簡易檢索 / 詳目顯示

研究生: 施文展
Wen-Chan Shih
論文名稱: 利用展頻、正交編碼之高感應喚醒無線電:設計、評估和應用
High Sensitivity Wake-Up Radio using Spreading Code and Orthogonal Code: Design, Evaluation and Applications
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 吳傳嘉
Chwan-Chia Wu
陳俊良
Jiann-Liang Chen
鍾添曜
Tein-Yaw Chung
馮輝文
Huei-Wen Ferng
鄭瑞光
Ray-Guang Cheng
楊英魁
Ying-Kuei Yang
葉丙成
Ping-Cheng Yeh
陳明輝
Ming-Huei Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 52
中文關鍵詞: 無線感測網路喚醒無線電展頻碼正交碼傳輸率前向錯誤糾正
外文關鍵詞: Wireless Sensor Network, Wake-up Radio, Spreading Code, Block Orthogonal Code, Throughput, Forward Error Correction
相關次數: 點閱:257下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

省電方法是無線感測網路(wireless sensor network, WSN) 的一個重要的挑戰。大多數的省電方法是利用媒介存取控制 (Media Access Control, MAC) 通訊協定或利用喚醒無線電 (wake-up radio, WUR) 。 由於MAC 通訊協定無法消除閒置聆聽 (idle listening) 的現象,且大部份的研究文獻著重低功率 (low power) WUR的硬體方式來解決閒置聆聽的問題和改善WUR的感應(sensitivity)度,但是目前研究文獻只有達成低感應(low sensitivity) 度和短通訊距離(short radio range) ,造成WUR 在WSN的應用不廣泛,並且大部份的WUR研究文獻未用軟體方式來增強感應度和通訊距離,所以本文將提出一個事件驅動 (event-driven) WUR的電路設計和以軟體方式的展頻碼(spreading code)演算法,用以解決閒置聆聽,增強感應度和通訊距離,以使省電的WUR能被廣泛應用。另一個省電方法是如何提高WUR的成功傳輸率 (throughput) ,由於目前的研究文獻著重在硬體電路設計,卻忽略用軟體方式改善傳輸率 (throughput) ,所本文將提出一個以軟體方式的區塊正交碼 (block orthogonal code) 演算法,以增強WUR的成功傳輸率,並且達成省電效果。
大部份的研究文獻著重在低功率WUR設計,但却減少無線電範圍 (radio range),造成增加WSN的部署密度 (deployment density)。本文利用低資料傳輸率 (low data rate) 和前向錯誤糾正 (forward error correction, FEC) 技術,設計一個916.5 MHz 的高感應 (high sensitivity) WUR,此WUR在資料傳輸率 370 bit / s, 可增強感應能力到 −122 dBm,符碼錯誤率 (symbol error rate, SER) 10−2,可達成編碼增益 (coding gain) 13 dB,並且達成4倍資料無線電 (data radio) 的通訊範圍,使得WUR更適合WSN的應用。此WUR設計可以從任何的IEEE 802.15.4發射器 (transmitter) 穩定地接收喚醒信號 (wake-up signal) ,並且在訊號雜訊比 (Signal-to-Noise Ratio, SNR) 4 dB之下,達成低封包錯誤率 (packet error rate, PER) 0.0159。再者,此WUR設計將節點識別代碼 (node ID) 嵌入喚醒信號,以避免喚醒其他不希望喚醒的節點 (node)。
為了增強WUR 的傳輸率 (throughput),本文提出區塊正交碼演算法,以降阺 SER,因此增強在WSN中WUR 的傳輸率。目前利用開關調制鍵控 (On-Off Keying, OOK) 調變的WUR研究文獻著重在低功率積體電路 (integrated circuit) 設計。但是它們並未考慮到錯誤更正碼 (error correction coding) 技術,因此增加錯誤率 (error rate) , 並且減少節點的生命週期 (lifetime) 。本文開發一個系統模型 (system model),以評估區塊正交碼的傳輸率。本文實現系統模型的模擬,而且展現出區塊正交碼顯著地改善WUR的傳輸率。與8B10B編碼方式的OOK調變相比,區塊正交碼在不需要額外的硬體或能量消耗的情況下,對於WUR的傳輸率上,可以達到10 倍的改善效果。


Energy efficiency is an important challenge for resource constrained wireless sensor networks. Most research use Media Access Control (MAC) and wake-up radio (WUR) to achieve energy efficiency. As MAC can’t eliminate the idle listening and currently proposed WURs focus on low power hardware design with low sensitivity and short radio range, it means current WURs will increase the deployment density and installation and maintenance cost, and won’t be suitable to wireless sensor networks. This thesis proposes an event-driven WUR design and a spreading code algorithm in order to eliminate the idle listening, improve sensitivity, and enhance the radio range. Our design decreases the deployment density and installation and maintenance cost, and is more suitable to wireless sensor networks. The other method to achieve energy efficiency is improving the throughput of WUR. As improving the throughput is achieved by reducing the symbol error rate, which can reduce wake-up signal’s retransmissions, and avoid waking up high power data radios, and therefore increase the node lifetime. As current proposed WURs focus on hardware design and don’t take software design into account, and therefore reduce the throughput. This will increase symbol error rate, retransmissions, and effectively reduce the node lifetime. This thesis proposes a block orthogonal code algorithm in order to improve the throughput and power consumption.
Most of the published wake-up radios propose low energy design at the expense of reduced radio range, which means that they require an increased deployment density of sensor networks. In this thesis, we introduce a design of a high sensitivity 916.5 MHz wake-up radio using low data rate and forward error correction (FEC). It improves the sensitivity, up to − 122 dBm at a data rate 370 bit / s. It achieves up to 13 dB of coding gain with symbol error rate (SER) 10−2, and up to 4 times the range of the data radio, rendering it more suitable to sensor networks. Our design can receive wake-up signal reliably from any IEEE 802.15.4 transmitter and achieves a low packet error rate (PER) 0.0159 at SNR 4 dB. Furthermore, our design encodes the node ID into a wake-up signal to avoid waking up the undesired nodes.
In terms of improving the throughput of wake-up radios, we propose the use of a block orthogonal code to reduce the symbol error rate, and therefore improve the throughput of wake-up radios used in sensor networks. Currently proposed wake-up radios that use, for example, on-off keying modulation focus on integrated circuit design for low power operation. They do not take error correction coding into account and therefore increase the error rates and reduce the node lifetime. We develop a system model to evaluate the throughput of our proposed scheme. We implement a simulation of this model and show that our approach significantly improves the throughput of these radios. When compared with on-off keying modulation using 8B10B encoding we can achieve up to a factor of 10 improvement in the radio’s throughput without any additional hardware or energy consumption.

Abstract in Chinese iii Abstract in English v Acknowledgements vii Table of Contents viii List of Symbols x List of Figures xii List of Tables xiii Chapter 1 Introduction 1 1.1 Research Motivation 1 1.2 Organization of Thesis 3 Chapter 2 Related Work 4 Chapter 3 High Sensitivity Wake-Up Radio 8 3.1 Overview 8 3.2 Motivating Applications 8 3.3 Circuit Design 12 3.4 Empirical Evaluation 14 3.5 Theoretical Analysis 15 3.5.1 Throughput Analysis 15 3.5.2 Power and Latency Analysis 16 Chapter 4 Spreading Code Algorithm 23 4.1 Theoretical Analysis 24 4.1.1 Upper Bound of Symbol Error Probability Analysis 24 4.2 Performance Evaluation 26 4.2.1 Simulations 26 4.2.2 Model 27 4.2.3 Characterization 29 4.2.4 Tradeoffs 31 4.3 Performance Comparison 34 Chapter 5 Block Orthogonal Code Algorithm 36 5.1 Theoretical analysis 37 5.1.1 System Model 38 5.1.2 Symbol and Packet Error Rate Analysis 39 5.2 Performance Evaluation 39 5.2.1 Symbol Error Rate 42 5.2.2 Throughput 44 5.3 Performance Comparison 44 Chapter 6 Conclusion 47 References 49 Appendix A Abbreviations and Acronyms 53 Autobiography 54

[1] R. Jurdak, A. G. Ruzzelli, and G. M. P. O'Hare, "Multi-hop RFID Wake-up Radio: Design, Evaluation and Energy Tradeoffs," in Proceedings of the 17th International Conference on Computer Communications AND Networks (ICCCN), 2008.
[2] R. Jurdak, A. G. Ruzzelli, and G. M. P. O'Hare, "Radio Sleep Mode Optimization in Wireless Sensor Networks," IEEE Transactions on Mobile Computing, vol. 9, pp. 955 - 968, 2010.
[3] J. Polastre, J. Hill, and D. Culler, "Versatile low power media access for wireless sensor networks," in SenSys '04: Proceedings of the 2nd international conference on Embedded networked sensor systems, New York, NY, USA, pp. 95-107, 2004.
[4] C. C. Enz, A. El-Hoiydi, J.-D. Decotignie, and V. Peiris, "WiseNET: An Ultralow-Power Wireless Sensor Network Solution," Computer, vol. 37, pp. 62-70, 2004.
[5] W. Ye, F. Silva, and J. Heidemann, "Ultra-low duty cycle MAC with scheduled channel polling," in SenSys '06: Proceedings of the 4th international conference on Embedded networked sensor systems, New York, NY, USA, pp. 321-334, 2006.
[6] B. V. d. Doorn, W. Kavelaars, and K. Langendoen, "A prototype low-cost wakeup radio for the 868 MHz band," International Journal of Sensor Networks, vol. 5, pp. 22-32, 2009.
[7] W. Che, W. Chen, D. Meng, X. Wang, X. Tan, N. Yan, and H. Min, "Power management unit for battery assisted passive RFID tag," Electronics Letters, vol. 46, pp. 589 -590, Apr. 15 2010.
[8] J. Ansari, D. Pankin, and P. Mahonen, "Radio-triggered Wake-ups with Addressing Capabilities for Extremely Low Power Sensor Network Applications," in PIMRC, pp. 1-5, 2008.
[9] J. Ansari, D. Pankin, and P. Mahonen, "Radio-triggered Wake-ups with Addressing Capabilities for Extremely Low Power Sensor Network Applications," International Journal of Wireless Information Networks, vol. 16, pp. 118-130, 2009.
[10] P. Le-Huy and S. Roy, "Low-Power Wake-Up Radio for Wireless Sensor Networks," Mobile Networks and Applications, vol. 15, pp. 226-236, 2010.
[11] P. Koskela and M. Valta, "Simple Wake-up Radio Prototype," in ACM HotEMNETS 2010 Workshop, 2010. HotEMNETS 2010. Embedded Networked Sensors, pp. 1 -5, 2010.
[12] N. M. Pletcher, S. Gambini, and J. Rabaey, "A 52 μW Wake-Up Receiver With - 72 dBm Sensitivity Using an Uncertain-IF Architecture," IEEE Journal of Solid-State Circuits, vol. 44, pp. 269 -280, jan. 2009.
[13] X. Yu, J.-S. Lee, C. Shu, and S.-G. Lee, "A 53 μW super-regenerative receiver for 2.4GHz wake-up application," in Microwave Conference, 2008. APMC 2008. Asia-Pacific, pp. 1 -4, 2008.
[14] S. Drago, F. Sebastiano, L. J. Breems, D. M. W. Leenaerts, K. A. A. Makinwa, and B. Nauta, "Impulse Based Scheme for Crystal-less ULP Radios," IEEE Transactions on Circuits and Systems I: Regular papers, vol. 56, pp. 1041-1052, May 2009.
[15] Atmel. (2010, 25 October). AVR low power 700/800/900MHz Tranceiver for IEEE 802.15.4-2006, IEEE 802.15.4c-2009, Zigbee, 6LoWPAN, and ISM Applicaitons AT86RF212. Available: http://www.atmel.com/dyn/resources/prod_documents/doc8168.pdf
[16] S. Von der Mark, M. Huber, and G. Boeck, "Design Concepts and First Implementations for 24 GHz Wireless Sensor Nodes," Journal of Communications, vol. 2, pp. 1-5, 2007.
[17] I. Demirkol, C. Ersoy, and E. Onur, "Wake-up receivers for wireless sensor networks: benefits and challenges," IEEE Wireless Communications, vol. 16, pp. 88-96, 2009.
[18] H. Kim, H. Cho, Y. Xi, M. Kim, S. Kwon, J. Lim, and Y. Yang, "CMOS passive wake-up circuit for sensor network applications," Microwave and Optical Technology Letters, vol. 52, pp. 597-600, 2010.
[19] Intelleflex. (2010, 25 October). The Intelleflex XC3 Technology™ Platform An Implementation of the New ISO Class C Standard. Available: http://www.intelleflex.com/downloads/white-papers/Intelleflex-XC3-ISO-C3-White-Paper.pdf
[20] P. Kolinko and L. E. Larson, "Passive RF Receiver Design for Wireless Sensor Networks," in Microwave Symposium, 2007. IEEE/MTT-S International, pp. 567-570, 2007.
[21] L. Shan, T. Yunjian, and Z. Qin, "Passive Wake-up Scheme for Wireless Sensor Networks," in Innovative Computing, Information and Control. ICICIC '07. Second International Conference on, pp. 507-507, 2007.
[22] D. P. Pereira, W. Dias, M. Braga, R. Barreto, C. M. S. Figueiredo, and V. Brilhante, "Model to integration of RFID into Wireless Sensor Network for Tracking and Monitoring Animals," in Computational Science and Engineering. CSE '08. 11th IEEE International Conference on, pp. 125 -131, 2008.
[23] C. L. Fok, G. C. Roman, and C. Lu, "Mobile agent middleware for sensor networks: an application case study," in Information Processing in Sensor Networks. IPSN 2005. Fourth International Symposium on, pp. 382-387, 2005.
[24] J. Reid, J. M. G. Nieto, T. Tang, and B. Senadji, "Detecting relay attacks with timing-based protocols," in Proceedings of the 2nd ACM symposium on Information, computer and communications security, Singapore, pp. 204-213, 2007.
[25] E. Shih, P. Bahl, and M. J. Sinclair, "Wake on wireless: an event driven energy saving strategy for battery operated devices," presented at the Proceedings of the 8th annual international conference on Mobile computing and networking, Atlanta, Georgia, USA, 2002.
[26] P. Sitka, P. Corke, L. Overs, P. Valencia, and T. Wark, "Fleck - A platform for real-world outdoor sensor networks," in Intelligent Sensors, Sensor Networks and Information, 2007. ISSNIP 2007. 3rd International Conference on, pp. 709-714, 2007.
[27] P. Corke, T. Wark, R. Jurdak, H. Wen, P. Valencia, and D. Moore, "Environmental Wireless Sensor Networks," Proceedings of the IEEE, vol. 98, pp. 1903-1917, 2010.
[28] Micrel. (2008, 25 October). MICRF221 3.3V, QwikRadio 850MHz to 950MHz Receiver. Available: www.micrel.com/_PDF/micrf221.pdf
[29] J. G. Proakis, Digital communications / John G. Proakis. New York :: McGraw-Hill, 1983.
[30] A. Woo, T. Tong, and D. Culler, "Taming the underlying challenges of reliable multihop routing in sensor networks," in SenSys '03: Proceedings of the 1st international conference on Embedded networked sensor systems, Los Angeles, California, USA, pp. 14-27, 2003.
[31] I. I. L. W. Couch, Digital and Analog Communication Systems. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1992.
[32] M. Zuniga and B. Krishnamachari, "Analyzing the transitional region in low power wireless links," in Sensor and Ad Hoc Communications and Networks. IEEE SECON 2004. First Annual IEEE Communications Society Conference on, pp. 517-526, 2004.
[33] B.-H. Lee, R.-L. Lai, H.-K. Wu, and C.-M. Wong, "Study on Additional Carrier Sensing for IEEE 802.15.4 Wireless Sensor Networks," Sensors, vol. 10, pp. 6275-6289, 2010.
[34] B.-H. Lee and C.-M. Wong, "Coordinated Non-Sensing MAC Protocol in Dynamic Spectrum Access Networks," Wireless Personal Communications, pp. 1-13, 2010.
[35] W. C. Shih, R. Jurdak, B.-H. Lee, and D. Abbott, "High Sensitivity Wake-up Radio using Spreading Codes: Design, Evaluation and Applications," EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN), vol. 2011:26, 2011.
[36] J. Zyren and A. Petrick. (1998, October 25). Tutorial on Basic Link Budget Analysis. Application Note AN9804, Harris Semiconductor. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.4949&rep=rep1&type=pdf

QR CODE