amount of β precipitation, there was a slightly decline on ductility. Although AZ61/0.5 wt.% SiCp/10 μm MMCs annealed plate have improved various properties, but the amount of precipitate increased with the percentage of SiCp, which leads to drastic decrease of strength, ductility and formability. The mechanical properties of SiCp free AZ61 annealed MMCs plate are bigger that those of unannealed MMCs plate. But AZ61/SiCp/1 μm and AZ61/SiCp/50 nm MMCs having a higher strength compared to SiCp free AZ61 MMCs plate while maintaining ductility and formability similarly. Therefore, addtion of SiCp into AZ61 in the processing still possesses its advantages.

摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 XI 表目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 鎂基複合材料之相關文獻 3 1.2.2 擠製加工之相關文獻 7 1.2.3 塑性加工與後續退火製程之相關文獻 11 1.2.4 多重品質特性指標之相關文獻 13 1.3 文獻回顧心得整理 14 1.4 研究動機與目的 16 第二章 研究理論基礎 18 2.1 鎂的基本性質 18 2.2 合金元素對鎂合金的影響 19 2.2.1 鋁元素對鎂合金的影響 21 2.2.2 錳元素對鎂合金的影響 22 2.2.3 鋅元素對鎂合金的影響 23 2.2.4 矽元素對鎂合金的影響 23 2.2.5 鐵元素對鎂合金的影響 24 2.2.6 銅元素對鎂合金的影響 24 2.2.7 鎳元素對鎂合金的影響 25 2.3 鎂合金的特性 25 2.4 鎂合金之符號標示法 26 2.5 鎂合金的強化機制 27 2.5.1 晶粒細化 28 2.5.2 析出強化 29 2.5.3 散佈強化和Orowan強化 29 2.5.4 熱膨脹係數差異影響 30 2.5.5 負荷影響 (Load Bearing) 30 2.5.6 鎂合金熱處理 31 2.6 擠製加工原理 32 2.6.1 直接擠製法 33 2.6.2 間接擠製法 34 2.7 田口方法 36 2.7.1 田口式直交表 37 2.7.2 品質計量法 38 2.7.3 變異數分析 40 2.8 模糊理論 42 2.8.1 模糊系統 42 2.8.2 模糊化機構 43 2.8.3 模糊規則庫 43 2.8.4 模糊推論引擎 44 2.8.5 去模糊化機構 44 第三章 實驗方法與步驟 45 3.1 實驗材料與強化相 47 3.2 實驗設備 48 3.2.1 鑄造用熔煉爐 48 3.2.2 熱間擠製機 50 3.2.3 高溫熱處理爐 51 3.2.4 濕式研磨/拋光機 52 3.2.5 光學顯微鏡 (Optical Microscope, OM) 53 3.2.6 微型維克氏硬度機 (Micro-Vickers Hardness Tester) 53 3.2.7 動態拉伸試驗機 (Material Test System, MTS) 54 3.2.8 杯突試驗機 (Eriehsen Cupping Tester) 55 3.3 實驗規劃 59 3.3.1 板材擠製加工與模具之規劃 59 3.3.2 多重品質特性最適化實驗參數設定 61 3.3.3 拉伸試片規劃 62 第四章 結果與討論 64 4.1 AZ61/SiCp擠製平板之微觀結構 64 4.2 AZ61/SiCp擠製平板之硬度分析 68 4.3 AZ61/SiCp鎂基複合材料之機械性質分析 69 4.3.1 AZ61/SiCp擠製平板之拉伸性質分析 69 4.3.2 AZ61/SiCp擠製平板之成形性分析 72 4.4 AZ61/SiCp擠製平板退火後之微觀結構 74 4.5 AZ61/SiCp擠製平板退火後之硬度分析 79 4.6 AZ61/SiCp擠製平板退火後之機械性質分析 81 4.6.1 AZ61/SiCp擠製平板退火後之拉伸性質分析 81 4.6.2 AZ61/SiCp擠製平板退火後之成形性分析 88 4.7 強化機制之貢獻程度計算 92 4.8 實驗結果之多重品質特性指標最適化製程參數分析 94 第五章 結論 99 第六章 未來研究方向 102 參考文獻 103

[1]陳志亦,「鎂基複合材料AZ91D/SiCp製備之研究」,碩士論文,國立中正大學機械工程學系研究所,嘉義 (2005)。
[2]洪品森,「鎂基複合材料的製備及其熱處理後機械性質之研究」,碩士論文,國立中正大學機械工程學系研究所,嘉義 (2009)。
[3]劉彥辰,「AM60/Al2O3p鎂基複合材料擠型管之機械性質與微觀組織研究」,碩士論文,國立中正大學機械工程學系研究所,嘉義 (2012)。
[4]陳仲威,「添加AlNp鎂基複材製備及其機械性質之研究」,碩士論文,國立中正大學機械工程學系研究所,嘉義 (2010)。
[5]T.-J. Chen, X.-D. Jiang, Y. Ma, Y.-D. Li and Y. Hao, “Grain refinement of AZ91D magnesium alloy by SiC”, Journal of Alloys and Compounds, Vol. 96, pp. 218-225 (2010).
[6]B.-W. Chua, L. Lu and M.-O. Lai, “Influence of SiC particles on mechanical properties of Mg based composite”, Composite Structures, Vol. 47, pp. 595-601 (1999).
[7]黃建忠,「強化相粒徑對AZ61/SiCp鎂基複合材料鑄錠及擠型材之機械性質影響的研究」,碩士論文,國立台灣科技大學機械工程系研究所,台北 (2013)。
[8]王朝輝、康永林、趙鴻金、徐躍、董文超、劉津偉,「納米SiC顆粒增強AM60鎂合金組織性能的研究」,中國壓鑄、擠壓鑄造、半固態加工學術年會專刊,pp. 52-53 (2005)。
[9]B.-H. Zhang and Z.-M. Zhang, “Influence of homogenizing on mechanical properties of as-cast AZ31 magnesium alloy”, Transactions of Nonferrous Metals Society of China, Vol. 20, pp. 439-443 (2010).
[10]J.-Y. Li, J.-X. Xie, J.-B. Jin and Z.-X. Wang, “Microstructural evolution of AZ91 magnesium alloy during extrusion and heat treatment”, Transactions of Nonferrous Metals Society of China, Vol. 22, pp. 1028-1034 (2012).
[11]Q. Chen, Z. Zhao, D. Shu and Z. Zhao, “Microstructure and mechanical properties of AZ91D magnesium alloy prepared by compound extrusion”, Materials Science and Engineering A, Vol. 528, pp. 3930-3934 (2011).
[12]X. Wu, X. Yang, J. Ma, Q. Huo, J. Wang and H. Sun, “Enhanced stretch formability and mechanical properties of a magnesium alloy processed by cold forging and subsequent annealing”, Materials and Design, Vol. 43, pp. 206-212 (2013).
[13]Q. Miao, L. Hu, G. Wang and E. Wang, “Fabrication of excellent mechanical properties AZ31 magnesium alloy sheets by conventional rolling and subsequent annealing”, Materials Science and Engineering A, Vol. 528, pp. 6694-6701 (2011).
[14]H.-F. Sun, C.-J. Li, X. Yang and W.-B. Fang, “Microstructures and mechanical properties of pure magnesium bars by high ratio extrusion and its subsequent annealing treatment”, Transactions of Nonferrous Metals Society of China, Vol. 22, pp. 445-449 (2012).
[15]陳永章、古東源、王嘉興,「結合「田口方法」與「TOPSIS」於多重品質特性參數最佳化之研究」,International Symposium of Quality Management, Taiwan (2008)。
[16]紀勝財、吳聲讓,「模糊理論在多重品質特性下參數最佳化之適用性研究」,科技管理學刊,第十卷第二期,pp. 87-108 (2005)。
[17]林益瑋,「AZ31與AZ61鎂合金熱擠製程之最佳化研究」,碩士論文,國立台灣科技大學機械工程系研究所,台北 (2009)。
[18]劉文勝,「AZ61 鎂合金的疲勞性質與破壞分析」,碩士論文,國立中央大學機械工程學系研究所,桃園 (2000)。
[19]黃曉鋒、朱凱、曹喜娟,「主要合金元素在鎂合金中的作用」,Foundry Technology, Vol. 29, pp. 1574-1578 (2008)。
[20]許並社、李明照,「鎂冶煉與鎂合金熔煉工藝」,化學工業出版社,北京 (2005)。
[21]潘復生、韓恩厚,「高性能變形鎂合金及加工技術」,科學出版社,北京 (2007)。
[22]蔡東霖,「利用ECAE及退火處理細化鋁鎂合金晶粒」,碩士論文,國立中山大學材料科學研究所,高雄 (2001)。
[23]麻彥龍、張津,「AZ91D鎂合金研究新進展」,熱加工工藝,2007年16期。
[24]蔡承勳,「不同製程對AZ61/Al2O3P鎂基複合材料機械性質及疲勞之影響」,碩士論文,國立台灣科技大學機械工程系研究所,台北 (2013)。
[25]陸仁凱,「7XXX系含鈧鋁合金的顯微結構與機械性質之分析」,碩士論文,國立中央大學機械工程研究所,桃園 (2006)。
[26]余憲宗,「應用模糊與田口方法尋求光學投影研磨之最佳操作參數」,碩士論文,建國科技大學自動化工程系暨機電光系統研究所,彰化 (2007)。
[27]周明志,「模糊田口方法於袋式集塵器操作參數之最佳化研究」,碩士論文,國立高雄第一科技大學機械與自動化工程系研究所,高雄 (2005)。
[28]吳祥輝,「應用模糊田口方法於架空式起重機桁架穩健多目標最佳化設計」,碩士論文,國立高雄第一科技大學機械與自動化工程系研究所,高雄 (2003)。
[29]S.F. Hassan and M. Gupta, “Effect of length scale of Al2O3 particulates on microstructural and tensile properties of elemental Mg”, Materials Science and Engineering A, Vol. 425, pp. 22-27 (2006).
[30]P. Agrawal and C.-T. Sun, “Fracture in metal–ceramic composites”, Composites Science and Technology, Vol. 64, pp. 1167.1178 (2004).
[31]S. Psakhie, V. Ovcharenko, B. Yu, E. Shilko, S. Astafurov, Y. Ivanov, A. Byeli and A. Mokhovikov, “Influence of Features of Interphase Boundaries on Mechanical Properties and Fracture Pattern in Metal-Ceramic Composites”, Journal of Marine Science and Technology, Vol. 29 (11), pp. 1025-1034 (2013).
[32]G. Ma, G. Han and X. Liu, “Grain refining efficiency of a new Al-1B-0.6C master alloy on AZ63 magnesium alloy”, Journal of Alloys and Compounds, Vol. 491, pp. 165-169 (2010).
[33]M. Habibnejad-Korayem, R. Mahmudia and W.-J. Pooleb, “Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles”, Materials Science and Engineering A, Vol. 519, pp. 198-203 (2009).
[34]S.-J. Huang and P.-C. Lin, “Grain refinement of AM60/Al2O3p Megnesium Metal-matrix Composites Processed by ECAE”, Kovove Materialy-Metallic Materials.
[35]S. F. Hassan and M. Gupta, “Development of high performance magnesium nanocomposites using solidification processing route”, Materials Science and Technology, Vol. 20, pp. 1383-1388 (2004).

QR CODE