簡易檢索 / 詳目顯示

研究生: 涂詠翔
Yong-Xiang Tu
論文名稱: 基於基因演算法於不同負載情境下之全橋相移轉換器效率最佳化設計
Optimal Efficiency Design of a Full-Bridge Phase-Shift Converter Under Different Load Conditions Based on Genetic Algorithm
指導教授: 劉益華
Yi-Hua Liu
口試委員: 邱煌仁
Huang-Jen Chiu
王順忠
Shun-Chung Wang
鄧人豪
Jen-Hao Teng
鄭于珊
Yu-Shan Cheng
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 81
中文關鍵詞: 全橋相移轉換器零電壓切換效率最佳化
外文關鍵詞: Full-Bridge Phase-Shift Converter, Zero Voltage Switching(ZVS), Efficiency Optimization
相關次數: 點閱:305下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年電動車輛越來越普及,電動車充電器使用之直流-直流轉換器(DC-DC Converter, DDC)的設計也就隨之重要,充電用DDC並非在任何負載情況下都能保持最高效率,如果充電用DDC操作在效率較低的情況,其會有發熱發燙的問題,這會使得DDC的使用壽命減少以及散熱設計不易。全橋相移轉換器(Full-Bridge Phase-Shift Converter)是普遍應用於高功率應用場合的高功率隔離型DDC,在傳統的設計方法中,全橋相移轉換器會針對特定負載情況進行設計,但充電用DDC時常操作在不同負載情境,因此,傳統設計方法有其侷限。此外,在輕載的情況下,全橋相移轉換器的一次側開關無法達成零電壓切換,所以輕載時的效率相較於中、重載低很多,許多改善法如增加一次側諧振電感或根據不同負載改變控制或調變法陸續被提出,但上述方法會有相對應的缺點如元件/成本增加以及控制複雜度變高等。因此,本文提出針對多重負載情境,以提高轉換器總體效率為目標之設計方法。
    本研究提出一種基於基因演算法(Genetic Algorithm, GA)的全橋相移轉換器效率最佳化設計方法,針對不同負載情境進行最佳化。本研究以效率最佳化為目標,利用基因演算法搜索最佳的轉換器參數配置。在設計過程中,考慮了負載變化對轉換器效率的影響,並進行了多種負載情境下的實驗驗證。本文精準地預測出不同負載情況下的電流波形,根據損耗模型估算出損耗,並使用基因演算法來尋找綜合效率最高的參數值,可以有效減小全橋相移轉換器在不同負載情境下的損耗,改善轉換器發熱發燙的問題。本文將所提出之設計方式與英飛凌設計手冊之設計方法以及傳統設計方法進行比較,並實現1 kW 全橋相移轉換器。經實際量測,本文所提方法在五階段定電壓充電情境下之綜合效率為93.58 %,較英飛凌設計手冊之設計方法改善1.05 %,較傳統設計方法提升0.2 %。


    In recent years, electric vehicles (EVs) have become increasingly popular, and the design of the DC-DC converter (DCC) used in EV chargers has become increasingly important. The charging DDC cannot maintain its highest efficiency under all load conditions. If the DDC operates at a lower efficiency during charging, it may experience heating issues, resulting in reduced lifespan and challenging heat dissipation design. On the other hand, the Full-Bridge Phase-Shift Converter is a isolated DDC commonly used in high-power applications. In traditional design methods, the Full-Bridge Phase-Shift Converter is designed for specific load conditions. However, the charging DDC often operates under various load scenarios, limiting the effectiveness of the traditional design approach. Furthermore, under light load conditions, the Full-Bridge Phase-Shift Converter's primary-side switches cannot achieve zero-voltage switching, resulting in significantly lower efficiency compared to medium and heavy loads. Several improvement methods have been proposed, such as adding a primary-side resonant inductor or adjusting control and modulation techniques based on different loads. However, these methods have corresponding drawbacks, including increased component costs and increased control complexity. Therefore, this thesis proposes a design approach targeting multiple load scenarios to improve the overall efficiency of the converter.
    This study proposes a genetic algorithm (Genetic Algorithm, GA) based efficiency optimization design method for a full-bridge phase-shift converter, which is optimized for different load scenarios. Aiming at efficiency optimization, this study uses genetic algorithm to search for the best converter parameter configuration. During the design process, the influence of load changes on the converter efficiency was considered, and experiments under various load scenarios were carried out to verify. This paper accurately predicts the current waveform under different load conditions, estimates the loss according to the loss model, and uses the genetic algorithm to find the parameter value with the highest overall efficiency, which can effectively reduce the loss of the full-bridge phase-shift converter under different load conditions and improve the problem of converter heating. This article compares the proposed design method with the design method of the Infineon design manual and the traditional design method, and realizes a 1 kW full-bridge phase-shift converter. According to actual measurements, the overall efficiency of the method proposed in this paper is 93.58% under the five-stage constant voltage charging scenario, which is 1.05% better than the design method in the Infineon design manual and 0.2% higher than the traditional design method.

    摘要 I Abstract III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 論文大綱 3 第二章 全橋相移轉換器操作模式分析 4 2.1 責任週期損失區間 (Duty Cycle Loss Period) 6 2.2 能量傳送區間 (Power Delivery Period) 7 2.3 第一諧振區間(First Resonant Period) 9 2.4 飛輪區間(Freewheeling Period) 11 2.5 第二諧振區間(Second Resonant Period) 12 第三章 全橋相移轉換器電流分析 15 3.1 一次側電流方程式 16 3.2 全橋相移轉換器元件電流方程式 18 第四章 全橋相移轉換器損耗分析 19 4.1導通損耗模型 19 4.2切換損耗模型 20 4.2.1 一次側的切換損耗 20 4.2.2 二次側的切換損耗 22 4.3 鐵芯損耗模型[29] 23 4.4 全橋相移轉換器總損耗模型 24 第五章 綜合效率最佳化實現方法 25 5.1 基因演算法 25 5.2 適應值與最佳化目標 29 5.3 最佳化實現方法 29 第六章 全橋相移轉換器韌體架構 33 6.1 數位訊號處理器 34 6.2 程式設計流程介紹 36 6.3 數位PID控制器之介紹 38 6.3.1 PID介紹 38 6.3.2 數位PID控制器 40 第七章 實驗結果與分析 43 7.1 電路規格與測試情境 43 7.2 最佳化結果 44 7.3 MATLAB模擬波形與SIMPLIS模擬波形驗證比較 44 7.4 損失估算結果 47 7.5 參考文獻之磁性元件設計法比較 52 7.6 實際電路規格與設備 55 7.7 實驗波形量測 56 7.8 實測效率 62 第八章 結論與未來展望 65 8.1 結論 65 8.2 未來展望 66 參考文獻 67 圖目錄 圖2.1全橋相移轉換器功率級電路圖 4 圖2.2全橋相移轉換器關鍵波形圖 5 圖2.3責任週期損失區間電路動作 6 圖2.4責任週期損失區間等效電路 7 圖2.5能量傳送區間電路動作 8 圖2.6能量傳送區間等效電路 8 圖2.7第一諧振區間電路動作圖(零電壓切換前) 9 圖2.8第一諧振區間電路動作圖(零電壓切換) 10 圖2.9第一諧振區間等效電路動作 10 圖2.10飛輪區間電路動作 11 圖2.11飛輪區間等效電路 12 圖2.12第二諧振區間電路動作圖(零電壓切換前) 13 圖2.13第二諧振區間電路動作圖(零電壓切換) 13 圖2.14第二諧振區間等效電路 14 圖3.1一次側電流波形 16 圖4.1 MOSFET切換損耗示意圖 21 圖4.2 MOSFET之trise、td,on、tfall、td,off示意圖 21 圖4.3反向恢復損失示意圖 22 圖5.1基因演算法示意圖 29 圖5.2基因演算法參數最佳化流程圖 32 圖5.3磁性元件參數最佳化流程圖 33 圖6.1系統架構圖 34 圖6.2 TMS320F280049腳位圖(摘自[30]) 35 圖6.3 C28x系列內部功能方塊圖(摘自[30]) 36 圖6.4整體程式流程圖 38 圖6.5 PID控制系統方塊圖 39 圖6.6增量型PID控制程式流程圖 43 圖7.1五階段充電示意圖 45 圖7.2 Po=140 W之模擬電流波形比較 47 圖7.3 Po=230 W之模擬電流波形比較 47 圖7.4 Po=360 W之模擬電流波形比較 48 圖7.5 Po=600 W之模擬電流波形比較 48 圖7.6 Po=1000 W之模擬電流波形比較 49 圖7.7 Po = 140 W之損耗分佈圓餅圖 50 圖7.8 Po = 230 W之損耗分佈圓餅圖 51 圖7.9 Po=360 W之損耗分佈圓餅圖 52 圖7.10 Po=600 W之損耗分佈圓餅圖 53 圖7.11 Po=1000 W之損耗分佈圓餅圖 54 圖7.12參考文獻之磁性元件設計法流程圖比較 55 圖7.13 1 kW全橋相移電路實體電路圖 58 圖7.14 Po=140 W之最佳化電路實測波形 59 圖7.15 Po=230 W之最佳化電路實測波形 59 圖7.16 Po=360 W之最佳化電路實測波形 60 圖7.17 Po=600 W之最佳化電路實測波形 60 圖7.18 Po=1000 W之最佳化電路實測波形 61 圖7.19 Po=140 W之模擬與實測波形比較 61 圖7.20 Po=230 W之模擬與實測波形比較 62 圖7.21 Po=360 W之模擬與實測波形比較 62 圖7.22 Po=600 W之模擬與實測波形比較 63 圖7.23 Po=1000 W之模擬與實測波形比較 63 圖7.24三種設計方法實測效率比較 65 圖7.25最佳解模擬與實測效率比較 66   表目錄 表4.1鐵氧體磁芯材料的磁芯損耗係數[29] 23 表7.1負載情境與時間佔比 45 表7.2基因演算法參數最佳解 45 表7.3磁性元件參數最佳解 46 表7.4模擬電流各電流點之誤差 49 表7.5 Po = 140 W損耗分佈 50 表7.6 Po = 230 W之損耗分佈 51 表7.7 Po = 360 W之損耗分佈 52 表7.8 Po = 600 W之損耗分佈 53 表7.9 Po = 1000 W之損耗分佈 54 表7.10電路實際規格與實驗儀器 57 表7.11模擬與實測電流之各電流點誤差 64 表7.12三種設計方法效率比較表 65 表7.13模擬與實測效率比較表 66

    [1] Kim, Y.D., Cho, K.M., Kim, D.-Y., Moon, G.-W., “Wide-range ZVS phase-shift full-bridge converter with reduced conduction loss caused by circulating current,” IEEE Trans. Power Electron. 2013, 28, 3308–3316.
    [2] Shi, X., Jiang, J., Guo, X., “An efficiency-optimized isolated bidirectional DC-DC converter with extended power range for energy storage systems in microgrids,” Energies 2013, 6, 27–44.
    [3] Lai, C.-M., Yang, M.-J., Liang, S.-K., “A zero input current ripple ZVS/ZCS boost converter with boundary-mode control,” Energies 2014, 7, 6765–6782.
    [4] Chen, Z., Liu, S., Shi, L., “A soft switching full bridge converter with reduced parasitic oscillation in a wide load range,” IEEE Trans. Power Electron. 2014, 29, 801–811.
    [5] Yang, B.J., Duarte, L., Li, W., Yin, K.X.,Deng, Y. “Phase-shifted full bridge converter featuring ZVS over the full load range,” IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 7–10 November 2010, pp. 644–649.
    [6] J. H. Cho, H. W. Seong, S. M. Jung, J. S. Park, G. W. Moon, and M. J. Youn, “Implementation of digitally controlled phase shift full bridge converter for server power supply,” in Proc. Energy Convers. Congr. Expo., 2010, pp. 802–809.V. Suel and S. Kizir, “A Comprehensive Loss Analysis of Half-Bridge LLC Resonant Converter used in LED Street Lights,” 2019 1st Global Power, Energy and Communication Conference, 2019.
    [7] B. Y. Chen and Y. S. Lai, “Novel dual mode operation of phase-shifted full bridge converter to improve efficiency under light load condition,” in Proc. Energy Convers. Congr. Expo., 2009, pp. 1367–1374.Infineon Technologies North America Corp. “MOSFET Power Losses Calculation Using the DataSheet Parameters,” Application note, V1.1, 2012.
    [8] Y. Jang and M. M. Jovanovi´c, “A new PWM ZVS full-bridge converter,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 987–994, May 2007.
    [9] P. K. Jain, W. Kang, H. Soin, and Y. Xi, “Analysis and design considerations of a load and line independent zero voltage switching full-bridge DC/DC converter topology,” IEEE Trans. Power Electron., vol. 17, no. 5, pp. 649–657, Sep. 2002.
    [10] A. J. Mason, D. J. Tschirhart, and P. K. Jain, “New ZVS phase shift modulated full-bridge converter topologies with adaptive energy storage for SOFC application,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 332–342, Jan. 2008.
    [11] Z. Chen, X. Wu, P. Meng, and Z. Qian, “Optimum design consideration and implementation of a novel synchronous rectified soft-switched phase shift full-bridge converter for low-output-voltage high-output-current applications,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 388–397, Feb. 2009.
    [12] A. F. Bakan, N. Altintas, and I. Aksoy, “An improved PSFB PWM DC/DC converter for high-power and frequency applications,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 64–74, Jan. 2013.
    [13] I. O. Lee and G. W. Moon, “Phase-shifted PWM converter with a wide ZVS range and reduced circulating current,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 908–919, Feb. 2013.
    [14] X. Wu, X. Xie, C. Zhao, Z. Qian, and R. Zhao, “Low voltage and current stress ZVZCS full bridge DC–DC converter using center tapped rectifier reset,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1470–1477, Mar. 2008.
    [15] W. J. Lee, C. E. Kim, G.W. Moon, and S. K. Han, “A new phase-shift full bridge converter with voltage-doubler-type rectifier for high-efficiency PDP sustaining power module,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2450–2458, Jun. 2008.
