簡易檢索 / 詳目顯示

研究生: 梁文誠
Wen-Cheng Liang
論文名稱: 適用於部分遮蔽狀況之太陽能系統最大功率追蹤法則之研究與實現
Research and Implementation of MPPT Algorithms for PV Systems Operating under Partially Shaded Conditions
指導教授: 劉益華
Yi-Hua Liu
郭明哲
Ming-Tse Kuo
口試委員: 羅有綱
Yu-Kang Lo
王順忠
Shun-Chung Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 74
中文關鍵詞: 太陽能發電系統最大功率追蹤部分遮蔽粒子群演算法
外文關鍵詞: Photovoltaic system, Maximum Power Point Tracking, Partially Shaded Conditions, Particle Swarm Optimization.
相關次數: 點閱:267下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於人類過度開發導致全球氣候暖化與空氣汙染的問題日趨嚴重,為了改善以上問題,許多專家學者均致力於再生能源的研究。再生能源為潔淨、取之不盡、用之不竭的大自然能源,而在所有再生能源之中,太陽能是相當重要的再生能源之一。對於商用之太陽能發電系統,在成本與體積為基本考量之下,轉換效率的改善變得極其重要,造成太陽能發電系統轉換效率低的主要原因是太陽能電池之電壓及電流關係為非線性曲線,其會依據當時的太陽日照量與溫度的不同而改變,並造成太陽能電池之輸出功率有所不同。因此,必須發展一最大功率追蹤(Maximum Power Point Tracking, MPPT) 法則,以在不同氣候因素下依然使得太陽能電池保持最大功率輸出,並具有快速且準確的追蹤響應。
    現今針對最大功率追蹤法則已發展出相當多演算法,其在穩定的天氣狀態下多能發揮高效能的表現。然而當太陽能模組受到部分遮蔽情況下,功率-電壓之特性曲線將變得更加複雜,其將呈現多峰值的情況而產生多個區域(Local)最大功率點,由於傳統的最大功率追蹤法則多在追尋到峰值時便會停止搜尋,因此其在搜索全域(Global)最大功率點時會遭遇困難,這會造成太陽能發電系統的追蹤效率下降。由於部分遮蔽的情形對大型太陽能發電系統而言相當常見,因此發展一當發生部分遮蔽狀況時依然能快速且準確地尋找全域最大功率點之新型最大功率追蹤法則是有必要的。
    本論文將針對太陽能模組在部分遮蔽情形下,發展以粒子群演算法(Particle Swarm Optimization, PSO)為基礎之最大功率追蹤法則。本論文中功率電路使用升壓式轉換器,韌體部分則是使用Microchip公司所推出的dsPIC微處理器來實現數位控制器。實際測試粒子群演算法是否能成功追蹤到遮蔽情況下之太陽能功率-電壓特性曲線中的最大功率點,並測試在日照變化的情況下程式是否能成功判別日照的變化重新追蹤最大功率點。由實驗結果可知粒子群演算法在電壓-功率特性曲線為多峰值狀況下仍可搜尋到最大功率點位置,其追蹤精確度為99%以上,且可判別日照變化重新追蹤最大功率點。


    Studies on renewable energy systems are actively being promoted in order to mitigate environmental issues such as the global warming and air pollution. Photovoltaic (PV) energy is one of the most important renewable energy sources since it is clean, free and inexhaustible. For the commercialization of PV energy, the reduction of cost and size, and
    the improvement of conversion efficiency have become important concerns. The main reason for the low conversion efficiency is the non-linear voltage-current (V-I) characteristics, which depends on the solar insolation and panel temperature. Therefore, a maximum power point tracking (MPPT) technique which has quick response and is able to track the peak power generated in any weather condition is required.
    There are many MPPT strategies that are effective and time tested under uniform solar insolation. However, under partially shaded conditions when the entire array does not receive uniform insolation, the P –V characteristics become more complex and have multiple peaks. The presence of multiple peaks reduces the effectiveness of most of the existing tracking algorithms, which assume a single peak power point on the P–V characteristic. Since the occurrence of partially shaded conditions is quite common, there is a need to develop a novel MPPT algorithm for PV systems operating under partially shaded conditions.
    This thesis focuses on developing a particle swarm optimization (PSO)-based MPPT algorithm for a PV system operating under partially shaded conditions. A boost converter is used as the power stage and the MPPT controller is realized using microcontroller dsPIC33FJ16GS502 from Microchip corp. Experiments are carried out to validate the correctness and effectiveness of the proposed algorithm. According to the experimental results, the proposed algorithm can track global maximum power point in various test conditions and the tracking accuracy is higher than 99%. The proposed algorithm can also restart tracking under irradiation changing conditions.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究動機與目的 1.3太陽能最大功率追蹤系統架構 1.4 論文大綱 第二章 太陽能電池介紹 2.1 太陽能電池簡介 2.2 太陽能電池種類 2.3 太陽能電池電氣特性 第三章 太陽能最大功率追蹤法則 3.1 最大功率追蹤簡介 3.2 均勻照度時之最大功率追蹤法則 3.3 受遮蔽時之最大功率追蹤法則 第四章 太陽能最大功率追蹤系統之硬體與韌體介紹 4.1 前言 4.2 升壓式轉換器簡介 4.3 升壓式轉換器設計 4.4 dsPIC33FJ16GS502簡介 4.3 數位濾波器 第五章 粒子群演算法介紹與應用 5.1 粒子群演算法簡介 5.2 粒子群演算法用於遮蔽狀況下之最大功率追蹤法則 第六章 實驗結果 6.1 實驗使用之硬體介紹 6.2 粒子群演算法之最大功率追蹤實驗波形 第七章 結論與未來研究方向 7.1 結論 7.2 未來研究方向 參考文獻

    [1] 馮垛生,「太陽能發電原理與應用」,五南圖書出版股份有限公司,2009。
    [2] 莊嘉琛,「太陽能工程-太陽電池篇」,全華圖書股份有限公司,2007。
    [3] M. F. Ishengoma and E. L. Norum, “Design and implementation of a digitally controlled stand-alone photovoltaic power supply,” Nordic Workshop on Power and Industrial Electronics, pp. 12-14, 2002.
    [4] Y. H. Ji, D. Y. Jung, and J. G.. Kim, “A Real Maximum Power Point Tracking Method for Mismatching Compensation in PV Array Under Partially Shaded Conditions,” IEEE Trans. On Power Electronics, vol. 26, pp. 1001-1009, Apr., 2001.
    [5] H. Patel and V. Agarwal, “MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics,” IEEE Trans. On Energy Conversion, vol. 23, pp. 302-310, Mar., 2008.
    [6] N. Mutoh, M. Ohno, and T. Inoue, “A method for MPPT control while searching for Parameters corresponding to weather conditions PV Generation systems,” IEEE Trans. On Industrial Electronics, vol. 53, pp. 1055-1065, Aug. 2006.
    [7] V.R. Scarpa, S. Buso, and G. Spiazzi, “Low-Complexity MPPT technique exploiting the PV module MPP locus characterization,” IEEE Trans. On Industrial Electronics, vol. 56, pp. 1531-1538, May 2009.
    [8] T. Esram and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Trans. On Energy Conversion, vol. 22, 439-449, Jun. 2007.
    [9] C. hang, D. Zhao, J. Wamg, and G. Chen, “A modified MPPT method with variable perturbation step for photovoltaic system,” IEEE Conference, IPEMC '09., pp. 2096-2099, 2009.
    [10] E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a Microcontroller-Based Photovoltaic Maximum Power Point Tracking Control System,” IEEE Trans. On Power Electronics, vol. 16, pp. 46-54, Jan. 2001.
    [11] J. A. B. Vieira and A. M. Mota, “Maxmium Power Point Tracker Applied in Batteries Charging with PV Panels,” IEEE Trans. On Industrial Electronics, pp. 202-207, 2008.
    [12] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum Photovoltaic Power Tracking: an Algorithm For Rapidly Changing Atmospheric Condition,” Generation Transmission Distribution, vol. 142, pp. 59-64, 1995.
    [13] F. Liu, S. Duan, F. Liu,B. Liu, and Y. Kang, “A Variable Step Size INC MPPT Method for PV Systems,” IEEE Trans. On Industrial Electronics, vol. 55, pp. 2622-2628, 2008
    [14] 陳正雄,「獨立型太陽能供電系統之研製」,長庚大學電機工程研究所碩士學位論文,民國九十二年六月。
    [15] H. Patel and V. Agarwal, “Maximum Power Point Tracking Scheme for PV Systems Operating Under Partially Shaded Conditions,” IEEE Trans. On Industrial Electronics, vol. 55, pp. 1689-1698, Apr. ,2008.
    [16] T. L. Nguyen and K. S. Low, “A Global Maximum Power Point Tracking Scheme Employing DIRECT Search Algorithm for Photovoltaic Systems,” IEEE Trans. On Industrial Electronics, vol. 57, pp. 3456-3466, Oct. 2010.
    [17] N. A. Ahmed and M. Miyatake, “A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions,” ELSEVIER Electric Power Systems Research, pp. 777-784, 2008.
    [18] Y. H. Ji, D. Y. Jung, and J. G. Kim, “A Real Maximum Power Point Tracking Method for Mismatching Compensation in PV Array Under Partially Shaded Conditions,” IEEE Trans. On Power Electronics, vol. 26, pp. 1001-1009, Apr. 2011.
    [19] K. Kobayashi, I. Takano, and Y. Sawada, “A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions,” ELSEVIER Solar Energy Materials & Solar Cells, pp. 2975-2988, 2006.
    [20] M. Miyatake, M. Veerachary, and F. Toriumi, “Maximum Power Point Tracking of Multiple Photovoltaic Arrays: A PSO Approach,” IEEE Tran. On Aerospace and Electronic Systems, vol. 47, pp. 367-380, Jan. 2011.
    [21] L. R. Chen, C. H. Tsai, and Y. L. Lin, “A Biological Swarm Chasing Algorithm for Tracking the PV Maximum Power Point,” IEEE Trans. On Energy Conversion, vol. 25, pp. 484-493, Jun. 2010.
    [22] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electrics media enhanced third edition, WILEY, 2003.
    [23] 江炫樟,「電力電子學-第三版」,全華圖書股份有限公司,2009。
    [24] 梁適安,「交換式電源供給器之理論與實務設計」,全華圖書股份有限公司,2008。
    [25] Microchip Datasheet of dsPIC33FJ16GS50, Microchip, Available at: http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en537164.
    [26] 曾百由,「數位訊號控制器原理與應用」,宏友圖書開發股份有限公司,民國96年11月。
    [27] K. C. Smith and A. S. Sedra, Microelectronic Circuits fifth edition, Oxford, 2004.
    [28] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm Theory,” Proc. Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp.39-43.
    [29] R. C. Eberhart and J. Kennedy, “Particle swarm optimization,” Proc. IEEE International Conference on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ, pp. 1942-1948.
    [30] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, Baker & Taylor Books, 2006.
    [31] K. E. Parsopoulos and M. N. Vrahatis, Particle Swarm Optimization and Intelligence:Advances and Applications, Information science reference, 2010.
    [32] Chroma Datasheet of 62150H-600S, Chroma, Available at: http://www.chroma.com.tw/product/detail.aspx?id=2437.
    [33] Chroma Datasheet of 6312, Chroma, Available at: http://www.chroma.com.tw/product/detail.aspx?id=1957.

    無法下載圖示 全文公開日期 2017/07/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE