簡易檢索 / 詳目顯示

研究生: 皮保拉
Paola - G. Pittoni
論文名稱: 液滴的揮發、濕潤與撞擊
Evaporation, spreading and impact of droplets
指導教授: 林析右
Shi-Yow Lin
口試委員: 今榮東洋子
Toyoko Imae
王孟菊
Wang, Meng-Jiy
陳立仁
Chen, Li-Jen
潘國隆
Pan, Kuo-Long
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 173
中文關鍵詞: 液滴揮發濕潤撞擊
外文關鍵詞: drop spreading
相關次數: 點閱:139下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討液滴揮發、潤濕與撞擊之動態行為。首先針對在液滴揮發程序中之三相線的移動行為與基材表面形貌/表面粗糙度對水滴撞擊動態行為之影響進行探討;發現基材表面形貌和粗糙度對動態/前進/後退接觸角影響甚巨;另外,在後退接觸角的量測時需透過謹慎的定義與量測,才能確保所測得的後退接觸角具有意義。其次本研究透過熔融金屬液滴在高溫下緩慢的揮發與潤濕現象,發現揮發過程中基材表面可能會因化學反應或擴散效應而產生變化,而致使三相線移動。此熔融金屬液滴的揮發與潤濕現象,不禁令人聯想:是否有類似現象發生在水滴撞擊固體基材的快速撞擊與潤濕之動態行為中(~ms)?
    在液滴揮發與撞擊的程序中,三相線之pinned與free receding行為已吸引科學家們相當之矚目,而韋伯數、基材表面形貌、及基材特性與親疏水性為影響動態潤濕行為之主要變因。本研究針對水滴撞擊程序中基材表面形貌對動態潤濕行為之影響進行探討;在水滴撞擊具有不規則微米孔洞分佈的光滑基材時,發現一罕見的其中以液滴撞擊說明pinned 狀態。此外,透過在兩種疏水性基材上之水滴撞擊實驗,提出超疏水性free receding失效的可能原因,並探討其貫性壓力、水錘壓力和滲透時間在水滴撞擊程序中所扮演的腳色。最後本研究亦探討了水滴撞擊不同疏水性與粗糙度的基材時之氣泡捕捉行為。


    In this work, the dynamics of evaporating, spreading and impacting droplets were studied in experiments at low and high temperatures. First, the correlations between dissimilar behaviors of the triple line during drop evaporative processes and unlike surface topographies were deeply analyzed and discussed. Dynamic, advancing and receding contact angles were found to be strongly affected by the substrate topography and roughness. This dependence brought out the imperative to carefully investigate and report the inner characteristics of the system to keep using concepts such as the receding contact angle as meaningful specifications of a given gas-liquid-solid system. Then, it was pointed out how modifications of the substrate may actually occur during the evaporative process itself. The triple line movements, in fact, may be influenced by surface alterations due to diffusion or chemical reactions taking place in the course of the measurements. Specifically, on this topic, the triple line dynamics of a molten metal drop spreading and evaporating at high temperature were illustrated. Afterward, we wondered if the triple line behaviors observed in evaporating drops could be noted also during highly dynamic processes and for short time scales. Pinned and free receding behaviors were indeed recorded for drops impacting and spreading on substrates characterized by peculiar topographies and hydrophobicities. So, the relations between the movements of the triple line and these specific surface morphologies were deeply investigated. The pinned state due to random dilute cavities in a generally smooth surface was described here for the first time in the case of impinging droplet experiments. Phenomenology and possible causes of the failure of the superhydrophobicity were exposed analyzing the impact behaviors of drops impinging on two highly hydrophobic surfaces. On this matter, a theoretical description of the experimental results was proposed, revealing the essential roles played by dynamic pressure, hammer pressure and liquid penetration time. Finally, the influence of hydrophobicity and roughness of the solid substrates on the occurrence and formation mechanisms of bubbles entrapped into impacting water drops were studied.

    摘要 page I Abstract in English page II Acknowledgements page III Table of Contents page IV Notation page VII List of tables page IX List of figures page X Chapter 1 – Wettability and contact angle page 1 1.1 Wettability and contact angle page 1 1.2 Not only one contact anglepage 4 1.3 Wetting dynamics: evaporation, spreading and impact of droplets page 6 Chapter 2 – Laboratory instrumentation and measurement techniques page 11 2.1 Laboratory apparatus page 11 2.2 Video-enhanced tensiometer for measurements at low temperature page 11 2.3 Video-enhanced tensiometer for measurements at high temperature page 13 2.4 Droplet impingement imaging system page 14 2.5 Detection routine for determining the drop edges coordinates page 15 2.6 Calculation of the drop theoretical shape and the contact angle page 16 Chapter 3 – Evaporation of sessile drops: Dynamics of the triple line and substrate topography page 21 3.1 Evaporative modes page 21 3.2 What influences the dynamics of the triple line? page 22 3.3 Materials page 23 3.4 Experimental routine page 24 3.5 Influence of the substrate topography on the evaporative dynamics page 25 Chapter 4 – Evaporation of sessile drops: On the uniqueness of the receding contact angle page 38 4.1 Advancing and receding contact angles of real system page 38 4.2 Open questions page 40 4.3 Materials page 40 4.4 Experimental routine page 41 4.5 Evaporation of water drops on differently rough PC substrates page 42 4.6 Towards a standard measurement of the receding contact angle page 49 Chapter 5 – Evaporation of sessile drops: Wetting of graphite by molten silver page 56 5.1 Wetting at high temperatures page 56 5.2 Molten silver on a graphite substrate page 56 5.3 Materials and experimental routine page 57 5.4 Triple line dynamics in the wetting of graphite by molten silver page 58 Chapter 6 – Impingement dynamics of water drops: From triple line recoil to pinning page 71 6.1 Wetting dynamics of impacting drops page 71 6.2 Dynamics of the triple line in drop impacts page 72 6.3 Materials page 72 6.4 Experimental routine page 74 6.5 Recoil, pinning and impalement cases for different substrate morphologies page 74 Chapter 7 – Impingement dynamics of water drops: Pinning on substrates with random dilute defects page 86 7.1 Three different causes for the pinning behaviors page 86 7.2 Materials and experimental routine page 87 7.3 Pinning of impacting drops on substrates with random dilute defects page 89 Chapter 8 – Impingement dynamics of water drops: Liquid impalement into hydrophobic surfaces page 96 8.1 The failure of the superhydrophobicity page 96 8.2 Materials and experimental routine page 98 8.3 Drops impacting onto graphite G-140 substrates page 99 8.4 Drops impacting onto graphite G-160 substrates page 104 8.5 Dynamic pressure, hammer pressure and liquid penetration time page 106 Chapter 9 – Bubbles entrapped into impinging droplets: The influence of the substrate hydrophobicity page 116 9.1 Entrapped bubbles page 116 9.2 Materials and experimental routine page 118 9.3 Bubbles entrapped into water drops impinging on graphite substrates page 119 Chapter 10 – Bubbles entrapped into impinging droplets: The influence of the substrate roughness page 132 10.1 Entrapped bubbles and substrate roughness page 132 10.2 Materials page 132 10.3 Experimental routine page 134 10.4 Bubbles entrapped into water drops impinging on grinded PC substrates page 134 Chapter 11 – Conclusions and future works page 149 11.1 Sessile drops: contact angles and triple line dynamics page 149 11.2 Impinging drops: pinning and impalement page 151 11.3 Entrapped bubbles: influence of substrate hydrophobicity and roughness page 153

    Chapter 1
    [1] A.R. Parker, C.R. Lawrence, Water capture by a desert beetle, Nature. 414 (2001) 33–34.
    [2] A. Asai, M. Shioya, S. Hirasawa, T. Okazaki, Impact of an ink drop on paper, J. Imaging Sci. Technol. 37 (1993) 205–207.
    [3] D. Attinger, C. Moore, A. Donaldson, A. Jafari, H.A. Stone, Fluid dynamics topics in
    bloodstain pattern analysis: comparative review and research opportunities., Forensic Sci. Int. 231 (2013) 375–96.
    [4] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N.N. Wang, F. Xia, et al., Petal effect: a superhydrophobic state with high adhesive force, Langmuir. 24 (2008) 4114–9.
    [5] L.P. Connor, Welding handbook, 1987. [6] T. Young, An Essay on the Cohesion of Fluids, Philos. Trans. R. Soc. London. 95 (1805) 65–
    87.
    [7] J.W. Gibbs, H.A. Bumstead, R.G. Van Name, W.R. Longley, The collected works of J. Willard Gibbs, 1928. [8] M. Strobel, C.S. Lyons, An Essay on Contact Angle Measurements, Plasma Process. Polym. 8
    (2011) 8–13.
    [9] H. Tavana, G. Yang, C.M. Yip, D. Appelhans, S. Zschoche, K. Grundke, et al., Stick - Slip of the Three-Phase Line in Measurements of Dynamic Contact Angles, (2006) 628–636.
    [10] J.R. Moffat, K. Sefiane, M.E.R. Shanahan, Effect of TiO 2 Nanoparticles on Contact Line Stick - Slip Behavior of Volatile Drops, (2009) 8860–8866.
    [11] D. Orejon, K. Sefiane, M.E.R. Shanahan, Stick-Slip of Evaporating Droplets: Substrate Hydrophobicity and Nanoparticle Concentration, Langmuir. 27 (2011) 12834–12843.
    [12] S. Ramos, A. Tanguy, Pinning-depinning of the contact line on nanorough surfaces, Eur. Phys. J. E. 19 (2006) 433–440.
    10
    Chapter 1 – Wettability and wetting dynamics
    [13] N. Anantharaju, M. Panchagnula, S. Neti, Evaporating drops on patterned surfaces: Transition from pinned to moving triple line, J. Colloid Interface Sci. 337 (2009) 176–182.
    [14] T.A.H. Nguyen, A. V. Nguyen, M.A. Hampton, Z.P. Xu, L. Huang, V. Rudolph, Theoretical and experimental analysis of droplet evaporation on solid surfaces, Chem. Eng. Sci. 69 (2012) 522–529.
    [15] K. Sefiane, L. Tadrist, Experimental investigation of the de-pinning phenomenon on rough surfaces of volatile drops, Int. Commun. Heat Mass Transf. 33 (2006) 482–490. [16] E. Bormashenko, A. Musin, G. Whyman, M. Zinigrad, O. Box, Wetting Transitions and Depinning of the Triple Line, (2012) 0–4.
    [17] M.E.R. Shanahan, C. Bourges, Effects of evaporation on contact angles on polymer surfaces, Int. J. Adhes. Adhes. 14 (1994) 201–205.
    [18] E. Bormashenko, A. Musin, M. Zinigrad, Evaporation of droplets on strongly and weakly pinning surfaces and dynamics of the triple line, Colloids Surfaces A Physicochem. Eng. Asp. 385 (2011) 235–240.
    [19] R.C. Europe, A. De Valvins, Viscoelastic Dissipation in Wetting and Adhesion Phenomena, (1995) 1396–1402.
    [20] B. Zuo, F.F. Zheng, Y.R. Zhao, T. Chen, Z.H. Yan, H. Ni, et al., Stick − Slip Phenomenon in Measurements of Dynamic Contact Angles and Surface Viscoelasticity of Poly ( styrene- b -
    isoprene- b - styrene ) Triblock Copolymers, (2012). [21] P.G. de Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops,
    Bubbles, Pearls, Waves, Springer, New York, 2003. [22] E. Bormashenko, Wetting of Real Surfaces, de Gruyter GmbH, Berlin/Boston, 2013. [23] K.L. Mittal, Contact angle, wettability and adhesion, VPS, 2003. [24] C.W. Extrand, Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces, Langmuir. 18 (2002) 7991–7999.
    11
    Chapter 1 – Wettability and wetting dynamics
    [25] B. He, N.A. Patankar, J. Lee, Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces, Langmuir. 19 (2003) 4999–5003.
    [26] J. Long, P. Chen, On the role of energy barriers in determining contact angle hysteresis, Adv. Colloid Interface Sci. 127 (2006) 55–66.
    [27] A. Sarkar, A.-M. Kietzig, General equation of wettability: A tool to calculate the contact angle for a rough surface, Chem. Phys. Lett. 574 (2013) 106–111.
    [28] A. Marmur, Soft contact: measurement and interpretation of contact angles, Soft Matter. 2
    (2006) 12. [29] R. Tadmor, P.S. Yadav, As-placed contact angles for sessile drops, J. Colloid Interface Sci. 317 (2008) 241–246. [30] S.-Y. Lin, H.-C. Chang, L.-W. Lin, P.-Y. Huang, Measurement of dynamic/advancing/receding contact angle by video-enhanced sessile drop tensiometry, Rev. Sci. Instrum. 67 (1996) 2852–
    2858.
    [31] P.G. Pittoni, C.-C. Chang, T.-S. Yu, S.-Y. Lin, Evaporation of water drops on polymer surfaces: Pinning, depinning and dynamics of the triple line, Colloids Surfaces A Physicochem. Eng.
    Asp. 432 (2013) 89–98. [32] C. Bourges-Monnier, M.E.R. Shanahan, Influence of Evaporation on Contact Angle, Langmuir. 11 (1995) 2820–2829. [33] W.Y. Liang Ling, T.W. Ng, A. Neild, Q. Zheng, W.Y.L. Ling, Sliding variability of droplets on a hydrophobic incline due to surface entrained air bubbles, J. Colloid Interface Sci. 354 (2011) 832–842. [34] C.R. Crick, I.P. Parkin, Preparation and characterisation of super-hydrophobic surfaces, Chemistry (Easton). 16 (2010) 3568–3588.
    Chapter 2
    [35] D. Quere, M. Reyssat, Non-adhesive lotus and other hydrophobic materials, Philos. Trans. R. Soc. London A Math. Phys. Sci. 366 (2008) 1539–1556.
    [1] S.-Y. Lin, H.-C. Chang, L.-W. Lin, P.-Y. Huang, Measurement of dynamic/advancing/receding contact angle by video-enhanced sessile drop tensiometry, Rev. Sci. Instrum. 67 (1996) 2852–2858.
    [2] Y.-Y. Chang, M.-Y. Wu, Y.-L. Hung, S.-Y. Lin, Accurate surface tension measurement of glass melts by the pendant drop method., Rev. Sci. Instrum. 82 (2011) 055107.
    [3] M.-J. Wang, F.-H. Lin, Y.-L. Hung, S.-Y. Lin, Dynamic Behaviors of Droplet Impact and Spreading: Water on Five Different Substrates, Langmuir. 25 (2009) 6772–6780.
    [4] Y. Hung, M. Wang, Y. Liao, S. Lin, Initial wetting velocity of droplet impact and spreading: Water on glass and parafilm, Colloids Surfaces A Physicochem. Eng. Asp. 384 (2011) 172–179.
    [5] M. Wang, Y. Hung, S. Lin, The observation of air bubble entrapment for water droplets impinging on parafilm surface, J. Taiwan Inst. Chem. Eng. 43 (2012) 517–524.
    [6] Y.-L. Hung, M.-J. Wang, J.-W. Huang, S.-Y. Lin, A study on the impact velocity and drop size for the occurrence of entrapped air bubbles – Water on parafilm, Exp. Therm. Fluid Sci. 48 (2013) 102–109.
    [7] F. Bashforth, J.C. Adams, An attempt to test the theories of capillary action by comparing the theoretical and measured forms of drops of fluid, Cambridge University Press, 1883.
    [8] J.F. Padday, The Profiles of Axially Symmetric Menisci, Philos. Trans. R. Soc. London A Math. Phys. Sci. 269 (1971) 265–293.
    [9] Y. Rotenberg, L. Boruvka, A.W. Neumann, Determination of Surface Tension and Contact Angle from the Shapes of Axisymmetric Fluid Interfaces, J. Colloid Interface Sci. 93 (1983) 169–183.
    [10] C. Huh, R.L. Reed, A Method for Estimating Interfacial Tensions and Contact Angles from Sessile And Pendant Drop Shapes, J. Colloid Interface Sci. 91 (1983) 472–484.
    [11] B. Carnahan, H.A. Luther, J.O. Wilkes, Applied Numerical Methods, Wiley, New York, 1969.
    Chapter 3
    [1] M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science 270 (1995) 467–470.
    [2] V. Dugas, J. Broutin, E. Souteyrand, Droplet Evaporation Study Applied to DNA Chip Manufacturing, Langmuir 21 (2005) 9130–9136.
    [3] T. Kawase, H. Sirringhaus, R.H. Friend, T. Shimoda, Inkjet Printed Via-Hole Interconnections and Resistors for All-Polymer Transistor Circuits, Adv. Mater. 13 (2001) 1601–1605.
    [4] P. Calvert, Inkjet Printing for Materials and Devices, Chem. Mater. 13 (2001) 3299–3305.
    [5] J. Park, J. Moon, Control of Colloidal Particle Deposit Patterns within Picoliter Droplets Ejected by Ink-Jet Printing, Langmuir 22, (2006) 3506–3513.
    [6] W. Jia, H.H. Qiu, Experimental investigation of droplet dynamics and heat transfer in spray cooling, Exp. Therm. Fluid Sci. 27 (2003) 829–838.
    [7] M. Kimura, M.J. Misner, T. Xu, S.H. Kim, T.P. Russell, Long-range ordering of diblock copolymers induced by droplet pinning, Langmuir 19 (2003) 9910–9913.
    [8] G.T. Carroll, D. Wang, N.J. Turro, J.T. Koberstein, Photochemical micropatterning of carbohydrates on a surface, Langmuir 22 (2006) 2899–2905.
    [9] Y. Yu, H. Zhu, J.M. Frantz, M.E. Reding, K.C. Chan, H.E. Ozkan, Evaporation and coverage area of pesticide droplets on hairy and waxy leaves, Biosyst. Eng. 104 (2009) 324–334.
    [10] H. Y. Erbil, Evaporation of pure liquid sessile and spherical suspended drops: A review, Adv. Colloid Interfac. 170 (2012) 67–86.
    [11] R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Capillary flow as the cause of ring stains from dried liquid drops , Nature 389 (1997) 827–829.
    [12] D. Orejon, K. Sefiane, M.E.R. Shanahan, Stick–Slip of Evaporating Droplets: Substrate Hydrophobicity and Nanoparticle Concentration, Langmuir 27 (2011) 12834–12843.
    [13] J.R. Moffat, K. Sefiane, M.E.R. Shanahan, Effect of TiO2 Nanoparticles on Contact Line Stick−Slip Behavior of Volatile Drops, J. Phys. Chem. B 113 (2009) 8860–8866.
    40
    Chapter 3 – Evaporation of sessile drops: dynamics of the triple line and substrate topography
    [14] R.V. Craster, O.K. Matar, K. Sefiane, Pinning, Retraction, and Terracing of Evaporating Droplets Containing Nanoparticles, Langmuir 25 (2009) 3601–3609.
    [15] H. Bodiguel, F. Doumenc, B. Guerrier, Stick−Slip Patterning at Low Capillary Numbers for an Evaporating Colloidal Suspension, Langmuir 26 (2010) 10758–10763.
    [16] K. Sefiane, J. Skilling, J. MacGillivray, Contact line motion and dynamic wetting of nanofluid solutions, Adv. Colloid Interfac. 138 (2008) May 101–120.
    [17] R.G. Picknett, R. Bexon, The evaporation of sessile or pendant drops in still air, J. Colloid Interf. Sci. 61 (1977) 336–350.
    [18] M.E.R. Shanahan, Simple Theory of “Stick-Slip” Wetting Hysteresis, Langmuir 11 (1995) 1041–1043.
    [19] C. Bourges-Monnier, M.E.R. Shanahan, Influence of Evaporation on Contact Angle, Langmuir 11 (1995) 2820–2829.
    [20] K.S. Birdi, D.T. Vu, A. Winter, A Study of the Evaporation Rates of Small Water Drops Placed on a Solid Surface, J. Phys. Chem. 93 (1989) 3702–3703.
    [21] E. Bormashenko, A. Musin, M. Zinigrad, Evaporation of droplets on strongly and weakly pinning surfaces and dynamics of the triple line, Colloid Surface A 385 (2011) 235– 240.
    [22] M.E.R. Shanahan, C. Bourges, Effects of evaporation on contact angles on polymer surfaces, Int. J. Adhes. Adhes. 14 (1994) 201–205.
    [23] R.J. Good, in: K.L. Mittal (Eds.), Contact angle, wettability and adhesion, VPS, 2003, pp. 3–36.
    [24] P.G. de Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer, 2003.
    [25] K.S. Birdi, Handbook of Surface and Colloid Chemistry, CRC Press Inc., 1997.
    [26] J.F. Joanny, P.G. De Gennes, A model for contact angle hysteresis, J. Chem. Phys. 81 (1984) 552–562.
    [27] M. Reyssat, D. Quere, Contact angle hysteresis generated by strong dilute defects, J. Phys. Chem. B 113 (2009) 3906–3909.
    41
    Chapter 3 – Evaporation of sessile drops: dynamics of the triple line and substrate topography
    [28] R. Tadmor, P. Bahadur, A. Leh, H.E. N’guessan, R. Jaini, L. Dang, Measurement of lateral adhesion forces at the interface between a liquid drop and a substrate, Phys. Rev. Lett. 103 (2009) 266101–266104.
    [29] R. Tadmor, Approaches in wetting phenomena, Soft Matter 7 (2011) 1577–1580.
    [30] H. Y. Erbil, G. McHale, S.M. Rowan, M.I. Newton, Determination of the Receding Contact Angle of Sessile Drops on Polymer Surfaces by Evaporation, Langmuir 15 (1999) 7378–7385.
    [31] J.K. Spelt, Y. Rotenberg, D.R. Absolom, A.W. Neumann, Sessile-drop contact angle measurements using axisymmetric drop shape analysis, Colloid Surface 24 (1987) 127–137.
    [32] S-Y. Lin, H-C. Chang, L-W. Lin, P-Y. Huang, Measurement of dynamic/advancing/receding contact angle by video-enhanced sessile drop tensiometry , Rev. Sci. Instrum. 67 (1996) 2852–2858.
    [33] X.H Fang, M. Pimentel, J. Sokolov, M. Rafailovich, Dewetting of the Three-Phase Contact Line on Solids, Langmuir 26 (2010) 7682–7685.
    [34] S.M. Rowan, M.I. Newton, G. McHale, Evaporation of micro-droplets and the wetting of solid surfaces, J. Phys. Chem. 99 (1995) 13268–13271.
    [35] F. Bashforth , J.C. Adams, An attempt to test the theories of capillary action by comparing the theoretical and measured forms of drops of fluid, Cambridge University Press, 1883.
    [36] J. F. Padday, The Profiles of Axially Symmetric Menisci, Philos. T. Roy. Soc. A. 269 (1971) 265–293.
    [37] Y. Rotenberg, L. Boruvka, A.W. Neumann, Determination of Surface Tension and Contact Angle from the Shapes of Axisymmetric Fluid Interfaces, J. Colloid Interf. Sci. 93 (1983) 169–183.
    [38] C. Huh, R.L. Reed, A Method for Estimating Interfacial Tensions and Contact Angles from Sessile And Pendant Drop Shapes, J. Colloid Interf. Sci. 91 (1983) 472–484.
    [39] K. Sefiane, L. Tadrist, Experimental investigation of the de-pinning phenomenon on rough surfaces of volatile drops, Int. Commun. Heat Mass 33 (2006) 482–490.
    [40] A. Carlson, G. Bellani, G. Amberg, Universality in dynamic wetting dominated by contact-line friction, Phys. Rev. E 85 (2012) 045302.1–045302.5.
    42
    Chapter 3 – Evaporation of sessile drops: dynamics of the triple line and substrate topography
    [41] A. Carlson, G. Bellani, G. Amberg, Contact line dissipation in short-time dynamic wetting, Europhys. Lett. 97 (2012) 44004.
    [42] A. Carlson, M. Do-Quang, G. Amberg, Dissipation in rapid wetting, J. Fluid Mech. 682 (2011) 213–240.
    [43] D.S. Golovko, H.J. Butt, E. Bonaccurso, Transition in the evaporation kinetics of water microdrops on hydrophilic surfaces, Langmuir 25 (2009) 75–78.
    [44] D.S. Golovko, H.J. Butt, E. Bonaccurso, On the derivation of Young's equation for sessile drops: nonequilibrium effects due to evaporation, J Phys Chem B. 111 (2007) 5277–5283.
    [45] T.A.H. Nguyen, A.V. Nguyen, On the Lifetime of Evaporating Sessile Droplets, Langmuir 28 (2012) 1924–1930.
    [46] C.Y. Lee, B.J. Zhang, J. Park, K.J. Kim, Water droplet evaporation on Cu-based hydrophobic surfaces with nano- and micro-structures, Int. J. Heat Mass Tran. 55 (2012) 2151–2159.
    [47] H. Hu, R.G. Larson, Evaporation of a Sessile Droplet on a Substrate, J. Phys. Chem. B 106 (2002) 1334–1344.
    [48] M.E.R. Shanahan, K. Sefiane, J.R. Moffat, Dependence of Volatile Droplet Lifetime on the Hydrophobicity of the Substrate, Langmuir 27 (2011) 4572–4577.
    [49] T.A.H. Nguyen, A.V. Nguyen, M.A. Hampton, Z.P. Xu, L.B Huang, V. Rudolph, Theoretical and experimental analysis of droplet evaporation on solid surfaces, Chem. Eng. Sci. 69 (2012) 522–529.
    [50] K.S. Birdi, D.T. Vu, S.I. Andersen, A. Winter, H. Topsoe, S.V. Christensen, Determination of Surface Properties of Porous Solids, Stud. Surf. Sci. Catal. 62 (1991) 151–160.
    [51] K.S. Birdi, D.T. Vu, Wettability and the Evaporation Rates of Fluids from Solid Surfaces, J. Adhes. Sci. Technol. 7 (1993) 485–493.
    [52] F. Schonfeld, K.H. Graf, S. Hardt, H.J.Butt, Evaporation dynamics of sessile liquid drops in still air with constant contact radius, Int. J. Heat Mass Tran. 51 (2008) 3696–3699.
    Chapter 4
    [1] J.F. Joanny, P.G. de Gennes, A model for contact angle hysteresis, J. Chem. Phys. 81 (1984) 552–562.
    [2] T.D. Blake, Dynamic Contact Angle and Wetting Kinetics, in: J.C. Berg (Ed.), Wettability, Marcel Dekker, New York, 1993: pp. 251–309.
    [3] M.E.R. Shanahan, C. Bourges, Effects of evaporation on contact angles on polymer surfaces, Int. J. Adhes. Adhes. 14 (1994) 201–205.
    [4] C. Bourges-Monnier, M.E.R. Shanahan, Influence of Evaporation on Contact Angle, Langmuir. 11 (1995) 2820–2829.
    [5] H.Y. Erbil, G. McHale, S.M. Rowan, M.I. Newton, Determination of the Receding Contact Angle of Sessile Drops on Polymer Surfaces by Evaporation, Langmuir. 15 (1999) 7378–7385.
    [6] P.G. de Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer, New York, 2003.
    [7] K.L. Mittal, Contact angle, wettability and adhesion, VPS, 2003.
    [8] D.M. Soolaman, H.-Z. Yu, Water microdroplets on molecularly tailored surfaces: correlation between wetting hysteresis and evaporation mode switching, J. Phys. Chem. B. 109 (2005) 17967–73.
    [9] B. Krasovitski, A. Marmur, Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plate, Langmuir. 21 (2005) 3881–3885.
    [10] J. Long, P. Chen, On the role of energy barriers in determining contact angle hysteresis, Adv. Colloid Interface Sci. 127 (2006) 55–66.
    [11] K. Sefiane, L. Tadrist, Experimental investigation of the de-pinning phenomenon on rough surfaces of volatile drops, Int. Commun. Heat Mass Transf. 33 (2006) 482–490.
    59
    Chapter 4 – Evaporation of sessile drops: on the uniqueness of the receding contact angle
    [12] N. Anantharaju, M. V Panchagnula, S. Vedantam, S. Neti, S. Tatic-Lucic, Effect of three-phase contact line topology on dynamic contact angles on heterogeneous surfaces, Langmuir. 23 (2007) 11673–11676.
    [13] N. Anantharaju, M. Panchagnula, S. Neti, Evaporating drops on patterned surfaces: Transition from pinned to moving triple line, J. Colloid Interface Sci. 337 (2009) 176–182.
    [14] R. Tadmor, P.S. Yadav, As-placed contact angles for sessile drops, J. Colloid Interface Sci. 317 (2008) 241–246.
    [15] M. Guilizzoni, G. Sotgia, Experimental analysis on the shape and evaporation of water drops on high effusivity, microfinned surfaces, Exp. Therm. Fluid Sci. 34 (2010) 93–103.
    [16] E. Bormashenko, Y. Bormashenko, G. Oleg, On the nature of the friction between nonstick droplets and solid substrates, Langmuir. 26 (2010) 12479–12482.
    [17] W.Y. Liang Ling, T.W. Ng, A. Neild, Q. Zheng, W.Y.L. Ling, Sliding variability of droplets on a hydrophobic incline due to surface entrained air bubbles, J. Colloid Interface Sci. 354 (2011) 832–842.
    [18] C. Zhang, X. Zhu, L. Zhou, Morphology tunable pinning force and evaporation modes of water droplets on PDMS spherical cap micron-arrays, Chem. Phys. Lett. 508 (2011) 134–138.
    [19] F. Varnik, M. Gross, N. Moradi, G. Zikos, P. Uhlmann, P. Muller-Buschbaum, et al., Stability and dynamics of droplets on patterned substrates: insights from experiments and lattice Boltzmann simulations, J. Phys. Condens. Matter. 23 (2011) 184112.1–184112.13.
    [20] D. Orejon, K. Sefiane, M.E.R. Shanahan, Stick-Slip of Evaporating Droplets: Substrate Hydrophobicity and Nanoparticle Concentration, Langmuir. 27 (2011) 12834–12843.
    [21] R. Tadmor, Approaches in wetting phenomena, Soft Matter. 7 (2011) 1577–1580.
    [22] E. Bormashenko, A. Musin, M. Zinigrad, Evaporation of droplets on strongly and weakly pinning surfaces and dynamics of the triple line, Colloids Surfaces A Physicochem. Eng. Asp. 385 (2011) 235–240.
    60
    Chapter 4 – Evaporation of sessile drops: on the uniqueness of the receding contact angle
    [23] K.L. Cho, A.H.-F. Wu, I.I. Liaw, D. Cookson, R.N. Lamb, Wetting Transitions on Hierarchical Surfaces, J. Phys. Chem. C. 116 (2012) 26810–26815.
    [24] N. Belman, K. Jin, Y. Golan, J.N. Israelachvili, N.S. Pesika, Origin of the contact angle hysteresis of water on chemisorbed and physisorbed self-assembled monolayers, Langmuir. (2012) 14609–14617.
    [25] X. Chen, R. Ma, J. Li, C. Hao, W. Guo, B.L. Luk, et al., Evaporation of Droplets on Superhydrophobic Surfaces: Surface Roughness and Small Droplet Size Effects, Phys. Rev. Lett. 109 (2012) 116101.1–116101.6.
    [26] H.Y. Erbil, Evaporation of pure liquid sessile and spherical suspended drops: A review, Adv. Colloid Interface Sci. 170 (2012) 67–86.
    [27] T.A.H. Nguyen, A. V. Nguyen, M.A. Hampton, Z.P. Xu, L. Huang, V. Rudolph, Theoretical and experimental analysis of droplet evaporation on solid surfaces, Chem. Eng. Sci. 69 (2012) 522–529.
    [28] H.E. N’guessan, A. Leh, P. Cox, P. Bahadur, R. Tadmor, P. Patra, et al., Water tribology on graphene, Nat. Commun. 3 (2012) 1–5.
    [29] P.G. Pittoni, C.-C. Chang, T.-S. Yu, S.-Y. Lin, Evaporation of water drops on polymer surfaces: Pinning, depinning and dynamics of the triple line, Colloids Surfaces A Physicochem. Eng. Asp. 432 (2013) 89–98.
    [30] R. Tadmor, Misconceptions in wetting phenomena, Langmuir. 29 (2013) 15474–15475.
    [31] E. Bormashenko, Wetting of Real Surfaces, de Gruyter GmbH, Berlin/Boston, 2013.
    [32] W. Xu, R. Leeladhar, Y.T. Kang, C.-H. Choi, Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces, Langmuir. 29 (2013) 6032–41.
    [33] L. Wang, T.J. McCarthy, Shear distortion and failure of capillary bridges. Wetting information beyond contact angle analysis, Langmuir. 29 (2013) 7776–7781.
    61
    Chapter 4 – Evaporation of sessile drops: on the uniqueness of the receding contact angle
    [34] J.K. Spelt, Y. Rotenberg, D.R. Absolom, A.W. Neumann, Sessile-drop contact angle measurements using axisymmetric drop shape analysis, Colloids and Surfaces. 24 (1987) 127–137.
    [35] E. Bormashenko, Y. Bormashenko, G. Whyman, R. Pogreb, A. Musin, R. Jager, et al., Contact angle hysteresis on polymer substrates established with various experimental techniques, its interpretation, and quantitative characterization, Langmuir. 24 (2008) 4020–4025.
    [36] R.G. Picknett, R. Bexon, The Evaporation of Sessile or Pendant Drops in Still Air, J. Colloid Interface Sci. 61 (1977) 336 – 350.
    [37] H. Hu, R.G. Larson, Evaporation of a Sessile Droplet on a Substrate, J. Phys. Chem. B. 106 (2002) 1334–1344.
    [38] V.H. Chhasatia, A.S. Joshi, Y. Sun, Effect of relative humidity on contact angle and particle deposition morphology of an evaporating colloidal drop, Appl. Phys. Lett. 97 (2010) 231909.1–231909.3.
    [39] F. Girard, M. Antoni, S. Faure, A. Steinchen, Influence of heating temperature and relative humidity in the evaporation of pinned droplets, Colloids Surfaces A Physicochem. Eng. Asp. 323 (2008) 36–49.
    [40] F. Bashforth, J.C. Adams, An attempt to test the theories of capillary action by comparing the theoretical and measured forms of drops of fluid, Cambridge University Press, 1883.
    [41] J.F. Padday, The Profiles of Axially Symmetric Menisci, Philos. Trans. R. Soc. London A Math. Phys. Sci. 269 (1971) 265–293.
    [42] Y. Rotenberg, L. Boruvka, A.W. Neumann, Determination of Surface Tension and Contact Angle from the Shapes of Axisymmetric Fluid Interfaces, J. Colloid Interface Sci. 93 (1983) 169–183.
    [43] C. Huh, R.L. Reed, A Method for Estimating Interfacial Tensions and Contact Angles from Sessile And Pendant Drop Shapes, J. Colloid Interface Sci. 91 (1983) 472–484.
    [44] H.-J. Butt, D.S. Golovko, E. Bonaccurso, On the Derivation of Young’s Equation for Sessile Drops: Nonequilibrium Effects Due to Evaporation, J. Phys. Chem. B. 111 (2007) 5277–5283.
    62
    Chapter 4 – Evaporation of sessile drops: on the uniqueness of the receding contact angle
    [45] D.S. Golovko, H.-J. Butt, E. Bonaccurso, Transition in the Evaporation Kinetics of Water Microdrops on Hydrophilic Surfaces, Langmuir. 25 (2009) 75–78.
    [46] R.N. Wenzel, Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem. 28 (1936) 988–994.
    [47] A. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. (1944) 546–551.
    [48] C. Huh, S.G. Mason, Effects of surface roughness on wetting (theoretical), J. Colloid Interface Sci. 60 (1977) 11–38.
    [49] B. He, N.A. Patankar, J. Lee, Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces, Langmuir. 19 (2003) 4999–5003.
    [50] A. Marmur, Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be?, Langmuir. 19 (2003) 8343–8348.
    [51] A. Sarkar, A.-M. Kietzig, General equation of wettability: A tool to calculate the contact angle for a rough surface, Chem. Phys. Lett. 574 (2013) 106–111.
    [52] M.E.R. Shanahan, Simple Theory of “Stick-Slip” Wetting Hysteresis, Langmuir. (1995) 1041–1043.
    [53] M. Reyssat, D. Quere, Contact Angle Hysteresis Generated by Strong Dilute Defects, J. Phys. Chem. B. 113 (2009) 3906–3909.
    [54] A. Susarrey-Arce, A.G. Marin, H. Nair, L. Lefferts, J.G.E. Gardeniers, D. Lohse, et al., Absence of an evaporation-driven wetting transition on omniphobic surfaces, Soft Matter. 8 (2012) 9765–9770.
    [55] A. Marmur, Soft contact: measurement and interpretation of contact angles, Soft Matter. 2 (2006) 12.
    Chapter 5
    [1] Y.V. Naidich, G.A. Kolesnichenko, Investigation of the wetting of diamond and graphite by molten metals and alloys, Powder Metallurgy and Metal Ceramics 3 (1965) 191–195.
    [2] S.K. Rhee, Critical Surface Energies of Al2O3 and Graphite, J. Am. Ceram. Soc. 55 (1972) 300–303.
    [3] J. Lee, T. Tanaka, K. Seo, N. Hirai, G. H. Mori, Wetting of Au and Ag particles on monocrystalline graphite substrates, Rare Metals 25 (2006) 469–472.
    [4] Takahira, Intrinsic contact angle interaction between liquid silver solid graphite, Materials International 13 2007) 83–86.
    [5] R.C. Hula, Edtmaier, M. Holzweber, Hutter, Eisenmenger-Sittner, The wetting behaviour carbon, pure carburized nickel, cobalt molybdenum Applied Surface Science 256 2010) 4697–4701.
    [6] O. Dezellus, Eustathopoulos, role Van der Waals interactions adhesion in metal/carbon systems, Scripta Materialia 40 1999) 1283–1288.
    [7] Y-Y. Chang, S-Y. Lin, Surface Tension Measurement of Glass Melts Using Sessile or Pendant Drop Methods, J. Taiwan Inst. Chem. Eng. 42 (2011) 922–928.
    [8] Y-Y. Chang, M-Wu, L. Hung, S-Lin, Accurate Tension Measurement Glass Melts by the Pendant Drop Method, Rev. Sci. Instrum. 82 2011) 055107.
    [9] S-Y. Lin, K. McKeigue, C. Maldarelli, Diffusion-Controlled Surfactant Adsorption Studied by Pendant Drop Digitization, AIChE J. 36 (1990) 1785–1795.
    [10] F. Bashforth, J.C. Adams, An attempt to test the theories of capillary action by comparing the theoretical and measured forms of drops of fluid, Cambridge University Press (1883).
    [11] J.F. Padday, The Profiles of Axially Symmetric Menisci, Phil. Trans. R. Soc. Lond. A. 269 (1971) 265–293.
    [12] Y. Rotenberg, L. Boruvka, A.W. Neumann, Determination of Surface Tension and Contact Angle from the Shapes of Axisymmetric Fluid Interfaces, J. Colloid Interface Sci. 93 (1983) 169–183.
    77
    Chapter 5 - Evaporation of sessile drops: wetting of graphite by molten silver
    [13] C. Huh, R.L. Reed, A Method for Estimating Interfacial Tensions and Contact Angles from Sessile And Pendant Drop Shapes, J. Colloid Interface Sci. 91 (1983) 472–484.
    [14] B. Carnahan, H.A. Luther, J.O. Wilkes, Applied Numerical Methods, Wiley, New York (1969).
    [15] R.D. Carnahan, T.L. Johnston, C.H. Li, Some observations on the wetting of Al2O3 by aluminum, J. Am. Ceram. Soc. 41 (1958) 343–347.
    [16] S.M. Wolf, A.P. Levitt, J. Brown, Whisker-metal matrix bonding, Chem. Eng. Prog. 62 (1966) 74–78.
    [17] J.J. Brennan, J.A. Pask, Effect of Nature of Surfaces on Wetting of Sapphire by Liquid Aluminum, Journal of the American Ceramic Society 51 (1968) 569–573.
    [18] J.A. Champion, B.J. Keene, J.M. Sillwood, Wetting of aluminium oxide by molten aluminium and other metals, Journal of Materials Science 4 (1969) 39–49.
    [19] E. Saiz, R.M. Cannon, A.P. Tomsia, Ridging effects on wetting and spreading of liquids on solids, Acta Materialia 46 (1998) 2349–2361.
    [20] E. Saiz, R.M. Cannon, A.P. Tomsia, Energetics and atomic transport at liquid metal/Al2O3 interfaces, Acta Materialia 47 (1999) 4209–4220.
    [21] G. Levi, W.D. Kaplan, Oxygen induced interfacial phenomena during wetting of alumina by liquid aluminium, Acta Mater. 50 (2002) 75–88.
    [22] V. Ghetta, D. Chatain, Morphologies adopted by Al2O3 single-crystal surfaces in contact with Cu droplets, J. of the American Ceramic Soc. 85 (2002) 961–964.
    [23] P. Shen, H. Fujii, T. Matsumoto, K. Nogi, The influence of surface structure on wetting of α-Al 2O3 by aluminum in a reduced atmosphere, Acta Materialia 51 (2003) 4897–4906.
    [24] G. Levi, W.D. Kaplan, Aluminium-alumina interface morphology and thermodynamics from dewetting experiments, Acta Materialia 51 (2003) 2793–2802.
    [25] M. Ohya, D. Inoue, H. Itoh, T. Ichinokawa, Oscillation of wettability of molten Cu islands on SiO2, Surface Science 369 (1996) 169–176.
    [26] T. Ichinokawa, H. Itoh, Y. Sakai, Behaviors of small molten metal islands on several substrates, Journal of analytical atomic spectrometry 14 (1999) 405–408.
    78
    Chapter 5 - Evaporation of sessile drops: wetting of graphite by molten silver
    [27] J.G. Li, Wettability of silicon carbide by liquid silver and binary silver-silicon alloy, Materials Letters 18 (1994) 291–298.
    [28] H. Fujii, S. Izutani, T. Matsumoto, S. Kiguchi, K. Nogi, Evaluation of unusual change in contact angle between MgO and molten magnesium, Mater. Sci. Eng. 417 (2006) 99–103.
    [29] P. Shen, D. Zhang, Q.L. Lin, L.X. Shi, Q.C. Jiang, Wetting of polycrystalline MgO by molten Mg under evaporation, Mater. Chem. Phys. 122 (2010) 290–294.
    [30] L. Shi, P. Shen, D. Zhang, Q. Jiang, Pinning-depinning behavior in the wetting of (0001) α-Al2O3 single crystal by molten Mg, Applied Surface Science 257 (2011) 10743–10747.
    [31] M.E.R. Shanahan, Simple Theory of “Stick-Slip” Wetting Hysteresis. Langmuir 11: (1995) 1041–1043
    [32] J. Moffat, K. Sefiane, Effect TiO2 Nanoparticles on Contact Line Stick−Slip Behavior Volatile Drops, Phys. Chem. B. 113 2009) 8860–8866.
    [33] I. Karakaya, W.T. Thompson, Binary Alloy Phase Diagrams 2 1988) 18–20.
    [34] W.G. Moffatt, Handbook of Binary Phase Diagrams, Business Growth Services, General Electric Co., Schenectady, New York (1976).
    [35] S. Dorfman, D. Fuks, M. Suery, Diffusivity of carbon in copper- and silver-based composites, Journal of Material Science 34 (1999) 77–81.
    [36] V.N. Eremenko, Y.V. Naidich, The role of surface phenomena in metallurgy, Cons. Bureau, New York (1963).
    [37] B.E. Knox, E.H. Baker, The Effect of Oxygen Pressure on the Liquid Silver-Alumina interface, J. of Material Science 7 (1972) 476–478.
    [38] R. Sangiorgi, M.L. Muolo, A. Passerone, Surface tension and adsorption in liquid silver-oxygen alloys, Acta Metallurgica 30 (1982) 1597–1604.
    [39] T. Hibiya, K. Morohoshi, S. Ozawa, Oxygen partial pressure dependence of surface tension and its temperature coefficient for metallic melts: a discussion from the viewpoint of solubility and adsorption of oxygen, J. of Material Science 45 (2010) 1986–1992.
    [40] S. Ozawa, K. Morohoshi, T. Hibiya, H. Fukuyama, Influence of oxygen partial pressure on surface tension of molten silver, J. Appl. Phys. 107 (2010) 014910.1–014910.7.
    Chapter 6
    [1] M. Rein, Phenomena of liquid drop impact on solid and liquid surfaces, Fluid Dyn. Res. 12 (1993) 61–93.
    [2] A.L. Yarin, Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing, Annu. Rev. Fluid Mech. 38 (2006) 159–192.
    [3] H. Park, W.W. Carr, J. Zhu, J.F. Morris, Single drop impaction on a solid surface, AIChE J. 49 (2003) 2461–2471.
    [4] Z. Yu, Y. Ge, L.S. Fan, Multi-scale simulation of oblique collisions of a droplet on a surface in the Leidenfrost regime, Chem. Eng. Sci. 62 (2007) 3462–3472.
    [5] S.A.K. Jeelani, S. Hartland, Collision of oscillating liquid drops, Chem. Eng. Sci. 46 (1991) 1807–1814.
    [6] P. Attane, F. Girard, V. Morin, An energy balance approach of the dynamics of drop impact on a solid surface, Phys. fluids 19 (2007) 012101.1–012101.17.
    [7] Y. Renardy, S. Popinet, L. Duchemin, M. Renardy, S. Zaleski, C. Josserand, M.A. Drumright-Clarke, D. Richard, C. Clanet, D. Quere, Pyramidal and toroidal water drops after impact on a solid surface, J. Fluid Mech. 484 (2003) 69–83.
    [8] H. Fujimoto, Y. Shiotani, A.Y. Tong, T. Hama, H. Takuda, Three-dimensional numerical analysis of the deformation behavior of droplets impinging onto a solid substrate, Int. J. Multiphas Flow 33 (2007) 317–332.
    [9] J.T. Hirvi, T.A. Pakkanen, Nanodroplet impact and sliding on structured polymer surfaces, Surf. Sci. 602 (2008) 1810–1818.
    [10] T. Mao, D.C.S. Kuhn, H. Tran, Spread and rebound of liquid droplets upon impact on flat surfaces, AIChE J. 43 (1997) 2169–2179.
    [11] A.M. Briones, J.S. Ervin, S.A. Putnam, L.W. Byrd, L. Gschwender, Micrometer-Sized Water Droplet Impingement Dynamics and Evaporation on a Flat Dry Surface, Langmuir 26 (2010) 13272–13286.
    [12] X. Zhang, O.A. Basaran, Dynamic Surface Tension Effects in Impact of a Drop with a Solid Surface, J. Colloid Interf. Sci. 187 (1997) 166–178.
    92
    Chapter 6 – Impingement dynamics of water drops: from triple line recoil to pinning
    [13] R. Crooks, J. Cooper-White, D.V. Boger, The role of dynamic surface tension and elasticity on the dynamics of drop impact, Chem. Eng. Sci. 56 (2001) 5575–5592.
    [14] J.J. Cooper-White, R.C. Crooks, D.V. Boger, A drop impact study of worm-like viscoelastic surfactant solutions, Colloid Surface A 210 (2002) 105–123.
    [15] T. Fujimatsu, H. Fujita, M. Hirota, O. Okada, Interfacial deformation between an impacting water drop and a silicone-oil surface, J. Colloid Interf. Sci. 264 (2003) 212–220.
    [16] S. Sikalo, C. Tropea, E.N. Ganic, Dynamic wetting angle of a spreading droplet, Exp. Therm. Fluid Sci. 29 (2005) 795–802.
    [17] S.R. Werner, J.R. Jones, A.H. Paterson, R.H. Archer, D.L. Pearce, Droplet impact and spreading: Droplet formulation effects, Chem. Eng. Sci. 62 (2007) 2336–2345.
    [18] S. Sikalo, M. Marengo, C. Tropea, E.N. Ganic, Analysis of Impact of Droplets on Horizontal Surfaces, Exp. Therm. Fluid Sci. 25 (2002) 503–510.
    [19] D.C.D. Roux, J.J. Cooper-White, Dynamics of water spreading on a glass surface, J. Colloid Interf. Sci. 277 (2004) 424–436.
    [20] K. Range, F. Feuillebois, Influence of surface roughness on liquid drop impact, J. Colloid Interf. Sci. 203 (1998) 16–30.
    [21] D. Sivakumar, K. Katagiri, T. Sato, H. Nishiyama, Spreading behavior of an impacting drop on a structured rough surface, Phys. Fluids 17 (2005) 100608.1–100608.10.
    [22] M-J. Wang, Y-L. Hung, S-Y. Lin, The observation of air bubble entrapment for water droplets impinging on parafilm surface, J. Taiwan Inst. Chem. Eng. 43 (2012) 517–524.
    [23] M-J. Wang, Y-L. Hung, F-H. Lin, S-Y. Lin, Dynamic behaviors of droplet impact and spreading: A universal relationship study of dimensionless wetting diameter and droplet height, Exp. Therm. Fluid Sci. 33 (2009) 1112–1118.
    [24] M. Barberoglou, V. Zorba, A. Pagozidis, C. Fotakis, E. Stratakis, Electrowetting Properties of Micro/Nanostructured Black Silicon, Langmuir 26 (2010) 13007–13014.
    [25] S. Sudo, M. Funaoka, H. Nishiyama, Impact of Droplets of Magneto-Rheological Suspension Under Applied Magnetic Fields, J. Intel. Mat. Syst. Str. 13 (2002) 409–413.
    93
    Chapter 6 – Impingement dynamics of water drops: from triple line recoil to pinning
    [26] C. Ukiwe, D.Y. Kwok, On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces, Langmuir 21 (2005) 666–673.
    [27] Z. Wang, C. Lopez, A. Hirsa, N. Koratkar, Impact dynamics and rebound of water droplets on superhydrophobic carbon nanotube arrays, Appl. Phys. Lett. 91 (2007) 023105.1–023105.3.
    [28] P. Tsai, S. Pacheco, C. Pirat, L. Lefferts, D. Lohse, Drop impact upon micro- and nanostructured superhydrophobic surfaces, Langmuir 25 (2009) 12293–12298.
    [29] L. Chen, Z. Xiao, P.C.H. Chan, Y.K. Lee, Z. Li, A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf, Appl. Surf. Sci. 257 (2011) 8857–8863.
    [30] P. G. de Gennes, Wetting: statics and dynamics, Rev. Mod. Phys. 57 (1985) 827–863.
    [31] M.E.R. Shanahan, Disturbed triple line behaviour and its use in surface analysis, Adv. Colloid Interface. 39 (1992) 35–59.
    [32] M.E.R. Shanahan, A. Carre, Viscoelastic dissipation in wetting and adhesion phenomena, Langmuir 11 (1995) 1396–1402.
    [33] M.E.R. Shanahan, Fine structure of a perturbed wetting triple line, Colloid Surface A 156 (1999) 71–77.
    [34] H. Tavana, G. Yang, C.M. Yip, D. Appelhans, S. Zschoche, K. Grundke, M.L. Hair, A.W. Neumann, Stick-Slip of the Three-Phase Line in Measurements of Dynamic Contact Angles, Langmuir 22 (2006) 628–636.
    [35] J.R. Moffat, K. Sefiane, M.E.R. Shanahan, Effect of TiO2 Nanoparticles on Contact Line Stick-Slip Behavior of Volatile Drops, J. Phys. Chem. B 113 (2009) 8860–8866.
    [36] D. Orejon, K. Sefiane, M.E.R. Shanahan, Stick-Slip of Evaporating Droplets: Substrate Hydrophobicity and Nanoparticle Concentration, Langmuir 27 (2011) 12834–12843.
    [37] S. Ramos, A. Tanguy, Pinning-depinning of the contact line on nanorough surfaces, Eur. Phys. J. E 19 (2006) 433–440.
    [38] N. Anantharaju, M. Panchagnula, S. Neti, Evaporating drops on patterned surfaces: Transition from pinned to moving triple line, J. Colloid Interf. Sci. 337 (2009) 176–182.
    94
    Chapter 6 – Impingement dynamics of water drops: from triple line recoil to pinning
    [39] T.A.H. Nguyen, A.V. Nguyen, M.A. Hampton, Z.P. Xu, L. Huang, V. Rudolph, Theoretical and experimental analysis of droplet evaporation on solid surfaces, Chem. Eng. Sci 69 (2012) 522–529.
    [40] K. Sefiane, L. Tadrist, Experimental investigation of the de-pinning phenomenon on rough surfaces of volatile drops, Int. Commun. Heat Mass 33 (2006) 482–490.
    [41] E. Bormashenko, A. Musin, G. Whyman, M. Zinigrad, Wetting Transitions and Depinning of the Triple Line, Langmuir 28 (2012) 3460−3464.
    [42] M.E.R. Shanahan, C. Bourges, Effects of evaporation on contact angles on polymer surfaces, Int. J. Adhesion 14 (1994) 201–205.
    [43] E. Bormashenko, A. Musin, M. Zinigrad, Evaporation of droplets on strongly and weakly pinning surfaces and dynamics of the triple line, Colloid Surface A 385 (2011) 235–240.
    [44] B. Zuo, F.F. Zheng, Y.R. Zhao, T.Y. Chen, Z.H. Yan, H. Ni, X. Wang, Stick−Slip Phenomenon in Measurements of Dynamic Contact Angles and Surface Viscoelasticity of Poly(styrene-b-isoprene-b- styrene) Triblock Copolymers, Langmuir 28 (2012) 4283−4292.
    [45] S.J. Hong, Y.F. Li, M.J. Hsiao, Y.J. Sheng, H.K. Tsao, Anomalous wetting on a superhydrophobic graphite surface, Appl. Phys. Lett. 100 (2012) 121601.1–121601.4.
    [46] S-Y. Lin, H-C. Chang, L-W. Lin, P-Y. Huang, Measurement of dynamic/ advancing/ receding contact angle by video-enhanced sessile drop tensiometry, Rev. Sci. Instrum. 67 (1996) 2852–2858.
    [47] J.O. Marston, S.T. Thoroddsen, W.K. Ng, R.B.H. Tan, Experimental study of liquid drop impact onto a powder surface, Powder Technol. 203 (2010) 223–236.
    [48] J. Bird, S. Mandre, H.A. Stone, Short-Time Dynamics of Partial Wetting, Phys. Rev. Lett. 100 (2008) 234501.1–234501.4.
    Chapter 7
    [1] M. Rein, Phenomena of liquid drop impact on solid and liquid surfaces, Fluid Dyn. Res. 12 (1993) 61-93.
    [2] A. L. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing, Annu. Rev. Fluid Mech. 38 (2006) 159-192.
    [3] M. Marengo, C. Antonini, I. V. Roisman, and C. Tropea, Drop collisions with simple and complex surfaces, Curr. Opin. Colloid In. 16 (2011) 292-302.
    [4] R. Rioboo, M. Marengo, and C. Tropea, Time evolution of liquid drop impact onto solid, dry surfaces, Exp. Fluids 33 (2002) 112-124.
    [5] P. Attane, F. Girard, and V. Morin, An energy balance approach of the dynamics of drop impact on a solid surface, Phys. Fluids 19 (2007) 012101.1-012101.17.
    [6] D. C. D. Roux, and J. J. Cooper-White, Dynamics of water spreading on a glass surface, J. Colloid Interf. Sci. 277 (2004) 424-436.
    [7] T. Mao, D. C. S. Kuhn, and H. Tran, Spread and rebound of liquid droplets upon impact on flat surfaces, AIChE J. 43 (1997) 2169-2179
    [8] S. Sikalo, M. Marengo, C. Tropea, and E. N. Ganic, Analysis of impact of droplets on horizontal surfaces, Exp. Therm. Fluid Sci. 25 (2002) 503-510.
    [9] C. Ukiwe, and D. Y. Kwok, On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces, Langmuir 21 (2005) 666-673.
    [10] J. B. Lee, and S. H. Lee, Dynamic wetting and spreading characteristics of a liquid droplet impinging on hydrophobic textured surfaces, Langmuir 27 (2011) 6565-6573.
    [11] J. T. Hirvi, and T. A. Pakkanen, Nanodroplet impact and sliding on structured polymer surfaces, Surf. Sci. 602 (2008) 1810-1818.
    [12] Z. Wang, C. Lopez, A. Hirsa, and N. Koratkar, Impact dynamics and rebound of water droplets on superhydrophobic carbon nanotube arrays, Appl. Phys. Lett. 91 (2007) 023105.1-023105.3.
    105
    Chapter 7 – Impingement dynamics of water drops: pinning on substrates with random dilute defects
    [13] L. Chen, Z. Xiao, P. C. H. Chan, Y. K. Lee, and Z. Li, A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf, Appl. Surf. Sci. 257 (2011) 8857-8863.
    [14] P. Tsai, S. Pacheco, C. Pirat, L. Lefferts, and D. Lohse, Drop impact upon micro- and nanostructured superhydrophobic surfaces, Langmuir 25 (2009) 12293-12298.
    [15] H. Park, W. W. Carr, J. Zhu, and J. F. Morris, Single drop impaction on a solid surface, AIChE J. 49, (2003) 2461-2471.
    [16] A. M. Briones, J. S. Ervin, S. A. Putnam, L. W. Byrd, and L. Gschwender, Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface, Langmuir 26 (2010) 13272-13286.
    [17] M. J. Wang, F. H. Lin, Y. L. Hung, and S. Y. Lin, Dynamic behaviors of droplet impact and spreading: water on five different substrates, Langmuir 25 (2009) 6772–6780.
    [18] M. J. Wang, F. H. Lin, J. Y. Ong, and S. Y. Lin, Dynamic behaviors of droplet impact and spreading – Water on glass and paraffin, Colloid Surface A 339 (2009) 224-231.
    [19] X. Li, F. Feng, K. Zhang, S. Ye, D. Y. Kwok, and V. Birss, Wettability of Nafion and Nafion/Vulcan Carbon composite films, Langmuir 28 (2012) 6698−6705.
    [20] P. G. de Gennes, Wetting: statics and dynamics, Rev. Mod. Phys. 57 (1985) 827-863.
    [21] J. F. Joanny, and P. G. de Gennes, A model for contact angle hysteresis, J. Chem. Phys. 81 (1984) 552-562.
    [22] M. E. R. Shanahan, Disturbed triple line behavior and its use in surface analysis, Adv. Colloid Interfac. 39 (1992) 35-59.
    [23] M. E. R. Shanahan, Fine structure of a perturbed wetting triple line, Colloid Surface A 156 (1999) 71-77.
    [24] S. Ramos, and A. Tanguy, Pinning-depinning of the contact line on nanorough surfaces, Eur. Phys. J. E 19 (2006) 433-440
    [25] M. Reyssat, and D. Quere, Contact angle hysteresis generated by strong dilute defects, J. Phys. Chem. B 113 (2009) 3906-3909.
    [26] R. Tadmor, Approaches in wetting phenomena, Soft Matter. 7 (2011) 1577-1580.
    106
    Chapter 7 – Impingement dynamics of water drops: pinning on substrates with random dilute defects
    [27] S. J. Hong, Y. F. Li, M. J. Hsiao, Y. J. Sheng, and H. K. Tsao, Anomalous wetting on a superhydrophobic graphite surface, Appl. Phys. Lett. 100 (2012) 121601.1-121601.4.
    [28] S. Y. Lin, H. C. Chang, L. W. Lin, and P. Y. Huang, Measurement of dynamic/ advancing/ receding contact angle by video-enhanced sessile drop tensiometry, Rev. Sci. Instrum. 67 (1996) 2852-2858.
    [29] Y. L. Hung, M. J. Wang, J. W. Huang, and S. Y. Lin, A study on the impact velocity and drop size for the occurrence of entrapped air bubbles – Water on parafilm, Exp. Therm. Fluid Sci. 48 (2013) 102-109.
    [30] J. Bird, S. Mandre, and H. A. Stone, Short-time dynamic of partial wetting, Phys. Rev. Lett. 100 (2008) 234501.1-234501.4.
    Chapter 8
    [1] W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta. 202 (1997) 1–8.
    [2] R. Furstner, W. Barthlott, C. Neinhuis, P. Walzel, Wetting and self-cleaning properties of artificial superhydrophobic surfaces, Langmuir. 21 (2005) 956–961.
    [3] A. Lafuma, D. Quere, Superhydrophobic states, Nat Mater. 2 (2003) 457–460.
    [4] K. Liu, L. Jiang, Bio-Inspired Self-Cleaning Surfaces, Ann Rev of Mater Res. 42 (2012) 231–263.
    [5] B. Bhushan, Y.C. Jung, K. Koch, Self-cleaning efficiency of artificial superhydrophobic surfaces, Langmuir. 25 (2009) 3240–8.
    [6] M. Shateri Khalil-Abad, M.E. Yazdanshenas, Superhydrophobic antibacterial cotton textiles, J Colloid Interf Sci. 351 (2010) 293–298.
    [7] D. Quere, M. Reyssat, Non-adhesive lotus and other hydrophobic materials, Philos Trans A Math Phys Eng Sci. 366 (2008) 1539–1556.
    [8] P. Roach, N.J. Shirtcliffe, M.I. Newton, Progess in superhydrophobic surface development, Soft Matter. 4 (2008) 224–240.
    [9] E. Bormashenko, R. Pogreb, G. Whyman, M. Erlich, Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair?, Langmuir. 23 (2007) 6501–6503.
    [10] Z. Yoshimitsu, A. Nakajima, T. Watanabe, K. Hashimoto, Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets, Langmuir. 18 (2002) 5818–5822.
    [11] N.A. Patankar, Transition between superhydrophobic states on rough surfaces, Langmuir. 20 (2004) 7097–7102.
    [12] X. Chen, R. Ma, J. Li, C. Hao, W. Guo, B.L. Luk, et al., Evaporation of Droplets on Superhydrophobic Surfaces : Surface Roughness and Small Droplet Size Effects, Phys. Rev. Lett. 109 (2012) 116101.
    [13] J. Bico, C. Marzolin, D. Quere, Pearl drops, Europhys Lett. 47 (1999) 220–226.
    126
    Chapter 8 – Impingement dynamics of water drops: liquid impalement into hydrophobic surfaces
    [14] D. Sivakumar, K. Katagiri, T. Sato, H. Nishiyama, Spreading behavior of an impacting drop on a structured rough surface, Phys Fluids. 17 (2005) 100608.
    [15] Q.-S. Zheng, Y. Yu, Z.-H. Zhao, Effects of Hydraulic Pressure on the Stability and Transition of Wetting Modes of Superhydrophobic Surfaces, Langmuir. 21 (2005) 12207–12212.
    [16] D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan, S. Moulinet, Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces, Europhys Lett. 74 (2006) 299–305.
    [17] M. Reyssat, A. Pepin, F. Marty, Y. Chen, D. Quere, Bouncing transitions on microtextured materials, Europhys Lett. 74 (2006) 306–312.
    [18] Z. Wang, C. Lopez, A. Hirsa, N. Koratkar, Impact dynamics and rebound of water droplets on superhydrophobic carbon nanotube arrays, App Phys Lett. 91 (2007) 023105.
    [19] J.T. Hirvi, T.A. Pakkanen, Nanodroplet impact and sliding on structured polymer surfaces, Surf Sci. 602 (2008) 1810–1818.
    [20] J. Hyvaluoma, J. Timonen, Impalement transitions in droplets impacting microstructured superhydrophobic surfaces, Europhys Lett. 83 (2008) 64002.
    [21] P. Brunet, F. Lapierre, V. Thomy, Y. Coffinier, R. Boukherroub, Extreme resistance of super-hydrophobic surfaces to impalement: reversible electrowetting related to the impacting/bouncing drop test, Langmuir. 24 (2008) 11203–11208.
    [22] R. Rioboo, M. Voue, A. Vaillant, J. De Coninck, Drop impact on porous superhydrophobic polymer surfaces, Langmuir. 24 (2008) 14074–14077.
    [23] Y.C. Jung, B. Bhushan, Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces, Langmuir. 24 (2008) 6262–6269.
    [24] T. Deng, K.K. Varanasi, M. Hsu, N. Bhate, C. Keimel, J. Stein, et al., Nonwetting of impinging droplets on textured surfaces, App Phys Lett. 94 (2009) 133109.
    [25] P. Tsai, S. Pacheco, C. Pirat, L. Lefferts, D. Lohse, Drop impact upon micro- and nanostructured superhydrophobic surfaces, Langmuir. 25 (2009) 12293–12298.
    [26] G. Kwak, M. Lee, K. Senthil, K. Yong, Impact dynamics of water droplets on chemically modified WOx nanowire arrays, App Phys Lett. 95 (2009) 153101.
    127
    Chapter 8 – Impingement dynamics of water drops: liquid impalement into hydrophobic surfaces
    [27] X. Li, X. Ma, Z. Lan, Dynamic Behavior of the Water Droplet Impact on a Textured Hydrophobic/Superhydrophobic Surface: The Effect of the Remaining Liquid Film Arising on the Pillars’ Tops on the Contact Time, Langmuir. 26 (2010) 4831–4838.
    [28] B.A. Malouin, N.A. Koratkar, A.H. Hirsa, Z. Wang, Directed rebounding of droplets by microscale surface roughness gradients, App Phys Lett. 96 (2010) 234103.
    [29] A.N. Lembach, H. Tan, I. V. Roisman, T. Gambaryan-Roisman, Y. Zhang, C. Tropea, et al., Drop Impact, Spreading, Splashing, and Penetration into Electrospun Nanofiber Mats, Langmuir. 26 (2010) 9516–9523.
    [30] L. Chen, Z. Xiao, P.C.H. Chan, Y-K. Lee, Z. Li, A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf, App Surf Sci. 257 (2011) 8857–8863.
    [31] J.B. Lee, S.H. Lee, Dynamic Wetting and Spreading Characteristics of a Liquid Droplet Impinging on Hydrophobic Textured Surfaces, Langmuir. 27 (2011) 6565–6573.
    [32] H. Kim, C. Lee, M.H. Kim, J. Kim, Drop Impact Characteristics and Structure Effects of Hydrophobic Surfaces with Micro- and/or Nanoscaled Structures, Langmuir. 28 (2012) 11250–11257.
    [33] Y. Renardy, S. Popinet, L. Duchemin, M. Renardy, S. Zaleski, C. Josserand, et al., Pyramidal and toroidal water drops after impact on a solid surface, J Fluid Mech. 484 (2003) 69–83.
    [34] P.S. Brown, A. Berson, E.L. Talbot, T.J. Wood, W.C.E. Schofield, C.D. Bain, et al., Impact of Picoliter Droplets on Superhydrophobic Surfaces with Ultralow Spreading Ratios, Langmuir. 27 (2011) 13897–13903.
    [35] C. Clanet, C. Beguin, D. Richard, D. Quere, Maximal deformation of an impacting drop, J Fluid Mech. 517 (2004) 199–208.
    [36] P.G. Pittoni, H.-K. Tsao, S.-Y. Lin, Water drop impingement on graphite substrates with random dilute defects, Exp Therm Fluid Sci. 53 (2014) 142–146.
    [37] M-J. Wang, F-H. Lin, Y-L. Hung, S-Y. Lin, Dynamic Behaviors of Droplet Impact and Spreading: Water on Five Different Substrates, Langmuir. 25 (2009) 6772–6780.
    [38] S-J. Hong, Y-F. Li, M-J. Hsiao, Y-J. Sheng, H-K. Tsao, Anomalous wetting on a superhydrophobic graphite surface, App Phys Lett. 100 (2012) 121601.
    128
    Chapter 8 – Impingement dynamics of water drops: liquid impalement into hydrophobic surfaces
    [39] S-Y. Lin, H-C. Chang, L-W. Lin, P-Y. Huang, Measurement of dynamic/advancing/receding contact angle by video-enhanced sessile drop tensiometry, Rev. Sci. Instrum. 67 (1996) 2852–2858.
    [40] M.-J. Wang, Y.-L. Hung, F.-H. Lin, S.-Y. Lin, Dynamic behaviors of droplet impact and spreading: A universal relationship study of dimensionless wetting diameter and droplet height, Exp. Therm. Fluid Sci. 33 (2009) 1112–1118.
    [41] D.C.D. Roux, J.J. Cooper-White, Dynamics of water spreading on a glass surface, J Colloid Interf Sci. 277 (2004) 424–436.
    [42] E.W. Washburn, The dynamics of Capillary Flow, Phys Rev. 17 (1921) 273–283.
    [43] O.G. Engel, Waterdrop Collisions With Solid Surfaces, J. Res. Natl. Bur. Stand. 54 (1955) 281–298.
    [44] F.P. Bowden, J.E. Field, The brittle fracture of solids by liquid impact, by solid impact, and by shock, Proc. R. Soc. Lond. A. 282 (1964) 331–352.
    [45] J.E. Field, ELSI conference: invited lecture. Liquid impact: theory, experiment, applications, Wear. 233 (1999) 1–12.
    [46] M. Denesuk, G.L. Smith, B.J.J. Zelinski, N.J. Kreidl, D.R. Uhlmann, Capillary Penetration of Liquid Droplets into Porous Materials, J Colloid Interf Sci. 158 (1993) 114–120.
    Chapter 9
    [1] E.B. Gutoff, E.D. Cohen, Coating and Drying Defects: Troubleshooting Operating Problems, Wiley, NewJersey, 2006.
    [2] J.R. Castrej n-Pita, G.D. Martin, I.M. Hutchings, Experimental Study of the Influence of Nozzle Defects on Drop-on-Demand Ink Jets, J. Imaging Sci. Technol. 55 (2011) 040305.1–040305.7.
    [3] S. Goutier, M. Vardelle, P. Fauchais, Comparison between metallic and ceramic splats: Influence of viscosity and kinetic energy on the particle flattening, Surf. Coatings Technol. 235 (2013) 657–668.
    [4] J.H. Song, H.M. Nur, Defects and prevention in ceramic components fabricated by inkjet printing, J. Mater. Process. Technol. 155-156 (2004) 1286–1292.
    [5] F.C. Krebs, Fabrication and processing of polymer solar cells: A review of printing and coating techniques, Sol. Energy Mater. Sol. Cells. 93 (2009) 394–412.
    [6] M. Rein, Phenomena of liquid drop impact on solid and liquid surfaces, Fluid Dyn. Res. 12 (1993) 61–93.
    [7] A.L. Yarin, Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing…, Annu. Rev. Fluid Mech. 38 (2006) 159–192.
    [8] S.T. Thoroddsen, K. Takehara, T.G. Etoh, Bubble entrapment through topological change, Phys. Fluids. 22 (2010) 051701.1–051701.4.
    [9] N. Ootsuka, T.G. Etoh, K. Takehara, S. Oki, Y. Takano, Y. Hatsuki, et al., Air-bubble entrapment due to a drop, in: D.L. Paisley, S. Kleinfelder, D.R. Snyder, B.J. Thompson (Eds.), 26th Int. Congr. High-Speed Photogr. Photonics, 2005: pp. 153–162.
    [10] W.Y. Liang Ling, T.W. Ng, A. Neild, Q. Zheng, W.Y.L. Ling, Sliding variability of droplets on a hydrophobic incline due to surface entrained air bubbles, J. Colloid Interface Sci. 354 (2011) 832–842.
    145
    Chapter 9 – Bubbles entrapped into impinging droplets: the influence of the substrate hydrophobicity
    [11] S.G. Yiantsios, R.H. Davis, On the buoyancy-driven motion of a drop towards a rigid surface or a deformable interface, J. Fluid Mech. 217 (1990) 547–573.
    [12] S. Chandra, C.T. Avedisian, On the collision of a droplet with a solid surface, Proc. R. Soc. London. Ser. A, Math. Phys. Sci. 432 (1991) 13–41.
    [13] M. Pasandideh-Fard, Y.M. Qiao, S. Chandra, J. Mostaghimi, Capillary effects during droplet impact on a solid surface, Phys. Fluids. 8 (1996) 650–659.
    [14] S.T. Thoroddsen, J. Sakakibara, Evolution of the fingering pattern of an impacting drop, Phys. Fluids. 10 (1998) 1359–1374.
    [15] D.A. Weiss, A.L. Yarin, Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation, J. Fluid Mech. 385 (1999) 229–254.
    [16] H. Fujimoto, H. Shiraishi, N. Hatta, Evolution of liquid/solid contact area of a drop impinging on a solid surface, Int. J. Heat Mass Transf. 43 (2000) 1673–1677.
    [17] V. Mehdi-Nejad, J. Mostaghimi, S. Chandra, Air bubble entrapment under an impacting droplet, Phys. Fluids. 15 (2003) 173–183.
    [18] H. Fujimoto, H. Takuda, Entrapment of air at 45° oblique collision of a water drop with a smooth solid surface at room temperature, Int. J. Heat Mass Transf. 47 (2004) 3301–3305.
    [19] D.B. van Dam, C. Le Clerc, Experimental study of the impact of an ink-jet printed droplet on a solid substrate, Phys. Fluids. 16 (2004) 3403–3414.
    [20] S.T. Thoroddsen, T.G. Etoh, K. Takehara, N. Ootsuka, Y. Hatsuki, The air bubble entrapped under a drop impacting on a solid surface, J. Fluid Mech. 545 (2005) 203–212.
    [21] S.T. Thoroddsen, T.G. Etoh, K. Takehara, High-Speed Imaging of Drops and Bubbles, Annu. Rev. Fluid Mech. 40 (2008) 257–285.
    [22] S.T. Thoroddsen, K. Takehara, T.G. Etoh, Dewetting at the center of a drop impact, Mod. Phys. Lett. B. 23 (2009) 361–364.
    [23] S. Mandre, M. Mani, M.P. Brenner, Precursors to Splashing of Liquid Droplets on a Solid Surface, Phys. Rev. Lett. (2009) 134502.1–134502.4.
    146
    Chapter 9 – Bubbles entrapped into impinging droplets: the influence of the substrate hydrophobicity
    [24] P.D. Hicks, R. Purvis, Air cushioning and bubble entrapment in three-dimensional droplet impacts, J. Fluid Mech. 649 (2010) 135–163.
    [25] A.M. Briones, J.S. Ervin, S.A. Putnam, L.W. Byrd, L. Gschwender, Micrometer-Sized Water Droplet Impingement Dynamics and Evaporation on a Flat Dry Surface, Langmuir. 26 (2010) 13272–13286.
    [26] P.D. Hicks, R. Purvis, Air cushioning in droplet impacts with liquid layers and other droplets, Phys. Fluids. 23 (2011) 062104.1–062104.14.
    [27] J. de Ruiter, J.M. Oh, D. van der Ende, F. Mugele, Dynamics of Collapse of Air Films in Drop Impact, Phys. Rev. Lett. 108 (2012) 074505.1–074505.4.
    [28] J.S. Lee, B.M. Weon, J.H. Je, K. Fezzaa, How Does an Air Film Evolve into a Bubble During Drop Impact?, Phys. Rev. Lett. 109 (2012) 204501.1–204501.5.
    [29] W. Bouwhuis, R.C.A. van der Veen, T. Tran, D.L. Keij, K.G. Winkels, I.R. Peters, et al., Maximal Air Bubble Entrainment at Liquid-Drop Impact, Phys. Rev. Lett. 109 (2012) 264501.1–264501.4.
    [30] J. Palacios, J. Hernandez, P. Gomez, C. Zanzi, J. Lopez, On the impact of viscous drops onto dry smooth surfaces, Exp. Fluids. 52 (2012) 1449–1463.
    [31] L. Duchemin, C. Josserand, Rarefied gas correction for the bubble entrapment singularity in drop impacts, Comptes Rendus Mec. 340 (2012) 797–803.
    [32] J.M. Kolinski, S.M. Rubinstein, S. Mandre, M.P. Brenner, D.A. Weitz, L. Mahadevan, Skating on a Film of Air : Drops Impacting on a Surface, Phys. Rev. Lett. 108 (2012) 074503.1–074503.5.
    [33] Y. Liu, P. Tan, L. Xu, Compressible air entrapment in high-speed drop impacts on solid surfaces, J. Fluid Mech. 716 (2013) R9.1–R9.12.
    [34] M. Mani, S. Mandre, M.P. Brenner, Events before droplet splashing on a solid surface, J. Fluid Mech. 647 (2010) 163–185.
    147
    Chapter 9 – Bubbles entrapped into impinging droplets: the influence of the substrate hydrophobicity
    [35] T.A. Elliott, D.M. Ford, Dynamic contact angles. Part 7.—Impact spreading of water drops in air and aqueous solutions of surface active agents in vapour on smooth paraffin wax surfaces, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 68 (1972) 1814–1823.
    [36] Y. Renardy, S. Popinet, L. Duchemin, M. Renardy, S. Zaleski, C. Josserand, et al., Pyramidal and toroidal water drops after impact on a solid surface, J. Fluid Mech. 484 (2003) 69–83.
    [37] D. Bartolo, C. Josserand, D. Bonn, Singular Jets and Bubbles in Drop Impact, Phys. Rev. Lett. 96 (2006) 124501.1–124501.4.
    [38] V. V. Khatavkar, P.D. Anderson, P.C. Duineveld, H.E.H. Meijer, Diffuse-interface modelling of droplet impact, J. Fluid Mech. 581 (2007) 97–127.
    [39] P. Tsai, S. Pacheco, C. Pirat, L. Lefferts, D. Lohse, Drop impact upon micro- and nanostructured superhydrophobic surfaces, Langmuir. 25 (2009) 12293–12298.
    [40] L. Chen, Z. Li, Bouncing droplets on nonsuperhydrophobic surfaces, Phys. Rev. E. 82 (2010) 016308.1–016308.5.
    [41] L. Chen, J. Wu, Z. Li, S. Yao, Evolution of entrapped air under bouncing droplets on viscoelastic surfaces, Colloids Surfaces A Physicochem. Eng. Asp. 384 (2011) 726–732.
    [42] L. Chen, Z. Xiao, P.C.H. Chan, Y. Lee, Z. Li, A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf, Appl. Surf. Sci. 257 (2011) 8857–8863.
    [43] J.J. Huang, C. Shu, Y.T. Chew, Lattice Boltzmann study of bubble entrapment during droplet impact, Int. J. Numer. Methods Fluids. 65 (2011) 655–682.
    [44] M. Wang, Y. Hung, S. Lin, The observation of air bubble entrapment for water droplets impinging on parafilm surface, J. Taiwan Inst. Chem. Eng. 43 (2012) 517–524.
    [45] Y.-L. Hung, M.-J. Wang, J.-W. Huang, S.-Y. Lin, A study on the impact velocity and drop size for the occurrence of entrapped air bubbles – Water on parafilm, Exp. Therm. Fluid Sci. 48 (2013) 102–109.
    148
    Chapter 9 – Bubbles entrapped into impinging droplets: the influence of the substrate hydrophobicity
    [46] S.-J. Hong, Y.-F. Li, M.-J. Hsiao, Y.-J. Sheng, H.-K. Tsao, Anomalous wetting on a superhydrophobic graphite surface, Appl. Phys. Lett. 100 (2012) 121601.1–121601.4.
    [47] M.-J. Wang, F.-H. Lin, Y.-L. Hung, S.-Y. Lin, Dynamic Behaviors of Droplet Impact and Spreading: Water on Five Different Substrates, Langmuir. 25 (2009) 6772–6780.
    [48] M.-J. Wang, Y.-L. Hung, F.-H. Lin, S.-Y. Lin, Dynamic behaviors of droplet impact and spreading: A universal relationship study of dimensionless wetting diameter and droplet height, Exp. Therm. Fluid Sci. 33 (2009) 1112–1118.
    [49] P.G. Pittoni, H.-K. Tsao, Y.-L. Hung, J.-W. Huang, S.-Y. Lin, Impingement dynamics of water drops onto four graphite morphologies: From triple line recoil to pinning, J. Colloid Interface Sci. 417 (2014) 256–263.
    Chapter 10
    [1] T.A. Elliott, D.M. Ford, Dynamic contact angles. Part 7.—Impact spreading of water drops in air and aqueous solutions of surface active agents in vapour on smooth paraffin wax surfaces, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 68 (1972) 1814–1823.
    [2] D. Bartolo, C. Josserand, D. Bonn, Singular Jets and Bubbles in Drop Impact, Phys. Rev. Lett. 96 (2006) 124501.1–124501.4.
    [3] P. Tsai, S. Pacheco, C. Pirat, L. Lefferts, D. Lohse, Drop impact upon micro- and nanostructured superhydrophobic surfaces, Langmuir. 25 (2009) 12293–12298.
    [4] L. Chen, Z. Li, Bouncing droplets on nonsuperhydrophobic surfaces, Phys. Rev. E. 82 (2010) 016308.1–016308.5.
    [5] L. Chen, Z. Xiao, P.C.H. Chan, Y. Lee, Z. Li, A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf, Appl. Surf. Sci. 257 (2011) 8857–8863.
    [6] L. Chen, J. Wu, Z. Li, S. Yao, Evolution of entrapped air under bouncing droplets on viscoelastic surfaces, Colloids Surfaces A Physicochem. Eng. Asp. 384 (2011) 726–732.
    [7] J.J. Huang, C. Shu, Y.T. Chew, Lattice Boltzmann study of bubble entrapment during droplet impact, Int. J. Numer. Methods Fluids. 65 (2011) 655–682.
    [8] Y.-L. Hung, M.-J. Wang, J.-W. Huang, S.-Y. Lin, A study on the impact velocity and drop size for the occurrence of entrapped air bubbles – Water on parafilm, Exp. Therm. Fluid Sci. 48 (2013) 102–109.
    [9] M. Wang, Y. Hung, S. Lin, The observation of air bubble entrapment for water droplets impinging on parafilm surface, J. Taiwan Inst. Chem. Eng. 43 (2012) 517–524.
    [10] M. Rein, Phenomena of liquid drop impact on solid and liquid surfaces, Fluid Dyn. Res. 12 (1993) 61–93.
    [11] V. V. Khatavkar, P.D. Anderson, P.C. Duineveld, H.E.H. Meijer, Diffuse-interface modelling of droplet impact, J. Fluid Mech. 581 (2007) 97–127.
    167
    Chapter 10 – Bubbles entrapped into impinging droplets: the influence of the substrate roughness
    [12] M.-J. Wang, F.-H. Lin, Y.-L. Hung, S.-Y. Lin, Dynamic Behaviors of Droplet Impact and Spreading: Water on Five Different Substrates, Langmuir. 25 (2009) 6772–6780.
    [13] M.-J. Wang, Y.-L. Hung, F.-H. Lin, S.-Y. Lin, Dynamic behaviors of droplet impact and spreading: A universal relationship study of dimensionless wetting diameter and droplet height, Exp. Therm. Fluid Sci. 33 (2009) 1112–1118.
    [14] Y. Renardy, S. Popinet, L. Duchemin, M. Renardy, S. Zaleski, C. Josserand, et al., Pyramidal and toroidal water drops after impact on a solid surface, J. Fluid Mech. 484 (2003) 69–83.
    [15] P.G. Pittoni, R.-J. Wang, T.-S. Yu, S.-Y. Lin, Occurrence and Formation Mechanisms of Bubbles Entrapped into Water Drops Impinging on Graphite, J. Taiwan Inst. Chem. Eng. (2014) Article in press, DOI: 10.1016/j.jtice.2014.04.021.

    QR CODE