    [16] Chen, B.Y.,Lai, Y.S., “Switching control technique of phase-shift-controlled full-bridge converter to improve efficiency under light-load and standby conditions without additional auxiliary components,” IEEE Trans. Power Electron. 2010, 25, 1001–1012.
    [17] B. Y. Chen and Y. S. Lai, “Switching control technique of phase-shiftcontrolled full-bridge converter to improve efficiency under light-load and standby conditions without additional auxiliary components,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 1001–1012, Apr. 2010.
    [18] D. Y. Kim, C. E. Kim, and G. W. Moon, “Variable delay time method in the phase-shifted full-bridge converter for reduced power consumption under light load conditions,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5120–5127, Nov. 2013.
    [19] B. H. Liu, J. H. Teng, M. Y. Lin, and C. C. Huang, “Light-load conversion efficiency improvement strategy for phase-shift full-bridge converters,” in Proc. Int. Future Energy Electron. Conf., Jun. 2017, pp. 488–493.
    [20] L. Zhao, H. Y. Li, Y. X. Yu, and Y. T. Wang, “Optimum dead-time control method of phase-shifted converter to extend the ZVS range,” in Proc. IEEE Int. Telecommun. Energy Conf., 2015, pp. 1–4.
    [21] J. W. Kim, D. Y. Kim, C. E. Kim, and G. W. Moon, “A Simple switching control technique for improving light load efficiency in a phase-shifted full-bridge converter with a server power system,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1562–1566, Apr. 2014.
    [22] D.M. Joo, B.K. Lee, and J.S. Kim, “Dead-time optimisation for a phase shifted dc–dc full bridge converter with GaN HEMT,” Electron. Lett., vol. 52, no. 9, pp. 769–770, 2016.
    [23] L. Zhao, H. Y. Li, Y. Hou, and Y. X. Yu, “Operation analysis of a phaseshifted full-bridge converter during the dead-time interval,” IET Power Electron., vol. 9, no. 9, pp. 1777–1783, 2016.
    [24] B. Zhao, Q. Song, W. H. Liu, and Y. D. Sun, “Dead-time effect of the high-frequency isolated bidirectional full-bridge DC–DC converter: Comprehensive theoretical analysis and experimental verification,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1667–1680, Apr. 2014.
    [25] Infineon Technologies North America (IFNA) Corp., “Design of Phase Shifted Full-Bridge Converter with Current Doubler Rectifier,” Design Note DN 2013-01 V1.0 January 2013.
    [26] M. Brunoro and J. L. F. Vieira, “A High-Performance ZVS Full-Bridge DC–DC 0–50-V/0–10-A Power Supply with Phase-Shift Control,” IEEE Transactions on Power Electronics, Vol. 14, No. 3, pp. 495-505, May. 1999.
    [27] J. A. Sabate, V. Vlatkovic, R. B. Ridley, F. C. Lee and B. H. Cho, “Design Considerations for High-Voltage, High-Power, Full Bridge Zero-Voltage-Switched PWM Converter,” IEEE APEC, 1990, pp. 275-284.
    [28] Lei Zhao, Haoyu Li, Yuan Liu , Zhenwei Li, “High Efficiency Variable-Frequency Full-Bridge Converter with a Load Adaptive Control Method Based on the Loss Model,” Energies 2015,8, 2647-2673.
    [29] C. H. Yang, T. J. Liang, K. H. Chen J. S. Li and J. S. Lee, “Loss Analysis of Half-Bridge LLC Resonant Converter,” 2013 1st International Future Energy Electronics Conference, 2013. pp. 155-160.
    [30] Texas Instruments, “TMS320F28004x Piccolo Microcontrollers,” Available at: http://www.ti.com/.
    [31] 時立中,「高效率全橋轉換器之多模式控制技術」,台灣科技大學電機工程博士論文,民國一零七年十月。
    [32] 陳冠炷,「基於灰狼演算法之最佳化鋰離子電池充電電流樣式搜尋」,國立臺灣科技大學電機工程系碩士論文,2021年。
    [33] 紀仕秦,「用於電池充電器之數位控制相移全橋轉換器之設計與實現」,台灣科技大學電機工程碩士論文,民國一百年七月。
    [34] 簡嘉男,「具同步整流功能之數位控制全橋相移轉換器設計與研製」,台灣科技大學電機工程碩士論文,民國一零四年一月。
    [35] 邱雅綺,「以寬能隙實現高效率全橋相移-直流轉換器」,台灣科技大學電機工程碩士論文,民國一零二年七月。
    [36] 李祁峻,「不同負載情境下之全橋LLC諧振轉換器最佳化設計」,台灣科技大學電機工程碩士論文,民國一百一十一年一月。

    QR CODE