簡易檢索 / 詳目顯示

研究生: 何書因
Shu-yin Ho
論文名稱: 使用人工傳輸線之頻率掃描陣列天線與微型化手持裝置天線
Frequency Scanning Array Antenna based on Artificial Transmission Line and Miniaturized Antennas for Handheld Devices
指導教授: 廖文照
Wen-jiao Liao
口試委員: 楊成發
Chang-fa Yang
曾昭雄
Chao-hsiung Tseng
陳念偉
Nan-wei Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 87
中文關鍵詞: 無線區域網路微型化天線人工傳輸線合成共平面波導延遲線頻率掃描陣列天線
外文關鍵詞: Wireless LAN, Miniaturized antenna, Artificial transmission line, Synthesized CPW, Delay line, Frequency scanning array.
相關次數: 點閱:327下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文係以應用在無線區域網路2.4 GHz頻段之裝置為研究標的;為因應行動裝置元件設計需趨於輕薄短小,吾人利用多種天線微型化技巧,提出一款適用於無線區域網路之微型化PIFA架構天線,該設計有別於傳統印刷式微帶天線,使用壓克力做為介電基材,配合銅片雕刻製作出立體化、微型化之行動裝置天線,其長度僅為操作波長的8%,且具有免淨空區之特性。該天線可提供符合802.11b規範之阻抗頻寬,天線增益與輻射效率也符合商業利用之要求。
在點對點的無線通訊系統中,天線有高增益及高指向性的要求,而頻率掃描陣列天線具有場型可重置、控制簡單的優點,因此本論文的第二部分提出一個使用合成共平面波導延遲線之頻率掃描陣列天線系統。陣列天線系統包含偶極天線單元、不等分功率分配器及合成共平面波導延遲線。利用低成本的FR4基板製作串接15個合成共平面波導單元的相位延遲線與不等分功率分配器為饋入模組,提供天線單元間之相位變化,達成較窄的掃描頻寬,且架構較一般的相控陣列天線來的簡單。該設計具有較窄的掃描頻寬與較大的波束掃描範圍。


The first part of this thesis focuses on handheld device antennas applicable to 2.4 GHz wireless local area network. The primary objective is to devise a miniaturized antenna without too much compromise on performance. The proposed antenna is based on planar inverted-F structure. The antenna radiator is made with a folded cooper metal sheet. Instead of using printed circuit board, an acrylic block is used to serve as dielectric loading and antenna support. The overall antenna size is less than 8% of a wavelength. According to measurement results, the bandwidth, gain, and radiation efficiency characteristics meet specification needs.
Point-to-point communications requires antennas with high gain and high directivity. In the second part, we developed a frequency scanning array based on artificial transmission line. Key components are two dipole elements on a large ground plan, a unequal Wilkinson power divider, and a delay line made of synthesized coplanar waveguide cells. The prototype delay line, which comprises 15 cascaded synthetic coplanar waveguide cells, was fabricated with a low cost FR4 substrates. The delay line is helpful in reducing the beam steering bandwidth needed for frequency scanning array antennas. The proposed array antenna accomplishes a broad beam scanning coverage with a reduced frequency sweeping band.

摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 章節概述 1 第二章 微型化無線區域網路天線 3 2.1 前言 3 2.2 平面式倒F型天線之演進與模態分析 4 2.3 倒F型微型化天線設計 9 2.3.1 天線架構及其設計原理 9 2.3.2 天線設計參數分析 14 2.4 微型化倒F型天線性能驗證 19 2.5 小結 24 第三章 人工合成傳輸線設計 25 3.1 簡介 25 3.2 合成傳輸線原理 26 3.3 人工合成傳輸線單元設計 29 3.4 延遲線之設計與效能量測 34 3.5 小結 39 第四章 使用合成共平面波導延遲線之頻率掃描陣列天線系統 40 4.1 頻率掃描天線簡介 40 4.2 線性陣列天線原理 42 4.3 偶極天線原理與單元天線設計 45 4.4 威爾京生不等分功率分配器原理與設計 50 4.5 功率分配器與相位延遲線組成與性能驗證 55 4.6 陣列天線波束頻率掃描效能驗證 57 4.7 小結 68 第五章 結論 69 參考文獻 70

[1] D. M. Nashaat, H. A. Elsadek, H. Ghali, “Single feed compact quad-band PIFA antenna for wireless communication applications,” IEEE Trans. Antennas Propag., vol. 53, no. 8, pp. 2631-2635, Aug. 2005.
[2] Y. J. Cho, Y. S. Shin, S.-O. Park, “Internal PIFA for 2.4/5 GHz WLAN applications,” Electro. Lett., vol. 42, pp. 8-10, Jan. 2006.
[3] R. A. Bhatti, Y. S. Shin, N.-A. Nguyen, S.-O. Park, “Design of a novel multiband planar inverted-F antenna for mobile terminals,” Proceedings IEEE IWAT, pp. 226-229, 2008.
[4] K. L. Virga, Y. Rahmat-Sami, “Low-profile enhanced-bandwidth PIFA antennas for wireless communications packaging,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 10, pp. 1879-1888, Oct. 1997.
[5] H. Park, K. Chung, J. Choi, "Design of a Planar Inverted-F Antenna With Very Wide Impedance Bandwidth", IEEE Microw. & Wireless Comp., Lett., vol. 16, no. 3, Mar. 2006.
[6] K.-L. Wong, Compact and Broadband Microstrip Antennas, Wiley, New York, 2002.
[7] K.-L. Wong, G.-Y. Lee, T.-W. Chiou, “A low-profile planar monopole antenna for multiband operation of mobile handsets,” IEEE Trans. Antennas Propag., vol. 51, no. 1, pp. 121-125, Jan. 2003.
[8] C.-I. Lin, K.-L. Wong, “Printed monopole slot antenna for internal multiband mobile phone antenna,” IEEE Trans. Antennas Propag., vol. 55, no. 12, pp. 3690-3697, Dec. 2007.
[9] R. Jamalpoo, J. Nourinia, C. h. Ghobadi, “A wideband microstrip-fed monopole antenna for WiBro, WLAN, DMB and UWB applications,” Journal of Electromagnetic Waves and Applications, vol. 22, pp. 1461-1468, 2008.
[10] X.-C. Yin, C.-L. Ruan, S.-G. Mo, C.-Y. Ding, J.-H. Chu, “A compact ultra-wideband microstrip antenna with multiple notches,” Progress In Electromagnetics Research, vol. 84, pp. 321-332, 2008.
[11] K.-L. Wong, Planar Antennas for wireless communications, Wiley, New York, 2003.
[12] R. Garg, P. Bhartia, I. Bahl, A. Ittipiboon, Microstrip antenna design handbook, Artech House, London, 2001.
[13] T. Taga, “Analysis of planar inverted F antennas and antenna design for portable radio equipment,” in Analysis, Design, and Measurement of Small and Low Profile Antennas, K. Hirasawa and M. Haneishi, Eds., Artech House, Boston, 1992.
[14] G. Dubost, “Short- or open-circuited dipole parallel to perfect reflector plane and embedded in substrate and acting at resonance,” Electron. Lett., vol. 17, no. 24, pp. 914-916, Nov. 1981.
[15] G. Sanford, L. Klein, “Increasing the bandwidth of a microstrip radiating element,” IEEE AP-S Int. Symp. Digest, Seattle, pp. 126-129, Jun. 1979.
[16] K.Hirasawa, M. Haneishi. Analysis, Design, and Measurement of Small and Low-Profile Antennas, Artech House, Boston, 1992.
[17] C.-M. Su, H.-T. Chen, K.-L. Wong, “Printed dual-band dipole antenna with U-slotted arms for 2.4/5.2 GHz WLAN operation,” Electron. Lett., vol. 38, no. 2, pp. 1308-1309, Oct. 2002.
[18] E. Lee, P. S. Hall, P. Gardner, “Dual band folded monopole/loop antenna for terrestrial communication system,” Electron. Lett., vol. 36, no. 24, pp.1990-1991, Nov. 2000.
[19] Y.-X. Guo, K.-M. Luk, K.-F. Lee, Y.-L. Chow, "Double U-slot rectangular patch antenna," Electron. Lett., vol. 34, no. 19, pp 1805-1806, Sep. 1998.
[20] K.-M. Luk, Y.-X. Guo, K.-F. Lee, Y.-L. Chow, "L-probe proximity fed U-slot patch antenna," Electron. Lett., vol. 34, no. 19, pp. 1806-1807, Sep. 1998.
[21] H. Kwon, B. Lee, "Compact slotted planar inverted-F RFID tag mountable on metallic objects," Electron. Lett. , vol.41, no.24, pp. 1308-1310, Nov. 2005.
[22] T. K. Lo, Y. Hwang, "Bandwidth enhancement of PIFA loaded with very high permittivity material using FDTD," 1998 IEEE AP-S Int. Symp. Dig., vol. 2, pp.798-801, Jun. 1998.
[23] H.-T. Chen, K.-L. Wong, T.-W. Chiou, "PIFA with a meandered and folded patch for the dual-band mobile phone application," IEEE Trans. Antennas Propag., vol.51, no.9, pp. 2468- 2471, Sep. 2003.
[24] J.-H. Lu, C.-L. Tang, K.-L. Wong, "Slot-couple small triangular microstrip antenna," Microwave Opt. Technol. Lett., vol. 16, pp. 371-374, Dec. 1997.
[25] K.-L. Wong, Y.-F. Lin, “Small broadband rectangular microstrip antenna with chip-resistor loading,” Electron. Lett., vol. 33, no. 19, pp. 1593-1594, Sep. 1997.
[26] C.-W. Wang, T.-G. Ma, C.-F. Yang, “A new planar artificial transmission line and its applications to a miniaturized butler matrix,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 12, pp. 2792-2801, Dec. 2007.
[27] T.-G. Ma, C.-W. Wang, R.-C. Hua, J.-W. Tsai, “A modified quasi-Yagi antenna with a new compact microstrip-to-coplanar strip transition using artificial transmission lines,” IEEE Trans. Antennas Propag., vol.57, no.8, pp.2469-2474, Aug. 2009.
[28] Y.-C. Chiang, C.-Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 3, pp. 476–479, Mar. 2001.
[29] K. W. Eccleston, S. H. M. Ong, “Compact planar microstripline branch-line and rat-race couplers,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 10, pp. 2119-2125, Oct. 2003.
[30] I. Toyoda, T. Hirota, T. Hiraoka., T. Tokumitsu, “Multilayer MMIC branch-line coupler and broad-side coupler,” Microwave Millimeter-Wave Monolithic Circuits Symp., Digest of Papers, IEEE., pp. 79-82, Jun. 1992.
[31] P. Kangaslahti, P. Alinikula, V. Porra, “Miniaturized artificial-transmission-line monolithic millimeter-wave frequency doubler,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 4, pp. 510-518, Apr. 2000.
[32] C.-C. Wang, C.-H. Lai, T.-G. Ma, “Miniaturized coupled-line couplers using uniplanar synthesized coplanar waveguides,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 8, pp. 2266-2276, Aug. 2010.
[33] D. M. Pozar, Microwave Engineering, 3rded, Wiley, New York, 2005.
[34] C. P. Wen, “Coplanar waveguide : A surface strip transmission line suitable for nonreciprocal gyromagnetic device application,” IEEE Trans. Microw. Theory Tech., vol. 17, no. 12, pp. 1087-1090, Dec. 1969.
[35] W. R. Eisenstadt, Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE trans. Comp., Hybrids, Manufact. Technol., vol. 15, no. 4, pp.483-490, Aug. 1992.
[36] R.A. Pucel, D.J. Masse, C.P. Hartwig, "Losses in Microstrip," IEEE Trans. Microw. Theory Tech., vol.16, no. 6, pp. 342-350, Jun. 1968.
[37] M. V. Schneider, "Dielectric loss in integrated microwave circuit," Bell System Technical Journal, vol. 48, pp. 2325-2332, Mar. 1969.
[38] D. K. Cheng, Field and Wave Electromagnetics, 2nd Ed., Wesley, New York, 1989.
[39] J. Volakis, Antenna Engineering Handbook, McGraw Hill, New York, 2007.
[40] E. Hamidi, “Design, analysis and simulation of a C band frequency scanning slot-array antenna,” ICCCE 2010 Proc., pp. 1-5, May. 2010.
[41] H. Wang, P. Ge, D. G. Fang, X. F. Ma, W. X. Sheng, “A low loss frequency scanning planar array using hybrid coupling,” ICMMT 2010 Proc., pp. 1908-1911, May. 2010.
[42] H. Wang, P. Ge, D. G. Fang, X.-F. Ma, W.-X. Sheng, “A novel frequency scanning monopulse microstrip antenna array,” ICMMT 2010 Proc., pp. 1118-1121, May. 2010.
[43] A. Fackelmeier, E.M. Biebl, “Narrowband frequency scanning array antenna at 5.8 GHz for short range imaging,” IEEE-MTT Int. Symp. Dig., pp. 1266-1269, May. 2010.
[44] B. Pattan, Robust Modulation Methods and Smart Antennas in Wireless Communication, Prentice Hall, New Jersey, 2000.
[45] W. Menzel, “A new travelling wave antenna in microstrip,” in 8th European Microwave Conference, pp. 302-306, Sep. 1978.
[46] S. Matsuzawa, K. Sato, A. Sanada, H. Kubo, S. Aso, “Left-handed leaky wave antenna for millimeter-wave applications,” in Proc. IEEE Int.Workshop on Antenna Technology Small Antennas and Novel Metamaterials, pp. 183-186, Mar. 2005.
[47] K. Sakakibara, T. Ikeda, N. Kikuma, H. Hirayama, “Beam scanning performance of leaky-wave slot array on left-handed waveguide,” 2007 IEEE Symposium on Antennas and Propagation, pp. 5821-5824, Jun. 2007.
[48] T. Iwasaki, H. Kamoda, T. Derham, T. Kuki, “A composite right/left-handed rectangular waveguide with tilted corrugations for millimeter-wave frequency scanning antenna,” 2008 European Microwave Conference, pp. 563-566, Oct. 2008.
[49] W. L. Stuzman, G. A. Thiele, Antenna Theory and Design, 2nd Ed, New York, Wiley, 1998.

無法下載圖示 全文公開日期 2017/07/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE