簡易檢索 / 詳目顯示

研究生: 何培基
Pei-Chi Ho
論文名稱: 部份覆蓋拘束阻尼層平板之最佳配置與減振分析
Optimal Placement of Partial CLD Treatment on a Plate and Vibration Reduction Analysis
指導教授: 黃世欽
Shyh-Chin Huang
口試委員: 陳億成
none
徐茂濱
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 107
中文關鍵詞: 拘束阻尼層
外文關鍵詞: CLD
相關次數: 點閱:112下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文探討拘束阻尼層(Constrained Layer Damping,CLD)應用於樑與平板之最佳配置與減振分析,首先推導出部份覆蓋拘束阻尼層樑與平板之運動方程式,並求出在各個模態下,黏彈層之變形。由於拘束阻尼層之吸振能量取決於其剪變形,隨覆蓋位置改變,其吸振能量亦不同,因此對於每一模態而言,均有其最佳覆蓋位置,但是一般之振動是由多個模態參與而成,要如何在錯綜複雜的振動行為中找出最佳貼覆位置以減少振動,將是本文之重心。
本文首先建立在各個模態下,拘束阻尼層在不同貼覆位置之吸振能量圖,以各模態之吸振能量圖為基底,當受到任一振源時,經由模態分解,瞭解其各模態之參與量,並依循本文所建立之最佳化準則,經由最佳化方法決定拘束阻尼層之最佳貼覆位置。文末並進行實驗分析,以驗証所建立之最佳化準則。實驗與理論計算呈現相符之結果,足見本理論之正確性與可用性。


This thesis develops an algorithm for the optimal placement and vibration reduction of constrained layer damping (CLD) treatment on beams and plates. Analytical model of plate and beam with partially covered CLD is first derived and the mode shapes are obtained. The deformation of visco-elastic layer associated at each mode is then calculated. The dissipated energy in VEM is related to its shear deformation and it varies from place to place. Therefore, for each mode there exists an optimal placement of CLD. In most of vibration cases, the vibration is attributed to participation of various modes and it has been an important issue of selecting the best placement of CLD in order to achieve the best damping effect. In the present thesis, the dissipation energy diagrams of CLD for each mode at various locations are first constructed and used as a database. An optimal algorithm utilizing the built diagrams is then developed and with it a plate subjected to arbitrary loading can be determined for its best CLD placement. The amount of vibration reduction is calculated as well. At last, experiments are performed to verify the developed algorithm. The results are consistent and it prove, the validity and applicability of the develop theory.

摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖表索引 VII 符號索引 XI 第一章 緒論 1 1.1文獻回顧 1 1.2研究動機與目的 3 1.3 本文架構 4 第二章 理論分析 6 2.1具拘束阻尼覆蓋樑與平板介紹 6 2.1.1黏彈材料之基本假設 7 2.2具拘束阻尼層覆蓋之樑理論 8 2.2.1應力、應變、位移關係式 8 2.2.2系統之能量關係式 10 2.2.3三層樑結構之平衡關係式 11 2.2.4系統之運動方程式與邊界及相容條件 13 2.3具拘束阻尼層覆蓋之平板理論 18 2.3.1應力、應變、位移關係式 18 2.3.2系統之能量關係式 20 2.3.3三層平板結構之平衡關係式 22 2.3.4系統之運動方程式 24 第三章 系統之暫態與穩態振動分析 32 3.1系統暫態響應與穩態響應之推導 32 3.1.1系統暫態響應之推導 32 3.1.2系統穩態響應之推導 33 3.2 系統之固有頻率分析 34 3.2.1部份覆蓋拘束阻尼層樑之固有頻率 34 3.2.2部份覆蓋拘束阻尼層平板之固有頻率 35 3.3.系統之抑振分析 36 3.3.1部份覆蓋拘束阻尼層樑之暫態與穩態振動分析 36 3.3.2部份覆蓋拘束阻尼層平板之暫態與穩態振動分析 37 3.4系統參數效應分析 39 3.4.1不同貼覆位置對三層樑結構頻率之影響 39 3.4.2不同貼覆位置對三層平板結構頻率之影響 40 第四章 系統各模態阻尼之能量分析 46 4.1不同貼覆位置對部份覆蓋樑吸振能量之影響 46 4.2不同貼覆位置對部份覆蓋平板吸振能量之影響 48 第五章 拘束阻尼層最佳貼覆位置 55 5.1最佳化準則之建立 55 5.2目標函數 56 5.3最佳化方法 57 5.3.1格點法 58 5.3.2複合形法 59 5.4數值結果與討論 60 第六章 實驗架設與結果 75 6.1實驗架設 75 6.1.1量測設備 76 6.1.2分析系統 77 6.2實驗結果與比較 78 6.2.1黏彈材料貼覆於樑不同位置之時域響應 79 6.2.2黏彈材料貼覆於平板不同位置之時域響應 79 第七章 結論與未來展望 93 7.1結論 93 7.2未來研究方向 94 參考文獻 96 附錄 100 作者簡介 107

[1] Kerwin, E. M. Jr.,“Damping of Flexural Waves by a Constrained
Visco-Elastic Layer,”Journal of the Acoustical Society of America, 31, pp. 952-962(1959).
[2] DiTaranto, R. A.,“Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite-Length Beams,”Journal of Applied Mechanics, ASME, pp. 881-886(1965).
[3] Mead, D. J. and Markus, S.,“The Forced Vibration of a Three-Layer Damped Sandwich Beam with Arbitrary Boundary Conditions,” AIAA Journal, 10(2), pp. 163-175(1969).
[4] Yan, M. J. and Dowell, E. H.,“Governing Equations of Vibrating Constrained-Layer Damping Sandwich Plates and Beams,”Journal of Applied Mechanics, ASME, pp. 1041-1046(1972).
[5] Douglas, B. E. and Yang, J. C. S.,“Transverse Compressional Damping in the Vibratory Response of Elastic-Viscoelastic Beams,” AIAA Journal, 16(9), pp. 925-930(1978).
[6] Rao, D. K.,“Frequency and loss factors of sandwich beams under various boundary conditions,”Journal of Mechanical Engineering Science, 20(5), pp271-282(1978).
[7] Lall, A. K., Asnani, N. T. and Nakra, B. C.,“Damping analysis of partially covered sandwich beams,”Journal of Sound and Vibration, 123(2), pp.247-259, (1988).
[8] Mead, D. J. and Yaman, Y.,“ The Harmonic Response of Rectangul-ar Sandwich Plates with Multiple Stiffening: A Flexural Wave Analysis,”Journal of Sound and Vibration,145(3), pp.409-428(1991).
[9] Rao, M. D. and He, S.,“ Dynamic Analysis and Design of Laminated Composite Beams with Multiple Damping Layers,” AIAA Journal, 31(4), pp. 736-745(1993).
[10] Huang, S. C. and Hu, Y. C.,“The frequency response and damping effect of three-layer thin shell with viscoelastic core,”Computers and Structures, 76, pp. 577-591(2000).
[11] Huang, S. C. and Chen, Y. C.,“Parametric Effects on the Vibration of Plates with CLD treatment,”Journal of the Chinese Society of Mechanical Engineers, 20(2), pp. 159-167(1999).
[12] 賴炳佑,具拘束阻尼層部份覆蓋樑之振動與阻振分析,國立台灣科技大學機械工程研究所碩士學位論文(2004)。
[13] Meirovitch, L.,Principles and Techniques of Vibration, Prentice-Hall, Inc.,(1997).
[14] Huang, S. C., Inman, D. J. and Austin, E. M.,“Some Design Considerations for Active and Passive Constrained Lager Damping Treatment,”Journal of Smart Material and Structure, 5, pp.301-313(1995).
[15] 劉惟信,機械最佳化設計,台北,全華科技圖書股份有限公司,民國八十五年九月。
[16] Rao, S. S.,Engineering Optimization – Theory and Practice, Third Edition, John Wiley & Sons, Inc.(1996).
[17] Inman, D. J.,Engineerig Vibration, Prentice-Hall International, Inc. New Jersey.,(2001).
[18] Roy, P. K. and Ganesan, N.,“ A Vibration and Damping Analysis of Circular Plates with Constrained Damping Layer Treatment,” Computers and Structures, 49(2), pp. 269-274(1993).
[19] Ramesh, T. C. and Ganesan, N.,“ Orthotropic Cylindrical Shells with a Viscoelastic Core: A Vibration and Damping Analysis,” Journal of Sound and Vibration, 175(4), pp. 535-555(1994).
[20] Johnson, C. D.,“ Design of Passive Damping Systems,”Special 50th Anniversary Design Issue, ASME, 117, pp. 171-176 (1995).
[21] Lu, Y. P.,“Forced Vibrations of Damped Cylindrical Shells Filled with Pressurized Liquid,”AIAA Journal, 15(9), pp. 1242-1249 (1977).
[22] Lu, Y. P., Roscoe, A. J. and Douglas, B. E.,“ Analysis of the Response of Damped Cylindrical Shells Carrying Discontinuously Constrained Beam Elements,”Journal of Sound and Vibration, 150(3), pp. 395-403 (1991).

QR CODE