簡易檢索 / 詳目顯示

研究生: SHRISHA
SHRISHA
論文名稱: 以金屬氧化物復合材料為基礎之氫氣感測器
Hydrogen sensing properties of metal oxide-based composite sensors
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 今榮東洋子
Toyoko Imae
朱瑾
Jinn P. Chu
Saravanan AK
鄭大偉
Ta-Wui Cheng
鄭國彬
Kuo-Bin Cheng
陳錦毅
Chin-Yi Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 150
外文關鍵詞: Metal oxide-based gas sensors, WO2.72 sensors, CsxWO3 sensors
相關次數: 點閱:288下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫氣(H2)因其高度易燃性而被歸屬於有害氣體,當其於大氣下達4-7重量百分濃度時,即具有相當之危險性,存在爆燃的風險,且由於其無色無味,大大提升檢測管線洩漏之難度,也因此奠定了其感測器存在之必要性及重要性。近年來,金屬氧化物由於其優異的化學和物理性質被廣泛應用於此領域,如:ZnO、WO3、TiO2、SnO2、MoS2等。

    以金屬鎢為基材之複合材料被廣泛應用於感測器氣敏層相關研究中,因其對多種目標有毒氣體具高度之靈敏性。而三氧化鎢(WO3)應用於氫氣感測器之先例,因此本研究之第一部分將專注於還原氧化鎢(WO2.72)於此領域之應用的研究。以三氧化鎢為原材料,應用鍛燒法合成還原氧化鎢奈米粒子(WO2.72),並通過FE-SEM、XRD和Raman光譜進行樣品表徵確認。待合成完成,以旋塗方式完成感氣層於SiO2/Si晶圓之塗佈,並完成叉指式電極之沉積。經測試,WO2.72感測器於室溫條件下之感測能力為27%,且具備於500ppm濃度條件下長期穩定性及重複使用性。同時以電子耗盡層理論說明其機制。

    儘管銫鎢青銅(CsxWO3)已被廣泛應用於其他領域,但其並無作為氫氣感測器氣敏層材料之先例,因此本研究之第二部分延續對金屬鎢為基材之複合材料的研究,欲開發當前尚無相關研究之鎢青銅(MxWO3)於此領域之應用的研究,CsxWO3感測器之製程,以水熱法先行完成銫鎢青銅奈米棒的合成,並透過多項儀器鑑定其物理性質以確保結構之型態,並以旋轉塗佈之技術將之形成薄層結構於SiO2/Si晶圓之上,完成感氣層製備,隨後完成橫向多指Pt電極,以利後續性能檢測測試。經測試於不同濃度之氫氣(10ppm至500ppm),測試結果呈現,銫鎢青銅感測器於室溫下具優異的感測性能(31.3%),並且優於WO3感測器(4.7%)。選擇性測試亦呈現優異結果,於氨氣及二氧化碳測試中僅有極低之響應。此材料具備可靠性、合成方法簡單、濕度影小及選擇性優異等優勢,大大提升其應用之可行性。且與WO3感測器相比,CsxWO3感測器具更為優異的表面吸附能力及更強的活性O2官能基電誘導能力,因而展現了增強的氣敏性。當前CsxWO3感氣層展現優異的效能,成功證實MxWO3作為金屬氧化物氣體感應器之可行性。

    於第三部分研究中,成功以溶劑熱法合成新型CsxWO3/MoS2奈米複合材料,再次採用旋轉塗佈之技術,完成於SiO2/Si晶圓形成感氣薄層結構之操作,並以PVD技術沉積設計之叉指式電極完成感測器製備。經測試,CsxWO3/MoS2感測器可於室溫下展現優異的氫氣感測能力,尤其包含15wt.% MoS2 (15 % CsxWO3/MoS2)之奈米複合材料,其感測性能甚至可達51%。此外,因具有高度循環穩定性,更增添其於實際應用的優勢。
    於本篇之最後一項研究,預期導入先進技術,以Zirconium-based metallic glass nanotube arrays為基材,於其上透過實驗參數設定,完成氧化鋅(ZnO)奈米棒之生長,並以此材料做為氫氣感氣層之應用。於具contact-hole陣列(孔徑為2 µm)之光阻劑形成之模板上濺鍍沉積metallic glass (Zr60Cu25Al10Ni5)以得異質Zirconium-based metallic glass nanotube arrays,並沉積ZnO種子層以提供成核位點以利於metallic glass nanotube arrays內部生長奈米棒狀結構,其後採水熱法完成ZnO奈米棒之生長,接著濺鍍Pt電極,以利後續性能檢測測試。經實驗證實,Fabricated Zirconium-based metallic glass nanotube arrays with ZnO nanorods (Zr-ZnO-nanorods)具優異的氫氣傳感性能。


    Among different harmful gases, hydrogen(H2) is one of the toxic gas with flammable nature when mixed with air 4-7%. So, it's necessary to sense such gas which is tasteless and odorless. Metal oxide-based gas sensors have acquired consideration lately because of their reasonable compound and actual properties. There are many oxide-based sensors such as ZnO, WO3, TiO2, SnO2, MoS2, etc. which have been utilized for the recognition of hydrogen gas until now.
    Tungsten-based materials are one of the most widely utilized gas sensing materials due to their high sensitivity towards toxic gases. Tungsten trioxide have already been used in hydrogen gas sensors. In the first part, Reduced tungsten oxide nanoparticles (WO2.72) were synthesized from tungsten trioxide by calcination method. The prepared samples were systematically characterized via field-emission scanning electroscope (FE-SEM), X-ray diffraction (XRD), and Raman spectroscopy. Then, the prepared WO2.72 was spin coated on Si/SiO2 substrates, and the sensor was developed with interdigital electrodes. The result shows that fabricated WO2.72 sensor possess excellent H2 gas sensing response of 27% at room temperature. Moreover, the WO2.72 sensor exhibited outstanding long-term stability and repeatability at 500 ppm. The hydrogen gas sensing mechanism the developed sensor was explained based on the electron depletion layer.
    Tungsten bronze (MxWO3) which was not read up for hydrogen detecting conduct up until this point. Cesium tungsten bronze (CsxWO3) is one of the popular tungsten bronze materials which was read up for various applications yet has never been utilized for hydrogen detecting applications. The CsxWO3 nanorods were blended by an effortless aqueous strategy and uncovered by precise material examinations. Above all, the blended CsxWO3 nanorods were turn covered on SiO2/Si substrates, hence manufactured sidelong multi-finger Pt-based anodes to test the gas identifying properties. The gas recognizing property of the pre-arranged material was examined towards extremely poisonous hydrogen gas (10ppm to 500ppm focus). The gas detecting result presents that the combined CsxWO3 material has amazing gas detecting property towards hydrogen (31.3%), which is predominantly better compared to as pre-arranged WO3 (4.7%) because of its great electrical property at room temperature. The selectivity results additionally show that the material has extraordinary selectivity towards hydrogen when contrasted and various gases like Ammonia and carbon dioxide. The significant highlights of this material are its unwavering quality, straightforward blend technique, less mugginess impact, and great selectivity, which creates it a suitable open door for its utilization as a hydrogen sensor. Contrasted with the as-arranged WO3, the adsorption capacity and conductance of the CsxWO3 surface incite the dynamic O2 useful gatherings that sturdily improve the gas detecting properties. The present CsxWO3 mix is interesting and proficient that prepares to future possibilities on the hybridization and creation of WO3 based metal oxide gas sensors.
    In the third session of work, Hydrogen gas sensors are significant due to the critical utilization of hydrogen in modern and business applications. In this work, we integrated an original CsxWO3/MoS2 nanocomposite utilizing a solvothermal strategy. The examples were turn covered on Si/SiO2 substrates, and the sensors were manufactured with interdigital terminals. The hydrogen gas detecting properties of the sensor was explored. CsxWO3/MoS2 displayed a remarkable hydrogen gas detecting capacity at room temperature. Specifically, the nanocomposite involving 15 wt.% MoS2 (15 % CsxWO3/MoS2) showed a 51 % reaction to hydrogen gas at room temperature. Further, it displayed incredible cyclic soundness for hydrogen gas detecting, which is significant for functional applications. Along these lines, this study works with the improvement of successful and effective hydrogen gas sensors operable at room temperature.
    In the final part, we report on Zinc oxide (ZnO) nanorods grown on Zirconium-based metallic glass nanotube arrays for hydrogen gas sensing applications. The synthesis of the heterogeneous Zirconium-based metallic glass nanotube arrays was done by sputter deposition of metallic glass (Zr60Cu25Al10Ni5) over contact-hole arrays created by a photoresist template with a diameter of 2 µm. To provide the nucleation sites to grow the nanorods inside Zirconium-based metallic glass nanotube arrays, the ZnO seed layer was deposited. The ZnO nanorods were grown by hydrothermal method. The sample was then sputtered with Pt electrodes to see hydrogen sensing results. Fabricated Zirconium-based metallic glass nanotube arrays with ZnO nanorods (Zr-ZnO-nanorods) showed good sensing results towards hydrogen gas.

    TABLE OF CONTENTS 中文摘要…… III ABSTRACT ………………………………………………………………………...VI Keywords: VIII ACKNOWLEDGMENT IX CHAPTER 1. INTRODUCTION 1 1.1 Introduction to gas sensors 1 1.2 Metal Oxide-based gas Sensor 3 1.2.1 Highly toxic gases sensed by different metal oxide-based gas sensors 5 1.3. Gas sensing mechanisms of Metal oxide-based gas sensors 7 1.4. Hydrogen gas sensor 9 1.5 Application of Metal oxide-based gas sensors 12 1.6 Motivation and objective of the study 15 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 23 2.1 Tungsten based materials for gas sensing 23 2.1.1 Introduction 23 2.1.2 Gas sensing properties of tungsten-based materials 25 2.1.3. Preparation Methods of Tungsten bronze 28 2.1.4 Different gas sensed by tungsten-based materials. 34 2.1.5. Other applications of tungsten-based materials 42 2.2. Molybdenum disulfide nanosheets for gas sensing 44 2.2.1 Introduction 44 2.2.2 Properties of MoS2 nanosheets 47 2.2.3 MoS2 Nanosheets Preparation Methods 49 2.2.4 Different gas sensed by MoS2-based materials 52 2.2.5 Other applications of MoS2 nanosheets. 54 2.3. Surface modifications of ZnO nanorods for gas sensing 56 2.3.1 Introduction on development of surface modifications of ZnO nanorods or nanowires. 56 CHAPTER 3 HIGHLY EFFICIENT REDUCED TUNGSTEN-BASED HYDROGEN GAS SENSOR AT ROOM TEMPERATURE 62 3.1 Introduction 62 3.2 Materials and Methods 63 3.2.1 Materials 63 3.2.2 Synthesis of WO2.72 nanoparticles 63 3.2.3 Characterization of WO2.72 nanoparticles 63 3.2.4 Sensor fabrication and hydrogen gas sensing measurements 63 3.3 Results and discussion 64 3.3.1. Morphological and structural properties of WO2.72 nanoparticles 64 3.3.2 Hydrogen gas sensing properties of WO2.72 nanoparticles-based gas sensors 67 3.3.3 Possible hydrogen gas sensing mechanisms of WO2.72 nanoparticles-based gas sensors 69 3.4 Conclusions 71 CHAPTER 4 CESIUM TUNGSTEN BRONZE NANOSTRUCTURES AND THEIR HIGHLY ENHANCED HYDROGEN GAS SENSING PROPERTIES AT ROOM TEMPERATURE 73 4.1 Introduction 73 4.2 Experimental section 76 4.2.1 Synthesis of CsxWO3 nanorods 76 4.2.2 Characterization of CsxWO3 nanostructures. 76 4.2.3 Sensor fabrications and Measurements 77 4.3. Results and discussion 78 4.3.1 Morphological and Structural Properties of CsxWO3 powder. 78 4.3.2 H2 Sensing Properties and Mechanism 82 4.3.3 Possible hydrogen gas detection mechanisms of CsxWO3 85 4.3.4. Humidity response and possible humidity model of CsxWO3 91 4.4 Summary 93 CHAPTER 5 HIGHLY EFFICIENT MOS2/CsxWO3 NANOCOMPOSITE AS ROOM TEMPERATURE HYDROGEN GAS SENSOR 95 5.1 Introduction 95 5.2 Materials and Methods 97 5.2.1 Materials 97 5.2.2 Synthesis of CsxWO3 nanorods 98 5.2.3 Exfoliation of MoS2 nanosheets 98 5.2.4 Preparation of CsxWO3/MoS2 Nanocomposites. 98 5.2.5 Characterization of CsxWO3/MoS2 nanocomposites. 99 5.2.6 Sensor fabrication and hydrogen gas sensing measurements. 99 5.2.7 Electrochemical measurements of the sensors. 100 5.3. Results and discussions 101 5.3.1. Morphological and structural properties of CsxWO3/MoS2 nanocomposites. 101 5.3.2 Hydrogen Gas sensing properties of CsxWO3/MoS2 composites-based gas sensors. 107 5.3.3 Possible hydrogen gas sensing mechanisms of CsxWO3/MoS2 nanocomposites 110 5.4 Summary 113 CHAPTER 6 DEVELOPMENT OF ZINC OXIDE NANORODS ON ZIRCONIUM-BASED METALLIC GLASS NANOTUBE ARRAYS FOR GAS SENSING APPLICATIONS 114 6.1 Introduction 114 6.2 Experimental section: 117 6.2.1. Synthesis of Zr-ZnO-nanorods: 117 6.2.2. Characterization 118 6.2.3. Sensor fabrications and measurements: 118 6.3 Results and Discussion: 119 6.3.1. Structural properties of Zr-ZnO-nanorods: 119 6.3.2. Crystalline behavior of Zr-ZnO nanorod: 121 6.3.3 Hydrogen gas sensing properties of Zr-ZnO-nanorods: 122 6.4 Summary 126 CHAPTER 7 CONCLUSION AND OUTLOOK 127 7.1 CONCLUSION 127 7.2 OUTLOOK 130 CURRICULUM VITAE 132 PUBLICATIONS 133 CONFERENCES 133 REFERENCES 134  

    REFERENCES
    [1] R.P.J.P.C. Wali, An electronic nose to differentiate aromatic flowers using a real-time information-rich piezoelectric resonance measurement, 6 (2012) 194-202.
    [2] A.J.M.S. Dey, E. B, Semiconductor metal oxide gas sensors: A review, 229 (2018) 206-217.
    [3] A. Tricoli, M. Righettoni, A.J.A.C.I.E. Teleki, Semiconductor gas sensors: dry synthesis and application, 49(42) (2010) 7632-7659.
    [4] V. Blazy, A. de Guardia, J.C. Benoist, M. Daumoin, F. Guiziou, M. Lemasle, D. Wolbert, S.J.C.E.J. Barrington, Correlation of chemical composition and odor concentration for emissions from pig slaughterhouse sludge composting and storage, 276 (2015) 398-409.
    [5] S.Y. Park, Y. Kim, T. Kim, T.H. Eom, S.Y. Kim, H.W.J.I. Jang, Chemoresistive materials for electronic nose: Progress, perspectives, and challenges, 1(3) (2019) 289-316.
    [6] H. Long, W. Zeng, H.J.J.o.M.S.M.i.E. Zhang, Synthesis of WO 3 and its gas sensing: a review, 26(7) (2015) 4698-4707.
    [7] Y. Zhang, W. Zeng, Y.J.C.I. Li, NO2 and H2 sensing properties for urchin-like hexagonal WO3 based on experimental and first-principle investigations, 45(5) (2019) 6043-6050.
    [8] R. Lü, W. Zhou, K. Shi, Y. Yang, L. Wang, K. Pan, C. Tian, Z. Ren, H.J.N. Fu, Alumina decorated TiO 2 nanotubes with ordered mesoporous walls as high sensitivity NO x gas sensors at room temperature, 5(18) (2013) 8569-8576.
    [9] J. Liu, Y. Wang, M. Wang, C. Pei, M. Cui, Y. Yuan, G. Han, B. Liu, H. Zhao, H.J.J.o.A. Yang, Compounds, Hydrogenated TiO2 nanosheet based flowerlike architectures: enhanced sensing performances and sensing mechanism, 749 (2018) 543-555.
    [10] L. Zhu, W.J.S. Zeng, A.A. Physical, Room-temperature gas sensing of ZnO-based gas sensor: A review, 267 (2017) 242-261.
    [11] B. Liu, L. Wang, Y. Ma, Y. Yuan, J. Yang, M. Wang, J. Liu, X. Zhang, Y. Ren, Q.J.A.S.S. Du, Enhanced gas–sensing properties and sensing mechanism of the foam structures assembled from NiO nanoflakes with exposed {1 1 1} facets, 470 (2019) 596-606.
    [12] Q. Guo, Y. Li, W.J.P.E.L.-d.S. Zeng, Nanostructures, Synthesis of Cu2O microspheres with hollow and solid morphologies and their gas sensing properties, 114 (2019) 113564.
    [13] Z. Dou, C. Cao, Y. Chen, W.J.C.C. Song, Fabrication of porous Co 3 O 4 nanowires with high CO sensing performance at a low operating temperature, 50(94) (2014) 14889-14891.
    [14] L. Bigiani, C. Maccato, G. Carraro, A. Gasparotto, C. Sada, E. Comini, D.J.A.A.N.M. Barreca, Tailoring vapor-phase fabrication of Mn3O4 nanosystems: from synthesis to gas-sensing applications, 1(6) (2018) 2962-2970.
    [15] S. Cao, T. Han, L. Peng, B.J.M.L. Liu, Hydrothermal preparation, formation mechanism and gas-sensing properties of novel Mn3O4 nano-octahedrons, 246 (2019) 210-213.
    [16] S. Mahajan, S.J.A.m.t. Jagtap, Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review, 18 (2020) 100483.
    [17] Y.-F. Sun, S.-B. Liu, F.-L. Meng, J.-Y. Liu, Z. Jin, L.-T. Kong, J.-H.J.S. Liu, Metal oxide nanostructures and their gas sensing properties: a review, 12(3) (2012) 2610-2631.
    [18] M.J. Fedoruk, R. Bronstein, B.D.J.J.o.E.S. Kerger, E. Epidemiology, Ammonia exposure and hazard assessment for selected household cleaning product uses, 15(6) (2005) 534-544.
    [19] S. Kulkarni, Y. Navale, S. Navale, F. Stadler, N. Ramgir, V.J.S. Patil, A.B. Chemical, Hybrid polyaniline-WO3 flexible sensor: a room temperature competence towards NH3 gas, 288 (2019) 279-288.
    [20] Y.-D. Wang, X.-H. Wu, Q. Su, Y.-F. Li, Z.-L.J.S.-S.E. Zhou, Ammonia-sensing characteristics of Pt and SiO2 doped SnO2 materials, 45(2) (2001) 347-350.
    [21] P.S. Chauhan, S.J.i.j.o.h.e. Bhattacharya, Hydrogen gas sensing methods, materials, and approach to achieve parts per billion level detection: A review, 44(47) (2019) 26076-26099.
    [22] A. Esfandiar, A. Irajizad, O. Akhavan, S. Ghasemi, M.R.J.I.j.o.h.e. Gholami, Pd–WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors, 39(15) (2014) 8169-8179.
    [23] Y. Liu, L. Hao, W. Gao, Z. Wu, Y. Lin, G. Li, W. Guo, L. Yu, H. Zeng, J.J.S. Zhu, A.B. Chemical, Hydrogen gas sensing properties of MoS2/Si heterojunction, 211 (2015) 537-543.
    [24] M. Penza, C. Martucci, G.J.S. Cassano, A.B. Chemical, NOx gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers, 50(1) (1998) 52-59.
    [25] J. Han, T.y. Wang, T.t. Li, H. Yu, Y. Yang, X.t.J.A.M.I. Dong, Enhanced NOx gas sensing properties of ordered mesoporous WO3/ZnO prepared by electroless plating, 5(9) (2018) 1701167.
    [26] J. Huusko, V. Lantto, H.J.S. Torvela, A.B. Chemical, TiO2 thick-film gas sensors and their suitability for NOx monitoring, 16(1-3) (1993) 245-248.
    [27] Y.S. Kim, S.-C. Ha, H. Yang, Y.T.J.S. Kim, A.B. Chemical, Gas sensor measurement system capable of sampling volatile organic compounds (VOCs) in wide concentration range, 122(1) (2007) 211-218.
    [28] T. Rakshit, S. Santra, I. Manna, S.K. Ray, Enhanced sensitivity and selectivity of brush-like SnO₂ nanowire/ZnO nanorod heterostructure based sensors for volatile organic compounds, (2014).
    [29] D. Meng, D. Liu, G. Wang, Y. Shen, X. San, M. Li, F.J.S. Meng, A.B. Chemical, Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets, 273 (2018) 418-428.
    [30] Y. Zeng, T. Zhang, L. Wang, M. Kang, H. Fan, R. Wang, Y.J.S. He, A.B. Chemical, Enhanced toluene sensing characteristics of TiO2-doped flowerlike ZnO nanostructures, 140(1) (2009) 73-78.
    [31] C. Wang, L. Yin, L. Zhang, D. Xiang, R.J.s. Gao, Metal oxide gas sensors: sensitivity and influencing factors, 10(3) (2010) 2088-2106.
    [32] M.E. Franke, T.J. Koplin, U.J.s. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?, 2(1) (2006) 36-50.
    [33] N. Barsan, M. Schweizer-Berberich, W.J.F.j.o.a.c. Göpel, Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report, 365(4) (1999) 287-304.
    [34] K. Schierbaum, U. Weimar, W. Göpel, R.J.S. Kowalkowski, A.B. Chemical, Conductance, work function and catalytic activity of SnO2-based gas sensors, 3(3) (1991) 205-214.
    [35] C. Mansilla, S. Avril, J. Imbach, A.J.I.j.o.h.e. Le Duigou, CO2-free hydrogen as a substitute to fossil fuels: what are the targets? Prospective assessment of the hydrogen market attractiveness, 37(12) (2012) 9451-9458.
    [36] Q. Ren, Y.-Q. Cao, D. Arulraj, C. Liu, D. Wu, W.-M. Li, A.-D.J.J.o.T.E.S. Li, Resistive-type hydrogen sensors based on zinc oxide nanostructures, 167(6) (2020) 067528.
    [37] S. Kabcum, D. Channei, A. Tuantranont, A. Wisitsoraat, C. Liewhiran, S.J.S. Phanichphant, A.B. Chemical, Ultra-responsive hydrogen gas sensors based on PdO nanoparticle-decorated WO3 nanorods synthesized by precipitation and impregnation methods, 226 (2016) 76-89.
    [38] H. Ji, W. Zeng, Y.J.N. Li, Gas sensing mechanisms of metal oxide semiconductors: a focus review, 11(47) (2019) 22664-22684.
    [39] J. Palacín, D. Martínez, E. Clotet, T. Pallejà, J. Burgués, J. Fonollosa, A. Pardo, S.J.S. Marco, Application of an array of metal-oxide semiconductor gas sensors in an assistant personal robot for early gas leak detection, 19(9) (2019) 1957.
    [40] M. Barriault, I. Alexander, N. Tasnim, A. O’Brien, H. Najjaran, M.J.S. Hoorfar, A.B. Chemical, Classification and Regression of Binary Hydrocarbon Mixtures using Single Metal Oxide Semiconductor Sensor with Application to Natural Gas Detection, 326 (2021) 129012.
    [41] J. Huotari, V. Kekkonen, T. Haapalainen, M. Leidinger, T. Sauerwald, J. Puustinen, J. Liimatainen, J.J.S. Lappalainen, A.B. Chemical, Pulsed laser deposition of metal oxide nanostructures for highly sensitive gas sensor applications, 236 (2016) 978-987.
    [42] A.-C. Romain, J.J.S. Nicolas, A.B. Chemical, Long term stability of metal oxide-based gas sensors for e-nose environmental applications: An overview, 146(2) (2010) 502-506.
    [43] T. Hübert, L. Boon-Brett, V. Palmisano, M.A.J.I.j.o.h.e. Bader, Developments in gas sensor technology for hydrogen safety, 39(35) (2014) 20474-20483.
    [44] M. Manamela, T. Mosuang, B. Mwakikunga, ZnO nanoparticles doped with cobalt and indium mechano-chemically for methane gas sensing application.
    [45] S. Zhao, Y. Shen, P. Zhou, X. Zhong, C. Han, Q. Zhao, D.J.S. Wei, A.B. Chemical, Design of Au@ WO3 core− shell structured nanospheres for ppb-level NO2 sensing, 282 (2019) 917-926.
    [46] S.J. Ippolito, S. Kandasamy, K. Kalantar-Zadeh, W.J.S. Wlodarski, A.B. Chemical, Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalysts, 108(1-2) (2005) 154-158.
    [47] G. Wang, Y. Ji, X. Huang, X. Yang, P.-I. Gouma, M.J.T.J.o.P.C.B. Dudley, Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing, 110(47) (2006) 23777-23782.
    [48] H.-M. Lin, C.-M. Hsu, H.-Y. Yang, P.-Y. Lee, C.-C.J.S. Yang, A.B. Chemical, Nanocrystalline WO3-based H2S sensors, 22(1) (1994) 63-68.
    [49] Y. Li, X. Wu, J. Li, K. Wang, G.J.A.C.B.E. Zhang, Z-scheme g-C3N4@ CsxWO3 heterostructure as smart window coating for UV isolating, Vis penetrating, NIR shielding and full spectrum photocatalytic decomposing VOCs, 229 (2018) 218-226.
    [50] Y. Li, J. Li, G. Zhang, K. Wang, X.J.A.S.C. Wu, Engineering, Selective photocatalytic oxidation of low concentration methane over graphitic carbon nitride-decorated tungsten bronze cesium, 7(4) (2019) 4382-4389.
    [51] C. Guo, S. Yin, H. Yu, S. Liu, Q. Dong, T. Goto, Z. Zhang, Y. Li, T.J.N. Sato, Photothermal ablation cancer therapy using homogeneous Cs x WO 3 nanorods with broad near-infra-red absorption, 5(14) (2013) 6469-6478.
    [52] J. Wojnarowicz, T. Chudoba, S. Gierlotka, K. Sobczak, W.J.C. Lojkowski, Size control of cobalt-doped ZnO nanoparticles obtained in microwave solvothermal synthesis, 8(4) (2018) 179.
    [53] B. Zhang, J. He, J. Li, L. Wang, D.J.N. Li, Microscale electrohydrodynamic printing of in situ reactive features for patterned ZnO nanorods, 30(47) (2019) 475301.
    [54] C. Pan, J. Zhai, Z.L.J.C.r. Wang, Piezotronics and piezo-phototronics of third generation semiconductor nanowires, 119(15) (2019) 9303-9359.
    [55] D. MacIsaac, G. Kanner, G.J.T.p.t. Anderson, Basic physics of the incandescent lamp (lightbulb), 37(9) (1999) 520-525.
    [56] S. Yin, Y.J.T. Asakura, Recent research progress on mixed valence state tungsten based materials, 1(1) (2019) 5-18.
    [57] H. Wang, Y. Gan, X. Dong, S. Peng, L. Dong, Y.J.J.o.M.S.M.i.E. Wang, Thermoelectric properties of Ti-doped WO 3 ceramics, 23(12) (2012) 2229-2234.
    [58] X. Xia, J. Tu, J. Zhang, X. Wang, W. Zhang, H.J.E.A. Huang, Morphology effect on the electrochromic and electrochemical performances of NiO thin films, 53(18) (2008) 5721-5724.
    [59] Y. Zhao, Y.J.S. Zhu, A.B. Chemical, Room temperature ammonia sensing properties of W18O49 nanowires, 137(1) (2009) 27-31.
    [60] L. You, Y. Sun, J. Ma, Y. Guan, J. Sun, Y. Du, G.J.S. Lu, A.B. Chemical, Highly sensitive NO2 sensor based on square-like tungsten oxide prepared with hydrothermal treatment, 157(2) (2011) 401-407.
    [61] C.-Y. Lee, S.-J. Kim, I.-S. Hwang, J.-H.J.S. Lee, a.B. chemical, Glucose-mediated hydrothermal synthesis and gas sensing characteristics of WO3 hollow microspheres, 142(1) (2009) 236-242.
    [62] G. Xi, J. Ye, Q. Ma, N. Su, H. Bai, C.J.J.o.t.A.C.S. Wang, In situ growth of metal particles on 3D urchin-like WO3 nanostructures, 134(15) (2012) 6508-6511.
    [63] C. Ng, C. Ye, Y.H. Ng, R.J.C.g. Amal, design, Flower-shaped tungsten oxide with inorganic fullerene-like structure: synthesis and characterization, 10(8) (2010) 3794-3801.
    [64] Y. Zhao, H. Chen, X. Wang, J. He, Y. Yu, H.J.A.c.a. He, Flower-like tungsten oxide particles: Synthesis, characterization and dimethyl methylphosphonate sensing properties, 675(1) (2010) 36-41.
    [65] C. Song, C. Li, Y. Yin, J. Xiao, X. Zhang, M. Song, W.J.V. Dong, Preparation and gas sensing properties of partially broken WO3 nanotubes, 114 (2015) 13-16.
    [66] P. Van Tong, N.D. Hoa, V. Van Quang, N. Van Duy, N.J.S. Van Hieu, A.B. Chemical, Diameter controlled synthesis of tungsten oxide nanorod bundles for highly sensitive NO2 gas sensors, 183 (2013) 372-380.
    [67] Z. Wang, P. Sun, T. Yang, Y. Gao, X. Li, G. Lu, Y.J.S. Du, A.B. Chemical, Flower-like WO3 architectures synthesized via a microwave-assisted method and their gas sensing properties, 186 (2013) 734-740.
    [68] L. You, X. He, D. Wang, P. Sun, Y. Sun, X. Liang, Y. Du, G.J.S. Lu, A.B. Chemical, Ultrasensitive and low operating temperature NO2 gas sensor using nanosheets assembled hierarchical WO3 hollow microspheres, 173 (2012) 426-432.
    [69] C. Wang, R. Sun, X. Li, Y. Sun, P. Sun, F. Liu, G.J.S. Lu, A.B. Chemical, Hierarchical flower-like WO3 nanostructures and their gas sensing properties, 204 (2014) 224-230.
    [70] Y. Shen, D. Ding, Y.J.P.t. Deng, Fabrication and characterization of WO3 flocky microspheres induced by ethanol, 211(1) (2011) 114-119.
    [71] Y. Shen, D. Ding, Y. Yang, Z. Li, L.J.M.R.B. Zhao, 6-Fold-symmetrical WO3 hierarchical nanostructures: Synthesis and photochromic properties, 48(6) (2013) 2317-2324.
    [72] L. Zhang, X. Tang, Z. Lu, Z. Wang, L. Li, Y.J.A.S.S. Xiao, Facile synthesis and photocatalytic activity of hierarchical WO3 core–shell microspheres, 258(5) (2011) 1719-1724.
    [73] W. Yu-De, C. Zhan-Xian, L. Yan-Feng, Z. Zhen-Lai, W.J.S.-S.E. Xing-Hui, Electrical and gas-sensing properties of WO3 semiconductor material, 45(5) (2001) 639-644.
    [74] Y. Qin, M. Hu, J.J.S. Zhang, A.B. Chemical, Microstructure characterization and NO2-sensing properties of tungsten oxide nanostructures, 150(1) (2010) 339-345.
    [75] J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Antonietti, M.J.A.C. Niederberger, Template‐free synthesis and assembly of single‐crystalline tungsten oxide nanowires and their gas‐sensing properties, 118(2) (2006) 267-271.
    [76] Y.S.J.S. Kim, A.B. Chemical, Thermal treatment effects on the material and gas-sensing properties of room-temperature tungsten oxide nanorod sensors, 137(1) (2009) 297-304.
    [77] C.S. Rout, M. Hegde, C.R.J.S. Rao, A.B. Chemical, H2S sensors based on tungsten oxide nanostructures, 128(2) (2008) 488-493.
    [78] J. Wang, G. Liu, Y.J.M.L. Du, Mechanochemical synthesis of sodium tungsten bronze nanocrystalline powders, 57(22-23) (2003) 3648-3652.
    [79] P. Schmidt, M. Binnewies, R. Glaum, M.J.A.T.o.C.G. Schmidt, Chemical vapor transport reactions–methods, materials, modeling, (2013) 227-305.
    [80] A. Hussain, R. Gruehn, C.J.J.o.a. Rüscher, compounds, Crystal growth of alkali metal tungsten brozes MxWO3 (M K, Rb, Cs), and their optical properties, 246(1-2) (1997) 51-61.
    [81] S.Y. Lee, J.Y. Kim, J.Y. Lee, H.J. Song, S. Lee, K.H. Choi, G.J.N.r.l. Shin, Facile fabrication of high-efficiency near-infrared absorption film with tungsten bronze nanoparticle dense layer, 9(1) (2014) 1-8.
    [82] H. Takeda, K.J.J.o.t.A.C.S. Adachi, Near infrared absorption of tungsten oxide nanoparticle dispersions, 90(12) (2007) 4059-4061.
    [83] K. Moon, J.-J. Cho, Y.-B. Lee, P.J. Yoo, C.W. Bark, J.J.B.o.t.K.C.S. Park, Near infrared shielding properties of quaternary tungsten bronze nanoparticle Na 0.11 Cs 0.22 WO 3, 34(3) (2013) 731-734.
    [84] M. Mamak, S.Y. Choi, U. Stadler, R. Dolbec, M. Boulos, S.J.J.o.M.C. Petrov, Thermal plasma synthesis of tungsten bronze nanoparticles for near infra-red absorption applications, 20(44) (2010) 9855-9857.
    [85] T. Okusako, T. Tokuyama, K. Mikami, Y. Nogami, N.J.J.o.t.P.S.o.J. Hanasaki, Thermoelectric effect in hexagonal tungsten oxides, 81(Suppl. B) (2012) SB028.
    [86] C. Guo, S. Yin, Q. Dong, T.J.N. Sato, Simple route to (NH 4) x WO 3 nanorods for near infrared absorption, 4(11) (2012) 3394-3398.
    [87] X. Wu, J. Wang, G. Zhang, K.-i. Katsumata, K. Yanagisawa, T. Sato, S.J.A.C.B.E. Yin, Series of MxWO3/ZnO (M= K, Rb, NH4) nanocomposites: Combination of energy saving and environmental decontamination functions, 201 (2017) 128-136.
    [88] G. Liu, S. Wang, Y. Nie, X. Sun, Y. Zhang, Y.J.J.o.M.C.A. Tang, Electrostatic-induced synthesis of tungsten bronze nanostructures with excellent photo-to-thermal conversion behavior, 1(35) (2013) 10120-10129.
    [89] Y. Zhu, A. Manthiram, New route for the synthesis of tungsten oxide bronzes, Elsevier, 1994.
    [90] X.-g. Yang, C. Li, M.-S. Mo, J.-h. Zhan, W.-c. Yu, Y. Yan, Y.-t.J.J.o.C.G. Qian, Growth of K0. 4WO3 whiskers via a pressure-relief-assisted hydrothermal process, 249(3-4) (2003) 594-599.
    [91] J.-X. Liu, Y. Ando, X.-L. Dong, F. Shi, S. Yin, K. Adachi, T. Chonan, A. Tanaka, T.J.J.o.S.S.C. Sato, Microstructure and electrical–optical properties of cesium tungsten oxides synthesized by solvothermal reaction followed by ammonia annealing, 183(10) (2010) 2456-2460.
    [92] Y. Yao, L. Zhang, Z. Chen, C. Cao, Y. Gao, H.J.C.I. Luo, Synthesis of CsxWO3 nanoparticles and their NIR shielding properties, 44(12) (2018) 13469-13475.
    [93] C. Guo, S. Yin, P. Zhang, M. Yan, K. Adachi, T. Chonan, T.J.J.o.M.C. Sato, Novel synthesis of homogenous Cs x WO 3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process, 20(38) (2010) 8227-8229.
    [94] A. Boudiba, P. Roussel, C. Zhang, M.-G. Olivier, R. Snyders, M.J.S. Debliquy, A.B. Chemical, Sensing mechanism of hydrogen sensors based on palladium-loaded tungsten oxide (Pd–WO3), 187 (2013) 84-93.
    [95] M. Carcassi, F.J.E. Fineschi, Deflagrations of H2–air and CH4–air lean mixtures in a vented multi-compartment environment, 30(8) (2005) 1439-1451.
    [96] A. Ahmad, J.J.E.T. Walsh, Development of WO3-based thick-film hydrogen sensors, 3(10) (2006) 141.
    [97] K. Vijayalakshmi, A.J.C.I. Renitta, Enhanced hydrogen sensing performance of tungsten activated ZnO nanorod arrays prepared on conductive ITO substrate, 41(10) (2015) 14315-14325.
    [98] R.J.J.o.P.D.A.P. Ghasempour, Hybrid multiwalled carbon nanotubes and trioxide tungsten nanoparticles for hydrogen gas sensing, 42(16) (2009) 165105.
    [99] A. Wisitsoorat, M.Z. Ahmad, M.H. Yaacob, M. Horpratum, D. Phakaratkul, T. Lomas, A. Tuantranont, W.J.S. Wlodarski, A.B. Chemical, Optical H2 sensing properties of vertically aligned Pd/WO3 nanorods thin films deposited via glancing angle rf magnetron sputtering, 182 (2013) 795-801.
    [100] J. Hu, Y. Sun, X. Wang, L. Chen, W. Zhang, Y.J.R.a. Chen, Synthesis and gas sensing properties of molybdenum oxide modified tungsten oxide microstructures for ppb-level hydrogen sulphide detection, 7(45) (2017) 28542-28547.
    [101] K.-P. Yuan, L.-Y. Zhu, J.-H. Yang, C.-Z. Hang, J.-J. Tao, H.-P. Ma, A.-Q. Jiang, D.W. Zhang, H.-L.J.J.o.c. Lu, i. science, Precise preparation of WO3@ SnO2 core shell nanosheets for efficient NH3 gas sensing, 568 (2020) 81-88.
    [102] S.J.M.S.i.S.P. Büyükköse, Highly selective and sensitive WO3 nanoflakes based ammonia sensor, 110 (2020) 104969.
    [103] S. Ramanavičius, M. Petrulevičienė, J. Juodkazytė, A. Grigucevičienė, A.J.M. Ramanavičius, Selectivity of tungsten oxide synthesized by sol-gel method towards some volatile organic compounds and gaseous materials in a broad range of temperatures, 13(3) (2020) 523.
    [104] Y. Lu, Y. Jiang, X. Gao, X. Wang, W.J.J.o.t.A.c.S. Chen, Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts, 136(33) (2014) 11687-11697.
    [105] E. Kang, S. An, S. Yoon, J.K. Kim, J.J.J.o.M.C. Lee, Ordered mesoporous WO 3− X possessing electronically conductive framework comparable to carbon framework toward long-term stable cathode supports for fuel cells, 20(35) (2010) 7416-7421.
    [106] S. Yoon, E. Kang, J.K. Kim, C.W. Lee, J.J.C.c. Lee, Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity, 47(3) (2011) 1021-1023.
    [107] Y. Zhou, S. Ko, C.W. Lee, S.G. Pyo, S.-K. Kim, S.J.J.o.p.s. Yoon, Enhanced charge storage by optimization of pore structure in nanocomposite between ordered mesoporous carbon and nanosized WO3− x, 244 (2013) 777-782.
    [108] Y. Tian, S. Cong, W. Su, H. Chen, Q. Li, F. Geng, Z.J.N.l. Zhao, Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality, 14(4) (2014) 2150-2156.
    [109] G. Li, L. Gao, L. Li, L.J.J.o.A. Guo, Compounds, An electrochromic and self-healing multi-functional supercapacitor based on PANI/nw-WO2. 7/Au NPs electrode and hydrogel electrolyte, 786 (2019) 40-49.
    [110] J. Jung, D.H.J.A.S.S. Kim, W18O49 nanowires assembled on carbon felt for application to supercapacitors, 433 (2018) 750-755.
    [111] X. Huang, Z. Zhang, H. Li, H. Wang, T.J.J.o.E.C. Ma, In-situ growth of nanowire WO2. 72 on carbon cloth as a binder-free electrode for flexible asymmetric supercapacitors with high performance, 29 (2019) 58-64.
    [112] M. Chhowalla, Z. Liu, H.J.C.S.R. Zhang, Two-dimensional transition metal dichalcogenide (TMD) nanosheets, 44(9) (2015) 2584-2586.
    [113] H. Zhang, M. Chhowalla, Z.J.C.S.R. Liu, 2D nanomaterials: graphene and transition metal dichalcogenides, 47(9) (2018) 3015-3017.
    [114] S. Tanwar, A. Arya, A. Gaur, A.J.J.o.P.C.M. Sharma, Transition Metal Dichalcogenide (TMDs) electrodes for Supercapacitors: A Comprehensive Review, (2021).
    [115] H. Avakian, A. Bressan, M.J.T.E.P.J.A. Contalbrigo, Experimental results on TMDs, 52(6) (2016) 1-27.
    [116] D.M. Soares, S. Mukherjee, G.J.C.A.E.J. Singh, TMDs beyond MoS2 for electrochemical energy storage, 26(29) (2020) 6320-6341.
    [117] U. Krishnan, M. Kaur, K. Singh, M. Kumar, A.J.S. Kumar, Microstructures, A synoptic review of MoS2: Synthesis to applications, 128 (2019) 274-297.
    [118] S. Barua, H.S. Dutta, S. Gogoi, R. Devi, R.J.A.A.N.M. Khan, Nanostructured MoS2-based advanced biosensors: a review, 1(1) (2017) 2-25.
    [119] A. Ramanathan, Defect Functionalization of MoS2 nanostructures as toxic gas sensors: A review, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, p. 012001.
    [120] R. Kumar, W. Zheng, X. Liu, J. Zhang, M.J.A.M.T. Kumar, MoS2‐Based Nanomaterials for Room‐Temperature Gas Sensors, 5(5) (2020) 1901062.
    [121] J. Theerthagiri, R. Senthil, B. Senthilkumar, A.R. Polu, J. Madhavan, M.J.J.o.S.S.C. Ashokkumar, Recent advances in MoS2 nanostructured materials for energy and environmental applications–a review, 252 (2017) 43-71.
    [122] M. Donarelli, L.J.S. Ottaviano, 2D materials for gas sensing applications: a review on graphene oxide, MoS2, WS2 and phosphorene, 18(11) (2018) 3638.
    [123] B.J.N.T.A.J.o.N. Bera, I. Applications, Synthesis, properties and applications of amorphous carbon nanotube and MoS2 nanosheets: a review, 21(1) (2019) 36-52p.
    [124] W. Wang, Y. Zhen, J. Zhang, Y. Li, H. Zhong, Z. Jia, Y. Xiong, Q. Xue, Y. Yan, N.S.J.S. Alharbi, A.B. Chemical, SnO2 nanoparticles-modified 3D-multilayer MoS2 nanosheets for ammonia gas sensing at room temperature, 321 (2020) 128471.
    [125] S. Singh, N. Dogra, S.J.M.T.P. Sharma, A sensitive H2S sensor using MoS2/WO3 composite, 28 (2020) 8-10.
    [126] S. Singh, J. Deb, U. Sarkar, S.J.A.A.N.M. Sharma, MoS2/WO3 Nanosheets for Detection of Ammonia, 4(3) (2021) 2594-2605.
    [127] Y. Luo, C.J.J.o.A. Zhang, Compounds, Pt-activated TiO2-MoS2 nanocomposites for H2 detection at low temperature, 747 (2018) 550-557.
    [128] Z. Wang, B.J.E.s. Mi, technology, Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets, 51(15) (2017) 8229-8244.
    [129] Ü. Özgür, D. Hofstetter, H.J.P.o.t.I. Morkoc, ZnO devices and applications: a review of current status and future prospects, 98(7) (2010) 1255-1268.
    [130] B.J.A.P.P. Witkowski, A., Applications of ZnO Nanorods and Nanowires--A Review, 134(6) (2018).
    [131] P.K. Aspoukeh, A.A. Barzinjy, S.M.J.I.N.L. Hamad, Synthesis, properties and uses of ZnO nanorods: a mini review, (2021) 1-16.
    [132] W.D. Hsu, J.K. Tsai, J.Y. Tang, T.H. Meen, T.C.J.M.T. Wu, Zinc-oxide nanorod array fabricated by high temperature hydrothermal method applied to gas sensor, 24(10) (2018) 3957-3963.
    [133] M. Zhang, C. Jin, Y. Nie, Y. Ren, N. Hao, Z. Xu, L. Dong, J.X.J.R.A. Zhang, Silver nanoparticle on zinc oxide array for label-free detection of opioids through surface-enhanced raman spectroscopy, 11(19) (2021) 11329-11337.
    [134] J. Hassan, M. Mahdi, C. Chin, H. Abu-Hassan, Z.J.J.o.A. Hassan, Compounds, Room temperature hydrogen gas sensor based on ZnO nanorod arrays grown on a SiO2/Si substrate via a microwave-assisted chemical solution method, 546 (2013) 107-111.
    [135] G.S. Weldegrum, P. Singh, B.-R. Huang, T.-Y. Chiang, K.-W. Tseng, C.-J. Yu, C. Ji, J.P.J.S. Chu, C. Technology, ZnO-NWs/metallic glass nanotube hybrid arrays: Fabrication and material characterization, 408 (2021) 126785.
    [136] S. Hienuki, H. Mitoma, M. Ogata, I. Uchida, S.J.I.J.o.H.E. Kagawa, Environmental and energy life cycle analyses of passenger vehicle systems using fossil fuel-derived hydrogen, 46(73) (2021) 36569-36580.
    [137] A. Sridhar, M. Ponnuchamy, P.S. Kumar, A. Kapoor, L.J.I.J.o.H.E. Xiao, Progress in the production of hydrogen energy from food waste: A bibliometric analysis, (2021).
    [138] O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, C.A.J.S. Grimes, A.B. Chemical, Hydrogen sensing using titania nanotubes, 93(1-3) (2003) 338-344.
    [139] C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, T.J.I.c. Sato, Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties, 51(8) (2012) 4763-4771.
    [140] T.F. Chala, C.-M. Wu, M.-H. Chou, M.B. Gebeyehu, K.-B.J.N. Cheng, Highly efficient near infrared photothermal conversion properties of reduced tungsten oxide/polyurethane nanocomposites, 7(7) (2017) 191.
    [141] K.G. Motora, C.-M. Wu, T.F. Chala, M.-H. Chou, C.-F.J. Kuo, P.J.A.S.S. Koinkar, Highly efficient photocatalytic activity of Ag3VO4/WO2. 72 nanocomposites for the degradation of organic dyes from the ultraviolet to near-infrared regions, 512 (2020) 145618.
    [142] Y. Shang, R. Shi, Y. Cui, Q. Che, J. Wang, P.J.A.A.N.M. Yang, Urchin-like WO2. 72 microspheres decorated with Au and PdO nanoparticles for the selective detection of trimethylamine, 3(6) (2020) 5554-5564.
    [143] D.S. Venables, M.E.J.T.a. Brown, Reduction of tungsten oxides with hydrogen and with hydrogen and carbon, 285(2) (1996) 361-382.
    [144] L. Xu, M.-L. Yin, S.F.J.S.r. Liu, Ag x@ WO 3 core-shell nanostructure for LSP enhanced chemical sensors, 4(1) (2014) 1-7.
    [145] S. Chen, Y. Xiao, W. Xie, Y. Wang, Z. Hu, W. Zhang, H.J.N. Zhao, Facile strategy for synthesizing non-Stoichiometric monoclinic structured tungsten trioxide (WO3− x) with plasma resonance absorption and enhanced photocatalytic activity, 8(7) (2018) 553.
    [146] B. Ma, E. Huang, G. Wu, W. Dai, N. Guan, L.J.R.a. Li, Fabrication of WO 2.72/RGO nano-composites for enhanced photocatalysis, 7(5) (2017) 2606-2614.
    [147] Z. Wang, S. Huang, G. Men, D. Han, F.J.S. Gu, A.B. Chemical, Sensitization of Pd loading for remarkably enhanced hydrogen sensing performance of 3DOM WO3, 262 (2018) 577-587.
    [148] S. Park, S. Kim, H. Kheel, S.E. Park, C.J.B.o.t.K.C.S. Lee, Synthesis and Hydrogen Gas Sensing Properties of TiO2‐decorated CuO Nanorods, 36(10) (2015) 2458-2463.
    [149] P. Sun, Y. Sun, J. Ma, L. You, G. Lu, W. Fu, M. Li, H.J.S. Yang, A.B. Chemical, Synthesis of novel SnO2/ZnSnO3 core–shell microspheres and their gas sensing properities, 155(2) (2011) 606-611.
    [150] S. Xiao, B. Liu, R. Zhou, Z. Liu, Q. Li, T.J.S. Wang, A.B. Chemical, Room-temperature H2 sensing interfered by CO based on interfacial effects in palladium-tungsten oxide nanoparticles, 254 (2018) 966-972.
    [151] C.-M. Wu, K.G. Motora, D.-H. Kuo, C.-C. Lai, B.-R. Huang, A.J.I.J.o.H.E. Saravanan, Cesium tungsten bronze nanostructures and their highly enhanced hydrogen gas sensing properties at room temperature, (2021).
    [152] C.S. Rout, G.U. Kulkarni, C.J.J.o.n. Rao, nanotechnology, Electrical and Hydrogen-Sensing Characteristics of Field Effect Transistors Based on Nanorods of ZnO and WO2. 72, 9(9) (2009) 5652-5658.
    [153] K. Anand, O. Singh, M.P. Singh, J. Kaur, R.C.J.S. Singh, A.B. Chemical, Hydrogen sensor based on graphene/ZnO nanocomposite, 195 (2014) 409-415.
    [154] M. Tonezzer, R.J.P.E.L.-d.S. Lacerda, Nanostructures, Zinc oxide nanowires on carbon microfiber as flexible gas sensor, 44(6) (2012) 1098-1102.
    [155] B. Sharma, J.-S.J.I.J.o.H.E. Kim, Graphene decorated Pd-Ag nanoparticles for H2 sensing, 43(24) (2018) 11397-11402.
    [156] S. Dhall, K. Sood, N.J.M.S. Jaggi, Technology, A hydrogen gas sensor using a Pt-sputtered MWCNTs/ZnO nanostructure, 25(8) (2014) 085103.
    [157] B. Huang, C. Zhao, M. Zhang, Z. Zhang, E. Xie, J. Zhou, W.J.A.S.S. Han, Doping effect of In2O3 on structural and ethanol-sensing characteristics of ZnO nanotubes fabricated by electrospinning, 349 (2015) 615-621.
    [158] S. Sharma, S.K. Ghoshal, Hydrogen the future transportation fuel: From production to applications, Renewable and sustainable energy reviews 43 (2015) 1151-1158.
    [159] D. Cecere, E. Giacomazzi, A. Ingenito, A review on hydrogen industrial aerospace applications, International journal of hydrogen energy 39(20) (2014) 10731-10747.
    [160] Y.S. Najjar, Hydrogen safety: The road toward green technology, International Journal of Hydrogen Energy 38(25) (2013) 10716-10728.
    [161] L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: A review, Sensors and Actuators A: Physical 267 (2017) 242-261.
    [162] Y.-L. Chai, D. Ray, H.-S. Liu, C. Dai, Y.-H.J.M.S. Chang, E. A, Characteristics of La0. 8Sr0. 2Co1− xCuxO3− δ film and its sensing properties for CO gas, Material Science and Engineering A 293(1-2) (2000) 39-45.
    [163] Z. Li, Z. Yao, A.A. Haidry, T. Plecenik, L. Xie, L. Sun, Q. Fatima, Resistive-type hydrogen gas sensor based on TiO2: A review, International Journal of Hydrogen Energy 43(45) (2018) 21114-21132.
    [164] C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors, sensors 10(3) (2010) 2088-2106.
    [165] N. Miura, T. Sato, S.A. Anggraini, H. Ikeda, S. Zhuiykov, A review of mixed-potential type zirconia-based gas sensors, Ionics 20(7) (2014) 901-925.
    [166] G. Korotcenkov, S.D. Han, J.R. Stetter, Review of electrochemical hydrogen sensors, Chemical reviews 109(3) (2009) 1402-1433.
    [167] P.S. Chauhan, S. Bhattacharya, Hydrogen gas sensing methods, materials, and approach to achieve parts per billion level detection: A review, International Journal of Hydrogen Energy 44(47) (2019) 26076-26099.
    [168] J. Lobato, S. Díaz-Abad, M.C. Peláez, M. Millán, M.A. Rodrigo, Synthesis and characterization of Pt on novel catalyst supports for the H2 production in the Westinghouse cycle, International Journal of Hydrogen Energy 45(47) (2020) 25672-25680.
    [169] J. Mouli-Castillo, G. Orr, J. Thomas, N. Hardy, M. Crowther, R.S. Haszeldine, M. Wheeldon, A. McIntosh, A comparative study of odorants for gas escape detection of natural gas and hydrogen, International Journal of Hydrogen Energy (2021).
    [170] H. Nazemi, A. Joseph, J. Park, A. Emadi, Advanced micro-and nano-gas sensor technology: A review, Sensors 19(6) (2019) 1285.
    [171] R. Bogue, Detecting gases with light: a review of optical gas sensor technologies, Sensor Review (2015).
    [172] S.M. Iordache, E.I. Ionete, A.M. Iordache, E. Tanasa, I. Stamatin, C.E. Ana Grigorescu, Pd-decorated CNT as sensitive material for applications in hydrogen isotopes sensing - Application as gas sensor, International Journal of Hydrogen Energy 46(18) (2021) 11015-11024.
    [173] S. Díaz-Abad, M. Millán, M.A. Rodrigo, J. Lobato, Review of Anodic Catalysts for SO2 Depolarized Electrolysis for “Green Hydrogen” Production, Catalysts 9(1) (2019).
    [174] R.H. Vafaie, R. Shafiei pour, S. Nojavan, K. Jermsittiparsert, Designing a miniaturized photoacoustic sensor for detecting hydrogen gas, International Journal of Hydrogen Energy 45(41) (2020) 21148-21156.
    [175] Q.N. Abdullah, F.K. Yam, J.J. Hassan, C.W. Chin, Z. Hassan, M. Bououdina, High performance room temperature GaN-nanowires hydrogen gas sensor fabricated by chemical vapor deposition (CVD) technique, International Journal of Hydrogen Energy 38(32) (2013) 14085-14101.
    [176] J. Lobato, P. Canizares, M. Rodrigo, C. Saez, J. Linares, A comparison of hydrogen cloud explosion models and the study of the vulnerability of the damage caused by an explosion of H2H2, International Journal of Hydrogen Energy 31(12) (2006) 1780-1790.
    [177] M. Carvela, A. Raschitor, M.A. Rodrigo, J. Lobato, Recent Progress in Catalysts for Hydrogen-Chlorine Regenerative Fuel Cells, Catalysts 10(11) (2020).
    [178] I.P. Jain, Hydrogen the fuel for 21st century, International Journal of Hydrogen Energy 34(17) (2009) 7368-7378.
    [179] A. Saravanan, B.-R. Huang, D. Kathiravan, A. Prasannan, Natural Biowaste-Cocoon-Derived Granular Activated Carbon-Coated ZnO Nanorods: A Simple Route To Synthesizing a Core–Shell Structure and Its Highly Enhanced UV and Hydrogen Sensing Properties, ACS applied materials & interfaces 9(45) (2017) 39771-39780.
    [180] A. Saravanan, B.-R. Huang, J.P. Chu, A. Prasannan, H.-C. Tsai, Interface engineering of ultrananocrystalline diamond/MoS2-ZnO heterostructures and its highly enhanced hydrogen gas sensing properties, Sensors and Actuators B: Chemical 292 (2019) 70-79.
    [181] Q.N. Abdullah, A.R. Ahmed, A.M. Ali, F.K. Yam, Z. Hassan, M. Bououdina, Novel SnO2-coated β-Ga2O3 nanostructures for room temperature hydrogen gas sensor, International Journal of Hydrogen Energy 46(9) (2021) 7000-7010.
    [182] Z. Li, S. Yan, Z. Wu, H. Li, J. Wang, W. Shen, Z. Wang, Y. Fu, Hydrogen gas sensor based on mesoporous In2O3 with fast response/recovery and ppb level detection limit, International Journal of Hydrogen Energy 43(50) (2018) 22746-22755.
    [183] A. Staerz, S. Somacescu, M. Epifani, T. Russ, U. Weimar, N. Barsan, WO3 Based Gas Sensors, Proceedings 2(13) (2019).
    [184] S. Yao, F. Qu, G. Wang, X. Wu, Facile hydrothermal synthesis of WO3 nanorods for photocatalysts and supercapacitors, Journal of Alloys and Compounds 724 (2017) 695-702.
    [185] A. Esfandiar, A. Irajizad, O. Akhavan, S. Ghasemi, M.R. Gholami, Pd–WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors, International Journal of Hydrogen Energy 39(15) (2014) 8169-8179.
    [186] K.G. Motora, C.-M. Wu, T.F. Chala, M.-H. Chou, C.-F.J. Kuo, P. Koinkar, Highly efficient photocatalytic activity of Ag3VO4/WO2.72 nanocomposites for the degradation of organic dyes from the ultraviolet to near-infrared regions, Applied Surface Science 512 (2020).
    [187] S. Naseem, C.-M. Wu, T.F. Chala, Photothermal-responsive tungsten bronze/recycled cellulose triacetate porous fiber membranes for efficient light-driven interfacial water evaporation, Solar Energy 194 (2019) 391-399.
    [188] C. Dong, R. Zhao, L. Yao, Y. Ran, X. Zhang, Y. Wang, A review on WO3 based gas sensors: Morphology control and enhanced sensing properties, Journal of Alloys and Compounds 820 (2020).
    [189] Y. Shang, R. Shi, Y. Cui, Q. Che, J. Wang, P. Yang, Urchin-Like WO2.72 Microspheres Decorated with Au and PdO Nanoparticles for the Selective Detection of Trimethylamine, ACS Applied Nano Materials 3(6) (2020) 5554-5564.
    [190] G. Wang, Y. Ji, X. Huang, X. Yang, P.-I. Gouma, M.J.T.J.o.P.C.B. Dudley, Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing, Journal of Physical Chemistry B 110(47) (2006) 23777-23782.
    [191] D.-S. Lee, S.-D. Han, J.-S. Huh, D.-D.J.S. Lee, A.B. Chemical, Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thick film gas sensor, Sensors and Actuators B: Chemical 60(1) (1999) 57-63.
    [192] C.S. Rout, G.U. Kulkarni, C.J.J.o.n. Rao, nanotechnology, Electrical and Hydrogen-Sensing Characteristics of Field Effect Transistors Based on Nanorods of ZnO and WO2. 72, Journal of nanoscience and nanotechnology 9(9) (2009) 5652-5658.
    [193] M. Righettoni, A. Tricoli, S.E.J.C.o.M. Pratsinis, Thermally stable, silica-doped ε-WO3 for sensing of acetone in the human breath, Chemistry of materials 22(10) (2010) 3152-3157.
    [194] C.-M. Wu, S. Naseem, M.-H. Chou, J.-H. Wang, Y.-Q.J.F.i.M. Jian, Recent advances in tungsten-oxide-based materials and their applications, Frontiers in Materials 6 (2019) 49.
    [195] T.M. Mattox, A. Bergerud, A. Agrawal, D.J. Milliron, Influence of shape on the surface plasmon resonance of tungsten bronze nanocrystals, Chemistry of Materials 26(5) (2014) 1779-1784.
    [196] I. Tsuyumoto, T.J.S. Kudo, A.B. Chemical, Humidity sensor using potassium hexagonal tungsten bronze synthesized from peroxo-pokytungstic acid, Sensors and Actuators B: Chemical 30(2) (1996) 95-99.
    [197] T.A. Martins, T.R. Machado, M.M. Ferrer, S.M. Zanetti, E.J.M.L. Longo, Facile microwave-assisted hydrothermal synthesis of hexagonal sodium tungsten bronze and its high response to NO2, Materials Letters 185 (2016) 197-200.
    [198] P. Yang, Z. Zhao, X. Zhang, W. Liu, J. Fan, J. Lin, S. Yang, B. Zhang, S. Yin, The photothermal and adsorption properties of different surfactant-modified caesium tungsten bronze, Materials Technology (2020) 1-11.
    [199] Y. Li, J. Li, G. Zhang, K. Wang, X. Wu, Selective photocatalytic oxidation of low concentration methane over graphitic carbon nitride-decorated tungsten bronze cesium, ACS Sustainable Chemistry & Engineering 7(4) (2019) 4382-4389.
    [200] Y. Li, X. Wu, J. Li, K. Wang, G.J.A.C.B.E. Zhang, Z-scheme g-C3N4@ CsxWO3 heterostructure as smart window coating for UV isolating, Vis penetrating, NIR shielding and full spectrum photocatalytic decomposing VOCs, Applied Catalysis B: Environmental 229 (2018) 218-226.
    [201] C. Guo, S. Yin, H. Yu, S. Liu, Q. Dong, T. Goto, Z. Zhang, Y. Li, T. Sato, Photothermal ablation cancer therapy using homogeneous Cs x WO 3 nanorods with broad near-infra-red absorption, Nanoscale 5(14) (2013) 6469-6478.
    [202] W. Guo, C. Guo, N. Zheng, T. Sun, S. Liu, CsxWO3 nanorods coated with polyelectrolyte multilayers as a multifunctional nanomaterial for bimodal imaging‐guided photothermal/photodynamic cancer treatment, Advanced Materials 29(4) (2017) 1604157.
    [203] G. Li, C. Guo, M. Yan, S.J.A.C.B.E. Liu, CsxWO3 nanorods: Realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region, Applied Catalysis B: Environmental 183 (2016) 142-148.
    [204] W. Xu, Z. Meng, N. Yu, Z. Chen, B. Sun, X. Jiang, M. Zhu, PEGylated CsxWO3 nanorods as an efficient and stable 915 nm-laser-driven photothermal agent against cancer cells, RSC Advances 5(10) (2015) 7074-7082.
    [205] J.-X. Liu, Y. Ando, X.-L. Dong, F. Shi, S. Yin, K. Adachi, T. Chonan, A. Tanaka, T. Sato, Microstructure and electrical–optical properties of cesium tungsten oxides synthesized by solvothermal reaction followed by ammonia annealing, Journal of Solid State Chemistry 183(10) (2010) 2456-2460.
    [206] K.G. Motora, C.-M.J.J.o.t.T.I.o.C.E. Wu, Magnetically separable highly efficient full-spectrum light-driven WO2. 72/Fe3O4 nanocomposites for photocatalytic reduction of carcinogenic chromium (VI) and organic dye degradation, Journal of the Taiwan Institute of Chemical Engineers (2020) 123-132.
    [207] Z. Wang, S. Huang, G. Men, D. Han, F.J.S. Gu, A.B. Chemical, Sensitization of Pd loading for remarkably enhanced hydrogen sensing performance of 3DOM WO3, Sensors and Actuators B: Chemical 262 (2018) 577-587.
    [208] Y.I. Belchenko, V.J.R.o.s.i. Davydenko, Cesium in hydrogen negative-ion sources, Review of scientific instruments
    77(3) (2006) 03B702.
    [209] S. Park, S. Kim, H. Kheel, S.E. Park, C.J.B.o.t.K.C.S. Lee, Synthesis and Hydrogen Gas Sensing Properties of TiO2‐decorated CuO Nanorods, Bulletin of the Korean Chemical Society 36(10) (2015) 2458-2463.
    [210] P. Sun, Y. Sun, J. Ma, L. You, G. Lu, W. Fu, M. Li, H.J.S. Yang, A.B. Chemical, Synthesis of novel SnO2/ZnSnO3 core–shell microspheres and their gas sensing properities, Sensors and Actuators B: Chemical 155(2) (2011) 606-611.
    [211] F. Gu, H. Wang, D. Han, Z.J.S. Wang, A.B. Chemical, Enhancing the sensing performance of SnO2 inverse opal thin films by In and Au doping, Sensors and Actuators B: Chemical 245 (2017) 1023-1031.
    [212] Q. Abdullah, F. Yam, J. Hassan, C. Chin, Z. Hassan, M.J.I.j.o.h.e. Bououdina, High performance room temperature GaN-nanowires hydrogen gas sensor fabricated by chemical vapor deposition (CVD) technique, International journal of hydrogen energy 38(32) (2013) 14085-14101.
    [213] Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan, H.J.I.j.o.h.e. Gu, Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature, International journal of hydrogen energy 37(5) (2012) 4526-4532.
    [214] M. Han, J.K. Kim, J. Lee, H.K. An, J.P. Yun, S.-W. Kang, D.J.J.o.n. Jung, nanotechnology, Room-Temperature Hydrogen-Gas Sensor Based on Carbon Nanotube Yarn, Journal of nanoscience and nanotechnology 20(7) (2020) 4011-4014.
    [215] C.S. Rout, G. Kulkarni, C.J.J.o.P.D.A.P. Rao, Room temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides, Journal of Physics D: Applied Physics 40(9) (2007) 2777.
    [216] M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K.J. Choi, J.-H. Lee, S.-H.J.A.p.l. Hong, Gas sensing properties of defect-controlled ZnO-nanowire gas sensor, Applied physics letters 93(26) (2008) 263103.
    [217] J. Lu, C. Xu, L. Cheng, N. Jia, J. Huang, C.J.M.S.i.S.P. Li, Acetone sensor based on WO3 nanocrystallines with oxygen defects for low concentration detection, Materials Science in Semiconductor Processing 101 (2019) 214-222.
    [218] S. Yin, Y.J.T. Asakura, Recent research progress on mixed valence state tungsten based materials, Tungsten 1(1) (2019) 5-18.
    [219] S. Xiao, B. Liu, R. Zhou, Z. Liu, Q. Li, T.J.S. Wang, A.B. Chemical, Room-temperature H2 sensing interfered by CO based on interfacial effects in palladium-tungsten oxide nanoparticles, Sensors and Actuators B: Chemical 254 (2018) 966-972.
    [220] B.-R. Huang, J.-C.J.A.s.s. Lin, A facile synthesis of ZnO nanotubes and their hydrogen sensing properties, Applied surface science 280 (2013) 945-949.
    [221] K. Anand, O. Singh, M.P. Singh, J. Kaur, R.C.J.S. Singh, A.B. Chemical, Hydrogen sensor based on graphene/ZnO nanocomposite, Sensors and Actuators B: Chemical 195 (2014) 409-415.
    [222] M. Tonezzer, R.J.P.E.L.-d.S. Lacerda, Nanostructures, Zinc oxide nanowires on carbon microfiber as flexible gas sensor, Physica E: Low-dimensional Systems Nanostructures 44(6) (2012) 1098-1102.
    [223] A. Esfandiar, S. Ghasemi, A. Irajizad, O. Akhavan, M.J.i.j.o.h.e. Gholami, The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing, international journal of hydrogen energy 37(20) (2012) 15423-15432.
    [224] B. Sharma, J.-S.J.I.J.o.H.E. Kim, Graphene decorated Pd-Ag nanoparticles for H2 sensing, International Journal of Hydrogen Energy 43(24) (2018) 11397-11402.
    [225] Y. Liu, L. Hao, W. Gao, Z. Wu, Y. Lin, G. Li, W. Guo, L. Yu, H. Zeng, J.J.S. Zhu, A.B. Chemical, Hydrogen gas sensing properties of MoS2/Si heterojunction, Sensors and Actuators B: Chemical 211 (2015) 537-543.
    [226] Y. Zhang, W. Zeng, Y.J.J.o.A. Li, Compounds, The hydrothermal synthesis of 3D hierarchical porous MoS2 microspheres assembled by nanosheets with excellent gas sensing properties, Journal of Alloys and Compounds 749 (2018) 355-362.
    [227] H. Li, B. Liu, D. Cai, Y. Wang, Y. Liu, L. Mei, L. Wang, D. Wang, Q. Li, T. Wang, High-temperature humidity sensors based on WO 3–SnO 2 composite hollow nanospheres, Journal of Materials Chemistry A 2(19) (2014) 6854-6862.
    [228] T. Kuse, S. Takahashi, Transitional behavior of tin oxide semiconductor under a step-like humidity change, Sensors and Actuators B: Chemical 67(1-2) (2000) 36-42.
    [229] D.-D. Lee, D.-S.J.I.s.j. Lee, Environmental gas sensors, 1(3) (2001) 214-224.
    [230] N.H. Ha, D.D. Thinh, N.T. Huong, N.H. Phuong, P.D. Thach, H.S.J.A.S.S. Hong, Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide, 434 (2018) 1048-1054.
    [231] M. Miglietta, B. Alfano, J. Santos, I. Sayago, T. Polichetti, E. Massera, P.D. Veneri, G. Di Francia, C. Sanchez, J. Lozano, Outstanding NO 2 Sensing Performance of Sensors Based on TiO 2/Graphene Hybrid, AISEM Annual Conference on Sensors and Microsystems, Springer, 2019, pp. 349-355.
    [232] T. Hübert, L. Boon-Brett, G. Black, U.J.S. Banach, A.B. Chemical, Hydrogen sensors–a review, 157(2) (2011) 329-352.
    [233] A. Saravanan, B.-R. Huang, D. Kathiravan, A.J.A.a.m. Prasannan, interfaces, Natural Biowaste-Cocoon-Derived Granular Activated Carbon-Coated ZnO Nanorods: A Simple Route To Synthesizing a Core–Shell Structure and Its Highly Enhanced UV and Hydrogen Sensing Properties, 9(45) (2017) 39771-39780.
    [234] L. Liang, Q. Yang, S. Zhao, L. Wang, F.J.I.J.o.H.E. Liang, Excellent catalytic effect of LaNi5 on hydrogen storage properties for aluminium hydride at mild temperature, (2021).
    [235] S. Hienuki, H. Mitoma, M. Ogata, I. Uchida, S.J.I.J.o.H.E. Kagawa, Environmental and energy life cycle analyses of passenger vehicle systems using fossil fuel-derived hydrogen, (2021).
    [236] K.G. Motora, C.-M.J.J.o.t.T.I.o.C.E. Wu, Magnetically separable highly efficient full-spectrum light-driven WO2. 72/Fe3O4 nanocomposites for photocatalytic reduction of carcinogenic chromium (VI) and organic dye degradation, 117 (2020) 123-132.
    [237] C.-M. Wu, S. Naseem, M.-H. Chou, J.-H. Wang, Y.-Q.J.F.i.M. Jian, Recent advances in tungsten-oxide-based materials and their applications, 6 (2019) 49.
    [238] C. Dong, R. Zhao, L. Yao, Y. Ran, X. Zhang, Y.J.J.o.A. Wang, Compounds, A review on WO3 based gas sensors: Morphology control and enhanced sensing properties, 820 (2020) 153194.
    [239] C. Castillo, G. Cabello, B. Chornik, Y. Huentupil, G.J.J.o.A. Buono-Core, Compounds, Characterization of photochemically grown Pd loaded WO3 thin films and its evaluation as ammonia gas sensor, 825 (2020) 154166.
    [240] X. Wang, N. Miura, N.J.S. Yamazoe, A.B. Chemical, Study of WO3-based sensing materials for NH3 and NO detection, 66(1-3) (2000) 74-76.
    [241] C.-H. Chang, T.-C. Chou, W.-C. Chen, J.-S. Niu, K.-W. Lin, S.-Y. Cheng, J.-H. Tsai, W.-C.J.S. Liu, A.B. Chemical, Study of a WO3 thin film based hydrogen gas sensor decorated with platinum nanoparticles, 317 (2020) 128145.
    [242] B.J.A.j.o.p. Bera, c. sciences, Preparation of MoS2 nanosheets and PVDF nanofiber, (2017) 1-9.
    [243] I.T. Bello, A.O. Oladipo, O. Adedokun, S.M.J.M.T.C. Dhlamini, Recent advances on the preparation and electrochemical analysis of MoS2-based materials for supercapacitor applications: A mini-review, (2020) 101664.
    [244] Z. Li, X. Meng, Z.J.J.o.P. Zhang, P.C.P. Reviews, Recent development on MoS2-based photocatalysis: A review, 35 (2018) 39-55.
    [245] W. Zhang, P. Zhang, Z. Su, G.J.N. Wei, Synthesis and sensor applications of MoS 2-based nanocomposites, 7(44) (2015) 18364-18378.
    [246] E. Akbari, K. Jahanbin, A. Afroozeh, P. Yupapin, Z.J.P.B.C.M. Buntat, Brief review of monolayer molybdenum disulfide application in gas sensor, 545 (2018) 510-518.
    [247] J. Huaning, W. Huaizhang, L. Ting, Research Progress of MoS2 Composite rGO Material in Gas Sensor, E3S Web of Conferences, EDP Sciences, 2021, p. 02048.
    [248] C. Kuru, C. Choi, A. Kargar, D. Choi, Y.J. Kim, C.H. Liu, S. Yavuz, S.J.A.S. Jin, MoS2 nanosheet–Pd nanoparticle composite for highly sensitive room temperature detection of hydrogen, 2(4) (2015) 1500004.
    [249] S.R. Gottam, C.-T. Tsai, L.-W. Wang, C.-T. Wang, C.-C. Lin, S.-Y.J.A.S.S. Chu, Highly sensitive hydrogen gas sensor based on a MoS2-Pt nanoparticle composite, 506 (2020) 144981.
    [250] A. Phuruangrat, D.J. Ham, S. Thongtem, J.S.J.E.C. Lee, Electrochemical hydrogen evolution over MoO3 nanowires produced by microwave-assisted hydrothermal reaction, 11(9) (2009) 1740-1743.
    [251] M. Ahmadi, R. Younesi, M.J.J.J.o.M.R. Guinel, Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure, 29(13) (2014) 1424-1430.
    [252] X. Zhang, H. Tang, M. Xue, C.J.M.L. Li, Facile synthesis and characterization of ultrathin MoS2 nanosheets, 130 (2014) 83-86.
    [253] A. Vadivelmurugan, R. Anbazhagan, J.-Y. Lai, H.-C.J.C. Tsai, S.A. Physicochemical, E. Aspects, Paramagnetic properties of manganese chelated on glutathione-exfoliated MoS2, 608 (2021) 125432.
    [254] Y. Yao, K. Ao, P. Lv, Q.J.N. Wei, MoS2 coexisting in 1T and 2H phases synthesized by common hydrothermal method for hydrogen evolution reaction, 9(6) (2019) 844.
    [255] M. Okada, K. Ono, S. Yoshio, H. Fukuyama, K.J.J.o.t.A.C.S. Adachi, Oxygen vacancies and pseudo Jahn‐Teller destabilization in cesium‐doped hexagonal tungsten bronzes, 102(9) (2019) 5386-5400.
    [256] B.-R. Huang, J.-C.J.S. Lin, A.B. Chemical, Core–shell structure of zinc oxide/indium oxide nanorod based hydrogen sensors, 174 (2012) 389-393.
    [257] X. Yang, W. Wang, J. Xiong, L. Chen, Y.J.I.J.o.H.E. Ma, ZnO: Cd nanorods hydrogen sensor with low operating temperature, 40(36) (2015) 12604-12609.
    [258] A. Esfandiar, S. Ghasemi, A. Irajizad, O. Akhavan, M.J.i.j.o.h.e. Gholami, The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing, 37(20) (2012) 15423-15432.
    [259] Y. Zhang, W. Zeng, Y.J.J.o.A. Li, Compounds, The hydrothermal synthesis of 3D hierarchical porous MoS2 microspheres assembled by nanosheets with excellent gas sensing properties, 749 (2018) 355-362.
    [260] M. Javaid, A. Haleem, S. Rab, R. Pratap Singh, R. Suman, Sensors for daily life: A review, Sensors International 2 (2021).
    [261] Shrisha, C.-M. Wu, K.G. Motora, D.-H. Kuo, C.-C. Lai, B.-R. Huang, A. Saravanan, Cesium tungsten bronze nanostructures and their highly enhanced hydrogen gas sensing properties at room temperature, International Journal of Hydrogen Energy 46(50) (2021) 25752-25762.
    [262] S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, T.W. Kim, Recent advances in energy-saving chemiresistive gas sensors: A review, Nano Energy 79 (2021) 105369.
    [263] Q. Ren, Y.-Q. Cao, D. Arulraj, C. Liu, D. Wu, W.-M. Li, A.-D. Li, Review—Resistive-Type Hydrogen Sensors Based on Zinc Oxide Nanostructures, Journal of The Electrochemical Society 167(6) (2020).
    [264] B.R. Huang, J.P. Chu, A. Saravanan, M.M. Yenesew, N. Bonninghoff, C.H. Chang, High-Performance Sensor Based on Thin-Film Metallic Glass/Ultra-nanocrystalline Diamond/ZnO Nanorod Heterostructures for Detection of Hydrogen Gas at Room Temperature, Chemistry 25(44) (2019) 10385-10393.
    [265] G. Jung, W. Shin, S. Hong, Y. Jeong, J. Park, D. Kim, J.-H. Bae, B.-G. Park, J.-H. Lee, Comparison of the characteristics of semiconductor gas sensors with different transducers fabricated on the same substrate, Sensors and Actuators B: Chemical 335 (2021).
    [266] C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors, Sensors (Basel) 10(3) (2010) 2088-106.
    [267] K.-S. Choi, S.-P. Chang, Effect of structure morphologies on hydrogen gas sensing by ZnO nanotubes, Materials Letters 230 (2018) 48-52.
    [268] P. Singh, F.M. Simanjuntak, Y.-C. Wu, A. Kumar, H.-W. Zan, T.-Y. Tseng, Sensing performance of gas sensors fabricated from controllably grown ZnO-based nanorods on seed layers, Journal of Materials Science 55(21) (2020) 8850-8860.
    [269] R. Viter, A. Abou Chaaya, I. Iatsunskyi, G. Nowaczyk, K. Kovalevskis, D. Erts, P. Miele, V. Smyntyna, M. Bechelany, Tuning of ZnO 1D nanostructures by atomic layer deposition and electrospinning for optical gas sensor applications, Nanotechnology 26(10) (2015) 105501.
    [270] Y. Tak, K. Yong, Controlled growth of well-aligned ZnO nanorod array using a novel solution method, The journal of physical chemistry B 109(41) (2005) 19263-19269.
    [271] G.S. Weldegrum, P. Singh, B.-R. Huang, T.-Y. Chiang, K.-W. Tseng, C.-J. Yu, C. Ji, J.P. Chu, ZnO-NWs/metallic glass nanotube hybrid arrays: Fabrication and material characterization, Surface and Coatings Technology 408 (2021).
    [272] J.-S. Ye, B.-R. Huang, J.P. Chu, ZnO-NWs/Cu-based metallic glass nanotube array (ZNWs/Cu-MeNTA) for field emission properties, Journal of Alloys and Compounds 890 (2022).
    [273] J.-K. Chen, W.-T. Chen, C.-C. Cheng, C.-C. Yu, J.P. Chu, Metallic glass nanotube arrays: Preparation and surface characterizations, Materials Today 21(2) (2018) 178-185.
    [274] G. Wang, D. Chen, H. Zhang, J.Z. Zhang, J. Li, Tunable photocurrent spectrum in well-oriented zinc oxide nanorod arrays with enhanced photocatalytic activity, The Journal of Physical Chemistry C 112(24) (2008) 8850-8855.
    [275] P. Singh, A. Kumar, A. Kaushal, D. Kaur, A. Pandey, R. Goyal, In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition, Bulletin of Materials Science 31(3) (2008) 573-577.
    [276] Z. Heiba, L. Arda, XRD, XPS, optical, and Raman investigations of structural changes of nanoCo-doped ZnO, Journal of Molecular Structure 1022 (2012) 167-171.
    [277] Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, Zinc oxide nanorod and nanowire for humidity sensor, Applied Surface Science 242(1-2) (2005) 212-217.
    [278] R. Khan, H.-W. Ra, J. Kim, W. Jang, D. Sharma, Y.J.S. Im, A.B. Chemical, Nanojunction effects in multiple ZnO nanowire gas sensor, 150(1) (2010) 389-393.
    [279] H. Men, P. Gao, B. Zhou, Y. Chen, C. Zhu, G. Xiao, L. Wang, M.J.C.C. Zhang, Fast synthesis of ultra-thin ZnSnO 3 nanorods with high ethanol sensing properties, 46(40) (2010) 7581-7583.

    無法下載圖示 全文公開日期 2032/01/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE