簡易檢索 / 詳目顯示

研究生: 陳耀冬
Yao-Dong Chen
論文名稱: 鋼木混合構造剪力牆構材耐震行為試驗與分析
Experimental and Analytical Investigation of the Seismic Behavior of Steel-Timber Composite Shear Wall
指導教授: 蕭博謙
Po-Chien Hsiao
口試委員: 陳沛清
Pei-Ching Chen
蔡孟廷
Meng-Ting Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 145
中文關鍵詞: 鋼木混合構造圍束型鋼板剪力牆耐震性能鋼木間摩擦係數
外文關鍵詞: steel-timber composite structure, restrained steel plate shear wall, seismic performance, friction coefficient between steel and timber
相關次數: 點閱:258下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,受到地球暖化和氣候變遷的影響,發展低碳排建築成為現今都市發展的趨勢。鋼木混合構造的設計概念可降低結構物之碳排放量,同時結合兩者材料優勢,提升結構物整體的性能,木材具有固碳材料性質、防火、自重輕等優勢,能提供鋼板元件之圍束需求;鋼材強度高、韌性佳,能提供元件主要強度、勁度及穩定遲滯消能能力,本研究重點在於研發鋼木混合構造剪力牆構材的耐震設計。在開槽型鋼板剪力牆元件兩面安裝圍束木板元件並使用螺桿將鋼板夾住,能降低鋼板受側力之挫屈量,使整片鋼板更均勻地變形,進而提升整體剪力牆的強度、勁度以及消能能力,同時圍束木板具有耐火的優勢,能增加整體剪力牆的防火時效。本研究規劃五組試體,對鋼板厚度、圍束木板(單側)層數及圍束狀態進行設計,透過反覆載重試驗的方式探討其遲滯消能行為、耐震性能和可行性。試驗結果顯示本研究提出之圍束木板元件在側推過程中能有效抑制鋼板的挫屈量,使鋼板剪力牆元件能穩定消散能量達樓層位移角4%而無明顯強度衰退,證實此鋼木剪力牆構材在大地震中較不容易遭受破壞;另外,試驗結果亦顯示鋼板剪力牆的降伏強度對可能安裝誤差之敏感性極高,此現象可能與構材主要以單片薄鋼板所構成有關。
    本研究的另一個重點在於探討鋼木間的摩擦行為,從剪力牆試驗結果顯示,鋼木間摩擦力會影響試體量測強度,有鑑於此,進行了一系列的材料試驗,針對鋼木混合剪力牆構件試驗摩擦力進行檢討,並提出鋼材與圍束木材間之摩擦力量估算方法及螺栓預力損失估算方法,供設計者參考。


    In recent years, low-carbon buildings have become the trend of the city development because of the effect of global warming and climate change. The design of steel-timber composite can reduce the carbon emission of buildings, and enhance the performance of buildings by using both benefits of material property simultaneously. Wood features carbon fixation, fire resistance, and light weight, and provides restraint demands of the steel members. Steel have high strength and good toughness, which can provide members main strength, stiffness, and energy dissipation. In this research, a seismic design of steel-timber composite shear wall (STSW) system is proposed. The STSW system is constructed with a pair restrained wood members sandwich over the shear wall with slits from the two sides using through bolts, which can reduce out-of-plate displacement of the steel plate, and enhance strength, stiffness, energy dissipation, and fire resistance. There are five specimens in this research, and the main purpose of this research is to study the STSW system constructed with thickness of steel plate, layers of restrained wood, and restrained state. Test results confirmed the proposed shear wall is effective in reducing out-of-plate displacement of the steel plate, and can reach drift ratio about 4% radians exhibiting a stable energy dissipation without significant strength degradation. Test results also confirmed the yield strength of the proposed shear wall is sensitive to the installation errors because it was constructed with thin steel plate mostly.
    Another purpose of this research is to study the friction behavior between steel and timber because previous test results confirmed friction force could affect the strength of the proposed shear wall. Therefore, a series of material tests was conducted for discussing the friction force of the proposed shear wall in this research. Recommendation on the estimated methods of the friction force and the axial force loss of bolts are also provided in this research.

    目錄 摘要 i ABSTRACT ii 目錄 iii 圖目錄 vii 表目錄 xii 照片目錄 xiii 第一章 緒論 1 1.1前言 1 1.2研究背景與動機 1 1.2.1工程木製品技術革新 1 1.2.2綠建材 1 1.2.3木構造建築高度限制鬆綁 2 1.2.4鋼木混合構造 2 1.3研究目的 2 1.4論文內容與架構 3 第二章 文獻回顧 4 2.1開槽型鋼板剪力牆 4 2.1.1基本原理 4 2.1.2彈性勁度公式 4 2.1.3相關研究 5 2.2挫屈束制型鋼板剪力牆 6 2.2.1基本原理 6 2.2.2相關研究 6 2.3國內木構造設計之相關規範 7 第三章 實尺寸鋼木混合剪力牆構材試驗研究 8 3.1鋼木混合剪力牆構材設計概念 8 3.2試驗規劃與試體設計 8 3.2.1鋼板剪力牆元件設計細節 8 3.2.2圍束木板元件設計細節 9 3.2.3試體介紹 9 3.3試驗配置與設備 9 3.3.1試驗配置 9 3.3.2試驗加載與量測設備 10 3.3.2.1外力加載系統 10 3.3.2.2量測系統 11 3.4試驗加載歷時 12 3.5試體安裝簡介 12 3.6試驗觀察記錄 13 3.6.1試體LS1L_1 13 3.6.2試體LS1L_2 14 3.6.3試體LS2L 14 3.6.4試體HS2L 15 3.6.5試體HS3L 16 第四章 試驗結果與討論 17 4.1試體預期強度估算 17 4.1.1鋼板材料試驗結果 17 4.1.2側向力強度估算 17 4.2試體遲滯迴圈比較 18 4.3試體強度比較 18 4.3.1強度背脊曲線比較 18 4.3.2影響試體預期側向力強度之因素檢討 19 4.3.2.1摩擦力影響EF(Effect of Friction) 19 4.3.2.2試體端板製作誤差FE(Fabrication Error) 19 4.3.2.3軸力影響AF(Axial Force) 19 4.3.2.4局部挫屈LB(Local Buckling) 20 4.3.2.5鋼板扭轉TP(Torsion of Plate) 20 4.3.3試體強度分析 20 4.3.3.1試體LS1L_1 20 4.3.3.2試體LS1L_2 21 4.3.3.3試體LS2L 21 4.3.3.4試體HS2L 22 4.3.3.5試體HS3L 23 4.4試體勁度估算 23 4.5試驗參數討論 24 4.5.1圍束木板厚度 24 4.5.2圍束狀態 24 4.6降伏後割線勁度衰退 25 4.7累積消散能量 25 4.8累積塑性變形量 25 第五章 鋼木間摩擦力試驗 27 5.1試驗目的 27 5.2試體設計 27 5.3試驗加載與量測設備 28 5.3.1外力加載系統 28 5.3.2量測系統 28 5.4螺栓軸力校正試驗 29 5.4.1試驗加載方法. 29 5.4.2試驗結果. 29 5.5試驗結果與討論 30 5.5.1試驗結果. 30 5.5.2鋼材與圍束木材間之摩擦力估算方法之建立. 30 5.5.3鋼木混合剪力牆構材試驗摩擦力檢討. 30 5.5.4螺栓預力損失估算方法之建立. 31 第六章 鋼木混合剪力牆構材有限元素分析與研究 32 6.1有限元素分析目的 32 6.2有限元素模型介紹 32 6.3分析與討論 33 第七章 結論與建議 34 7.1結論 34 7.2建議 34 參考文獻 35

    [1] ANSI/AISC 341-16(2016), “Seismic Provisions for Structural Steel Buildings”, American Institute of Steel Construction, Chicago, IL.
    [2] ANSI/AISC 360-16(2016), “Specification for Structural Steel Buildings”, American Institute of Steel Construction, Chicago, IL.
    [3] Deng K.L., P. Pan, Sun J.B., Liu J.X., and Xue Y.T. (2014),“Shape Optimization Design of Steel Shear Panel Dampers”, Journal of Constructional Steel Research Vol.99 (2014) 187–193.
    [4] Deng K.L., Pan P., Li W., and Xue Y.T. (2015),“ Development of a Buckling Restrained Shear Panel Damper”, Journal of Constructional Steel Research Vol.106 (2015) 311–321
    [5] Hitaka T., Matsui C.(2003),“Experimental Study on Steel Shear Wall with Slits”, Journal of Structural Engineering, ASCE.
    [6] He L.S., Togo T., Hayashi K., Kurata M., and Nakashima M.(2016),“Cyclic Behavior of Multirow Slit Shear Walls Made from Low-Yield-Point Steel”, Journal of Structural Engineering Vol.142 Issue 11(2016), ASCE.
    [7] He L.S.(2015), “Development of Steel Shear Walls Capable of Structural Condition Assessment by Using Double-Tapered Links”, Thesis, Kyoto University.
    [8] Konstantinos C.,(2017), “Development of a Method for the Determination of Preload in High Strength Friction Grip Connections”, MSc Thesis, Department of Structural Engineering, Delft University of Technology.
    [9] Lu J.Y., Yu S.J., Xia J., Qiao X.D., and Tang Y.(2018),“ Experimental Study on the Hysteretic Behavior of Steel Plate Shear Wall with Unequal Length Slits”, Journal of Constructional Steel Research Vol.147 (2018) 477–487.
    [10] Lin X.C., Wu K.L., Konstantinos A. S. , Lu L., and Zhao S.L.(2019),“ Development of a Buckling-Restrained Shear Panel Damper with Demountable Steel-Concrete Composite Restrainers”, Soil Dynamics and Earthquake Engineering Vol.118 (2019) 221–230.
    [11] United States Department of Agriculture Forest Service(2010), Centennial Edition: Wood Handbook: Wood as an Engineering Material, Madison, WI.
    [12] 許秭菱(2017),“實驗研究探討接合形式對鋼-木組合樑結構行為之影響”,國立台北科技大學建築與都市設計研究所碩士論文。
    [13] 陳建忠、蔡孟廷(2019),“木構造建築物高度、樓層數相關設計規定檢討研究”,內政部建築研究所協同研究報告。
    [14] 林坤賢(2019),“核心型抗彎間柱構件耐震行為試驗與分析”,國立中興大學土木工程研究所碩士論文。
    [15] 內政部營建署(2011),“木構造建築物設計及施工技術規範”。
    [16] 內政部營建署(2010),“鋼結構極限設計法規範及解說”。
    [17] 中華民國鋼結構協會(2019),“鋼結構極限設計法設計手冊”。

    QR CODE