簡易檢索 / 詳目顯示

研究生: 林鈺博
Yu-Po Lin
論文名稱: 合成嵌入式偶極分子與對應的自組裝薄膜研究
Synthesis of Embedded Dipole Molecules and Study of Corresponding Self-Assembled Thin Films
指導教授: 戴龑
Yian Tai
口試委員: 陶雨臺
Yu-Tai Tao
何郡軒
Jinn-Hsuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 78
中文關鍵詞: 功函數嵌入偶極自組裝單分子膜表面改質界面工程
外文關鍵詞: work function, embedded dipoles, surface modification, interface engineering, self-assembled monolayer
相關次數: 點閱:593下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究希望透過一系列的自組裝分子膜來達成對ITO的功函數調控,因此我們合成一系列能形成自組裝薄膜的分子,並透過不同儀器觀察這些分子成長在銦錫氧化物(ITO)上的狀態,及其表面性質的變化。
    嵌入偶極概念的分子是我們受到Michael Zharnikov團隊的研究成果啟發[1-5],該團隊對以硫醇為頭端基,於骨幹中嵌入帶有不同偶極方向的嘧啶(pyrimidine),以形成一系列分子,並進行各種相關的研究,而我們合成的分子改以膦酸(phosphonic acid)為頭端基,嘗試用類似的結構拓展此概念,並使這系列的分子能更廣泛的應用於在各類金屬氧化物表面上,特別是現今常見的透明電極ITO上。我們希望透過自組裝的方式將分子連帶分子提供的偶極覆蓋至ITO的表面,以實現對ITO的功函數調控。
    現今許多電子元件的研究中,人們已經會用自組裝單分子薄膜來改善接觸電阻與漏電流的問題,特別在有機的電子元件中,有機材料與無機材料可能由於相容性較差,導致界面接觸不好或疊加的材料的晶粒或晶相不符所需,而我們所合成的分子獨特的地方在於,有機會在改變材料界面接觸、功函數及費米能階等相關增進電子傳輸現象時,保持表面能一致,避免疊加的材料產生不同性質的變化,進而降低有機分子在元件中造成的變數。我們透過不同數量及位置的苯環與嘧啶,並以不同的條件形成自組裝分子薄膜,觀察不同分子成長在ITO基板上的狀態,以及對ITO表面性質的影響,希望人們以後在設計自組裝薄膜時,偶極可由骨幹單獨控制,使頭端基及尾端基皆可單獨服務特定之需求而不受彼此限制。


    This study aims to control the work function of indium tin oxide (ITO) through self-assembled molecules. We synthesized a series of molecules with embedded dipoles, inspired by the research conducted by Michael Zharnikov's team[1-5], who embedded dipoles with different orientations of pyrimidine into molecule backbones, and utilized thiol anchoring on gold. In our work, we synthesized molecules with phosphoric acid as the headgroup, aiming to expand this concept with a similar structure and enable the application of these molecules on various metal oxide surfaces, particularly the commonly used transparent electrode, ITO.
    In current electronic device research, self-assembled molecules are already being utilized to enhance contact resistance and reduce leakage current issues, particularly in organic electronic devices. The poor compatibility between organic and inorganic materials can lead to poor interface contacts or unsuitable grain size or crystal phase stacking. What makes our synthesized molecules unique is their ability to enhance electronic transmission phenomena by altering work function, while maintaining consistent surface energy. This approach mitigates variations caused by stacked materials and reduces the variability introduced by organic molecules in devices.
    Our goal is to provide a framework for designing self-assembled molecules, where the dipoles can be independently controlled by the molecule backbone, allowing the headgroup and tailgroup to cater to specific requirements without mutual limitations.

    目錄 摘要 I Abstract II 致謝 III 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1. 研究背景與動機 1 1-2. 研究目的 1 第二章 文獻回顧 3 2-1自組裝分子膜 3 2-1.1 頭端基(Head group) 3 2-1.2 骨幹(Backbone) 4 2-1.3 尾端基(End group) 4 2-1.4. 自組裝分子膜與金屬氧化物表面鍵結的形式 5 2-2. 半導體元件中的介面接觸 6 2-2.1費米能階與功函數 6 2-2.2 歐姆接觸與蕭特基接觸接觸 6 2-2.3 使用自組裝分子膜調控功函數的原因與案例 8 2-3. 分子設計與合成策略 12 2-3.1 Michaelis–Arbuzov reaction 13 2-3.2水解磷酯化合物 15 2-3.3 鈴木反應(Suzuki coupling) 16 第三章 實驗方法 18 3-1實驗化學品與器材 18 3-2實驗儀器與設備 20 3-2.1 核磁共振儀(Nuclear Magnetic Resonance Spectroscopy, NMR) 20 3-2.2 電灑游離—四極桿/飛行時間式質譜儀 (Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometer, ESI - Q/TOF) 21 3-2.3 X光-光電子能譜(X-ray photoelectron spectroscopy, XPS) 22 3-2.4 開爾文探針(Kelvin Probe) 24 3-2.5 橢圓偏光儀(Ellipsomerter) 25 3-4分子合成路徑設計 26 3-5不同分子的合成步驟 28 3-5.1合成Group 1、Group 2及Group 3分子的Arbuzov reaction 28 3-5.2硼酸化反應 29 3-5.3 Diethyl (4-bromobenzyl)phosphonate合成 30 3-5.4 diethyl (4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)phosphonate合成 31 3-5.5 ([1,1':4',1''-terphenyl]-4-ylmethyl)phosphonic acid合成 32 3-5.6 (4-(2-phenylpyrimidin-5-yl)benzyl)phosphonic acid合成 33 3-5.7 (4-(5-phenylpyrimidin-2-yl)benzyl)phosphonic acid合成 34 3-6 自組裝薄膜的製備 35 第四章 結果與討論 36 4-1合成結果 36 4-1-1芳香族的Arbuzov reaction 36 4-1-2硼酸化反應(Borylation reaction) 36 4-1-3 不同膦酸分子的產率 37 4-2 NMR鑑定 39 4-3 PPBP形成自組裝分子膜的可能性探討 43 4-4以XPS研究退火對自組裝分子膜的影響 47 4-5功函數與自組裝薄膜的厚度的分析 52 第五章 結論 56 參考資料 57 附錄 60

    [1] T. Abu‐Husein et al., "The Effects of Embedded Dipoles in Aromatic Self‐Assembled Monolayers," Advanced Functional Materials, vol. 25, no. 25, pp. 3943-3957, 2015.
    [2] A. Kovalchuk et al., "Transition voltages respond to synthetic reorientation of embedded dipoles in self-assembled monolayers," Chemical Science, vol. 7, no. 1, pp. 781-787, 2016.
    [3] A. Petritz et al., "Embedded Dipole Self‐Assembled Monolayers for Contact Resistance Tuning in p‐Type and n‐Type Organic Thin Film Transistors and Flexible Electronic Circuits," Advanced Functional Materials, vol. 28, no. 45, p. 1804462, 2018.
    [4] E. Sauter, C.-O. Gilbert, J.-F. o. Morin, A. Terfort, and M. Zharnikov, "Mixed monomolecular films with embedded dipolar groups on Ag (111)," The Journal of Physical Chemistry C, vol. 122, no. 34, pp. 19514-19523, 2018.
    [5] M. Gärtner et al., "Self-assembled monolayers with distributed dipole moments originating from bipyrimidine units," The Journal of Physical Chemistry C, vol. 124, no. 1, pp. 504-519, 2019.
    [6] S. Y. Kim, S. J. Cho, S. E. Byeon, X. He, and H. J. Yoon, "Self‐assembled monolayers as interface engineering nanomaterials in perovskite solar cells," Advanced Energy Materials, vol. 10, no. 44, p. 2002606, 2020.
    [7] I. Luzinov, D. Julthongpiput, A. Liebmann-Vinson, T. Cregger, M. D. Foster, and V. V. Tsukruk, "Epoxy-terminated self-assembled monolayers: molecular glues for polymer layers," Langmuir, vol. 16, no. 2, pp. 504-516, 2000.
    [8] B. Pokroy and J. Aizenberg, "Calcite shape modulation through the lattice mismatch between the self-assembled monolayer template and the nucleated crystal face," CrystEngComm, vol. 9, no. 12, pp. 1219-1225, 2007.
    [9] D. M. Zena, J.-M. Chiu, and Y. Tai, "Self-assembled monolayer assisted fabrication of zinc oxide nanorods," CrystEngComm, vol. 15, no. 20, pp. 4189-4195, 2013.
    [10] T.-T. Yu et al., "Influence of surface chemistry on adhesion and osteo/odontogenic differentiation of dental pulp stem cells," ACS Biomaterials Science & Engineering, vol. 3, no. 6, pp. 1119-1128, 2017.
    [11] N. Faucheux, R. Schweiss, K. Lützow, C. Werner, and T. Groth, "Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies," Biomaterials, vol. 25, no. 14, pp. 2721-2730, 2004.
    [12] M. Singh, N. Kaur, and E. Comini, "The role of self-assembled monolayers in electronic devices," Journal of Materials Chemistry C, vol. 8, no. 12, pp. 3938-3955, 2020.
    [13] N. Singh, A. Mohapatra, C.-W. Chu, and Y.-T. Tao, "Modulation of work function of ITO by self-assembled monolayer and its effect on device characteristics of inverted perovskite solar cells," Organic Electronics, vol. 98, p. 106297, 2021.
    [14] Y. Lin et al., "Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability," ACS Energy Letters, vol. 5, no. 9, pp. 2935-2944, 2020.
    [15] I. Lange et al., "Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self‐assembled monolayers," Advanced Functional Materials, vol. 24, no. 44, pp. 7014-7024, 2014.
    [16] F. S. Benneckendorf et al., "Structure–property relationship of phenylene-based self-assembled monolayers for record low work function of indium tin oxide," The Journal of Physical Chemistry Letters, vol. 9, no. 13, pp. 3731-3737, 2018.
    [17] S. P. Pujari, L. Scheres, A. T. Marcelis, and H. Zuilhof, "Covalent surface modification of oxide surfaces," Angewandte Chemie International Edition, vol. 53, no. 25, pp. 6322-6356, 2014.
    [18] J. Van Zeghbroeck, Principles of Semiconductor Devices. Bart Van Zeghbroeck, 2011.
    [19] E. Zojer, A. Terfort, and M. Zharnikov, "Concept of embedded dipoles as a versatile tool for surface engineering," Accounts of Chemical Research, vol. 55, no. 13, pp. 1857-1867, 2022.
    [20] S. Zhang et al., "Conjugated Self-Assembled Monolayer as Stable Hole-Selective Contact for Inverted Perovskite Solar Cells," ACS Materials Letters, vol. 4, no. 10, pp. 1976-1983, 2022.
    [21] P. Werner et al., "Electron transfer dynamics and structural effects in benzonitrile monolayers with tuned dipole moments by differently positioned fluorine atoms," ACS applied materials & interfaces, vol. 12, no. 35, pp. 39859-39869, 2020.
    [22] M.-T. Liu, C.-Y. Chi, M. Zharnikov, and Y. Tai, "Selective and non-selective modification of electrodes in organic thin film transistors by self-assembled monolayers," Journal of Materials Chemistry C, 2023.
    [23] S. Kostoudi and G. Pampalakis, "Improvements, Variations and Biomedical Applications of the Michaelis–Arbuzov Reaction," International Journal of Molecular Sciences, vol. 23, no. 6, p. 3395, 2022.
    [24] B. Hari Babu, G. Syam Prasad, C. Naga Raju, and M. Venkata Basaveswara Rao, "Synthesis of phosphonates via Michaelis-Arbuzov reaction," Current Organic Synthesis, vol. 14, no. 6, pp. 883-903, 2017.
    [25] N. Iranpoor, H. Firouzabadi, K. R. Moghadam, and S. Motavalli, "First reusable ligand-free palladium catalyzed C–P bond formation of aryl halides with trialkylphosphites in neat water," RSC advances, vol. 4, no. 99, pp. 55732-55737, 2014.
    [26] N. Harsági and G. Keglevich, "The hydrolysis of phosphinates and phosphonates: a review," Molecules, vol. 26, no. 10, p. 2840, 2021.
    [27] A. J. Lennox and G. C. Lloyd-Jones, "Selection of boron reagents for Suzuki–Miyaura coupling," Chemical Society Reviews, vol. 43, no. 1, pp. 412-443, 2014.
    [28] P. Jansa, A. Holý, M. Dračinský, O. Baszczyňski, M. Česnek, and Z. Janeba, "Efficient and ‘green’microwave-assisted synthesis of haloalkylphosphonates via the Michaelis–Arbuzov reaction," Green chemistry, vol. 13, no. 4, pp. 882-888, 2011.
    [29] G. Keglevich, A. Grün, A. Bölcskei, L. Drahos, M. Kraszni, and G. T. Balogh, "Synthesis and Proton Dissociation Properties of Arylphosphonates: A Microwave‐Assisted Catalytic Arbuzov Reaction with Aryl Bromides," Heteroatom Chemistry, vol. 23, no. 6, pp. 574-582, 2012.
    [30] R. S. Shaikh, S. J. Düsel, and B. König, "Visible-light photo-arbuzov reaction of aryl bromides and trialkyl phosphites yielding aryl phosphonates," ACS Catalysis, vol. 6, no. 12, pp. 8410-8414, 2016.
    [31] G. A. Molander and N. Ellis, "Organotrifluoroborates: Protected boronic acids that expand the versatility of the Suzuki coupling reaction," Accounts of Chemical Research, vol. 40, no. 4, pp. 275-286, 2007.
    [32] R. Nishiyabu, Y. Kubo, T. D. James, and J. S. Fossey, "Boronic acid building blocks: tools for self assembly," Chemical Communications, vol. 47, no. 4, pp. 1124-1150, 2011.
    [33] M. Dubey, T. Weidner, L. J. Gamble, and D. G. Castner, "Structure and order of phosphonic acid-based self-assembled monolayers on Si (100)," Langmuir, vol. 26, no. 18, pp. 14747-14754, 2010.
    [34] A. Vega, P. Thissen, and Y. J. Chabal, "Environment-controlled tethering by aggregation and growth of phosphonic acid monolayers on silicon oxide," Langmuir, vol. 28, no. 21, pp. 8046-8051, 2012.
    [35] A. Asyuda et al., "Self-assembled monolayers with embedded dipole moments for work function engineering of oxide substrates," The Journal of Physical Chemistry C, vol. 124, no. 16, pp. 8775-8785, 2020.

    無法下載圖示 全文公開日期 2025/08/30 (校內網路)
    全文公開日期 2025/08/30 (校外網路)
    全文公開日期 2025/08/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE