簡易檢索 / 詳目顯示

研究生: 許效豪
Hsiao-Hao Hsu
論文名稱: 無轉軸偵測元件同步磁阻電動機直接轉矩控制驅動系統之研究
Research on Sensorless Direct Torque Control Drive System for a Synchronous Reluctance Motor
指導教授: 劉添華
Tian-Hua Liu
口試委員: 許源浴
Yuan-Yih Hsu
徐國鎧
Kuo-Kai Shyu
廖聰明
Chang-Ming Liaw
王文智
Wen-Jieh Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 150
中文關鍵詞: 同步磁阻電動機無轉軸偵測元件適應性控制器磁通估測
外文關鍵詞: synchronous reluctance motor, adaptive controller, flux estimation, sensorless
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在探討同步磁阻電動機無轉軸角/速度偵測元件直接轉矩控制驅動系統及相關的適應性速度控制器之設計。文中,首先介紹同步磁阻電動機的構造,特性及數學模式。其次,實現無轉軸角/速度偵測元件直接轉矩控制之同步磁阻電動機驅動系統;文中,應用低通濾波器之組合改善傳統磁通估測的缺點。另ㄧ方面,本文提出二種適應性控制器,針對同步磁阻電動機的運轉環境,適時調整適應律以調整控制器的相關參數,提高系統的速度響應及干擾拒斥能力,並以李阿普諾法則說明該控制法則可使驅動系統達到漸進穩定,此控制法則可成功地應用於速度控制系統。本文中除了以電腦模擬驗證相關理論的可行性外,並實際製作一同步磁阻電動機控速系統,該系統以一個32位元數位訊號處理器TMS320-C30為中心,執行直接轉矩控制及適應性控制法則,藉以達到系統數位化之目的。實驗結果證明本文所提理論的正確性及可行性。


    This thesis proposes a sensorless, direct torque control, synchronous reluctance drive system and its adaptive speed controller design. First, the structure, characteristics, and mathematical model of the synchronous reluctance motor are introduced. Then, a sensorless, synchronous reluctance drive system with direct torque control is implemented. In addition, a low-pass filter is used to improve the disadvantage of traditional flux estimator. Moreover, two different adaptive controllers are proposed. The controllers can on-line tune their parameters according to the operating conditions to improve the transient speed response and load disturbance rejection capability. The Lyapunov function is applied to prove that the drive system is asymptotically stable and the proposed controllers can be successfully applied in speed control system. Several computer simulation results are provided. In addition, a TMS320-C30 based drive system is realized to execute the direct torque control and adaptive control algorithms. Experimental results validate the correctness and feasibility of the proposed system.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 X 符號說明 XI 第一章 緒論 1 1.1 動機 1 1.2 文獻回顧 3 1.3 目的 6 1.4 大綱 8 第二章 同步磁阻電動機 9 2.1 簡介 9 2.2 結構及沿革 12 2.3 數學模式 15 第三章 直接轉矩控制 22 3.1 簡介 22 3.2 波寬調變技術 23 3.3 直接轉矩控制 30 3.4 磁通與轉矩控制 34 3.4.1 磁通控制 34 3.4.2 轉矩控制 37 3.4.3 切換向量表之選擇 38 3.5 無轉軸角/速度偵測元件驅動系統 40 3.5.1 簡介 40 3.5.2 轉軸角/速度估測法則 41 3.5.3 閉迴路驅動系統 45 第四章 控制器設計 47 4.1 簡介 47 4.2 適應性步階回歸控制器 48 4.2.1 簡介 48 4.2.2 速度控制器設計 49 4.2.3 穩定度分析 54 4.3 參考模式適應性控制器 57 4.3.1 簡介 57 4.3.2 基本原理 59 4.3.3 速度控制器設計 65 4.3.4 穩定度分析 72 第五章 系統研製 75 5.1 簡介 75 5.2 硬體電路製作 76 5.2.1 變頻器及緩衝級電路 76 5.2.2 回授及偵測電路 80 5.2.3 微處理機介面電路 83 5.3 軟體程式設計 84 5.3.1 簡介 84 5.3.2 主程式 86 5.3.3 副程式 87 5.3.3.1 控制器中斷副程式 87 5.3.3.2 變頻器切換法則中斷副程式 90 第六章 電腦模擬及實測 92 6.1 簡介 92 6.2 電腦模擬 92 6.3 模擬及實測結果 95 第七章 結論與建議 122 參考文獻 124 作者簡介 130

    [1] J. G. W. West, “DC, induction, reluctance and PM motors for electric vehicles,” IEE Proc. Electr. Power Appl., vol. 8, no. 2, pp. 77-88, Apr. 1994.
    [2] G. Kaplan, “Industrial electronics [echnology analysis and forecast],” IEEE Trans. Spect. Appl., vol. 34, no. 1, pp. 79-83, Jan. 1997.
    [3] T. A. Lipo, “Recent progress in the development in solid-state AC motor drives,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 105-117, Apr. 1988.
    [4] C. Allen, and P. Pillay, “TMS320 design for vector and current control of AC motor drives,” IEE Proc. Electr. Power Appl., vol. 28, no. 23, pp. 2188-2190, Nov. 1992.
    [5] G. R. Slemon, “Achieving a constant power speed range for PM drives,” IEEE Trans. Ind. Appl., vol. 31, no. 2, pp. 368-372, Mar./Apr. 1995.
    [6] D. Platt, “Reluctance motor with strong rotor anisotropy,” IEEE Trans. Ind. Appl., vol. 28, no. 3, pp. 652-658, May/June 1992.
    [7] S. Li, and H. Hofmann, “Numerically efficient steady-state finite element analysis of magnetically saturated electromechanical devices,” IEEE Trans. Mag., vol. 39, no. 6, pp. 3481-3485, Nov. 2003.
    [8] Y. Q Xiang, and S. A. Nasar, “Estimation of rotor position and speed of a synchronous reluctance motor for servodrives,” IEE Proc. Electr. Power Appl., vol. 142, no. 3, pp. 201-205, May 1995
    [9] M. T. Lin, and T. H. Liu, “Sensorless synchronous reluctance drive with standstill starting,” IEEE Aerosp. Electron. Syst. Mag., vol. 36, no. 4, pp. 1232-1241, Oct. 2000.
    [10] P. Guglielmi, M. Pastorelli, G. Pellegrino, and A. Vagati, “Position- sensorless control of permanent-magnet-assisted synchronous reluctance motor,” IEEE Trans. Ind. Electron., vol. 40 , no. 2, pp. 615-622, Mar./Apr. 2004.
    [11] D. A. Staton, T. J. E. Miller, and S. E. Wood, “Maximising the saliency ratio of the synchronous reluctance motor,” IEE Proc. Electr. Power Appl., vol. 140, no. 4, pp. 249-259, July 1993.
    [12] A. Vagati, A. Canova, M. Chiampi, M. Pastorelli, and M. Repetto, “Design refinement of synchronous reluctance motors through finite-element analysis,” IEEE Trans. Ind. Electron., vol. 36, no. 4, pp. 1094-1102, July/Aug. 2000.
    [13] K. Uezato, T. Senjyu, and Y. Tomori, “Modeling and vector control of synchronous reluctance motors including stator iron loss,” IEEE Trans. Ind. Electron., vol. 30, no. 4, pp. 971-976, July/Aug. 1994.
    [14] G. Sturtzer, D. Flieller, and J. P. Louis, “Mathematical and experi- mental method to obtain the inverse modeling of nonsinusoidal and saturated synchronous reluctance motors,” IEEE Trans. Energy Conversion, vol. 18, no. 4, pp. 494-500, Dec. 2003.
    [15] G. Stumberger, B. Stumberger, and D. Dolinar, “Identification of linear synchronous reluctance motor parameters,” IEEE Trans. Ind. Appl., vol. 40, no. 5, pp. 1317-1324, Sept./Oct. 2004.
    [16] S. Ichikawa, A. Iwata, M. Tomitat, S. Doki, and S. Okuma, “Sensorless control of synchronous reluctance motors using an on-line parameter identification method taking into account magnetic saturation,” IEEE PESC ’04, pp. 3311-3316, June 2004.
    [17] L. Xu, X. Xu, T. A. Lipo, and D. W. Novotny, “Vector control of a synchronous reluctance motor including saturation and iron loss,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 977-985, Sept./Oct. 1991.

    [18] T. Matsuo, A. El-Antably, and T. A. Lipo, “A new control strategy for optimum-efficiency operation of a synchronous reluctance motor,” IEEE Trans. Ind. Appl., vol. 33, no, 5, pp. 1146-1153, Sept./Oct. 1997.
    [19] H. K. Chiang, and C. H. Tseng, “Integral variable structure controller with grey prediction for synchronous reluctance motor drive,” IEE Proc. Electr. Power Appl., vol. 151, no. 3, pp. 349–358, May 2004.
    [20] C. H. Lin, “Adaptive recurrent fuzzy neural network control for synchronous reluctance motor servo drive,” IEE Proc. Electr. Power Appl., vol. 151, no. 6, pp. 711-724, Nov. 2004.
    [21] S. Morimoto, M. Sanada, and Y. Takeda, “High-performance current
    -sensorless drive for PMSM and SynRM with only low-resolution position sensor,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 792-801, May/June 2003.
    [22] C. G. Chen, T. H. Liu, M. T. Lin, and C. A. Tai, “Position control of a sensorless synchronous reluctance motor,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 15-25, Feb. 2004.
    [23] M. G. Jovanovic, R. E. Betz, and D. Platt, “Sensorless vector controller for a synchronous reluctance motor,” IEEE Trans. Ind. Appl., vol. 34, no. 2, pp. 346-354, Mar./Apr. 1998.
    [24] J. I. Ha, S. J. Kang, and S. K. Sul, “Position controlled synchronous reluctance motor without rotational transducer,” IEEE Trans. Ind. Appl., vol. 35, no. 6, pp. 1393-1398, Nov./Dec. 1999.
    [25] S. Ichikawa, M. Tomitat, S. Doki, and S. Okuma, “Sensorless control of synchronous reluctance motors based on an extended EMF model and initial position estimation,” IEEE IECON ’03, pp. 2150-2155, Nov. 2003.

    [26] H. A. Toliyat, L. Xu, and T. A.Lipo, “A five-phase reluctance motor with high specific torque,” IEEE Trans. Ind. Appl., vol. 28, no. 3, pp. 659-667, May/June 1992.
    [27] H. A. Toliyat, R. Shi, and H. Xu, “A DSP-based vector control of five-phase synchronous reluctance motor,” IEEE IAS ’00, pp. 1759-1765, Oct. 2000.
    [28] R. Shi, and H. A. Toliyat, “Vector control of five-phase synchronous reluctance motor with space vector pulse width modulation (SVPWM) for minimum switching losses,” IEEE APEC ’02, pp. 57-63, Mar. 2002.
    [29] R. Lagerquist, I. Boldea, and T. J. E. Miller, “Sensorless-control of the synchronous reluctance motor,” IEEE Trans. Ind. Appl., vol. 30, no. 3, pp. 673-682, May/June 1994.
    [30] S. J. Kang, J. M. Kim, and S. K. Sul, “Position sensorless control of synchronous reluctance motor using high frequency current injection,” IEEE Trans. Energy Conversion, vol. 14, no. 4, pp. 1271-1275, Dec. 1999.
    [31] R. Shi, H. A. Toliyat, and A. El-Antably, “A DSP-based direct torque control of five-phase synchronous reluctance motor drive,” IEEE APEC ’01, pp. 1077-1082, Mar. 2001.
    [32] A. Consoli, C. Cavallaro, G. Scarcella, and A. Testa, “Sensorless torque control of SyncRel motor drives,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 28-35, Jan. 2000.
    [33] J. Hu, and B. Wu, “New integration algorithms for estimating motor flux over a wide speed range,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 969-977, Sept. 1998.
    [34] D. Yousfi, M. Azizi, and A. Saad, “Position and speed estimation with improved integrator for synchronous motor,” IEEE IECON ’99, pp. 1097-1102, Nov./Dec. 1999.
    [35] M. H. Shin, D. S. Hyun, S. B. Cho, and S. Y. Choe, “An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors,” IEEE Trans. Power Electron., vol. 15, no. 2, pp. 312-318, Mar. 2000.
    [36] B. Karanayil, M. F. Rahman, and C. Grantham, “An implementation of a programmable cascaded low-pass filter for a rotor flux synthesizer for an induction motor drive,” IEEE Trans. Power Electron., vol. 19, no 2, pp. 257-263, Mar. 2004.
    [37] M. J. Kamper, and A. F. Volsdhenk, “Effect of rotor dimensions and cross magnetisation on Ld and Lq inductances of reluctance synchronous machine with cageless flux barrier rotor,” IEE Proc. Electr. Power Appl., vol. 141, no. 4, pp. 213-220, July 1994.
    [38] A. Fratta,G. P. Toglia, A. Vagati, and F. Villata, “Torque ripple evaluation of high-performance synchronous reluctance machines,” IEEE Ind. Appl. Mag., vol. 1, no. 4, pp. 14-22, July/Aug. 1995.
    [39] A. Fratta, and A. Vagati, “A reluctance motor drive for high dynamic performance application,” IEEE Trans. Ind. Appl., vol. 28, no. 4, pp. 873-879, July/Aug. 1992.
    [40] T. H. Liu, C. M. Young, and C. H. Liu, “microprocessor-based controller design and simulation for a permanent magnet synchronous motor drive,” IEEE Trans. Ind. Electron., vol, 35, no. 4, pp. 516-523, Nov. 1988.
    [41] M. H. Kim, N. H. Kim, D. H. Kim, S. Okuma, and J. C. Hung, “A position sensorless motion control system of reluctance synchronous motor with direct torque control,” IEEE ISIE ’02, pp. 1148-1153, July 2002.
    [42] T. W. Chun, and M. G. Choi, “A programmable low-pass filter based stator flux calculation for a direct vector control of induction motor,” IEEE KORUS ’99, vol. 2, pp. 722-726, June 1999.
    [43] K. K. Shyu, and C. K. Lai, “Incremental motion control of synchronous reluctance motor via multisegment sliding mode control method,” IEEE Trans. Contr. Syst. Tech., vol. 10, no. 2, pp. 169-176, Mar. 2002.
    [44] P. V. Kokotovic, “The joy of feedback: nonlinear and adaptive,” IEEE Trans. Contr. Syst. Mag., vol. 12, no. 3, pp. 7-17, June 1992.
    [45] Y. Q. Xiang, and S. A. Nasar, “A fully digital control strategy for synchronous reluctance motor servo drives,” IEEE Trans. Ind. Appl., vol 33, no. 3, pp. 705-713, May/June 1997.
    [46] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons Inc., New York, 1995.
    [47] P. A. Ioannou, and J. Sun, Robutst Adaptive Control, NJ: Prentice-
    Hell, 1996.
    [48] M. R. Kazmierlowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronic, Academic Press, 2002.
    [49] K. S. Narendra, and A. M. Annaswamy, Stable Adaptive Systems, NJ: Prentice-Hell, 1989.
    [50] 劉昌煥著,交流電機控制-向量控制與直接轉矩控制原理,東華書局,中華民國92年5月
    [51] 曾仁煒,無速度感測器之直接轉矩控制感應馬達驅動器設計,碩士論文,國立中央大學電機所,民國92年6月。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE