簡易檢索 / 詳目顯示

研究生: Javed Ahmad
Javed Ahmad
論文名稱: 高升壓增益應用之直流-直流轉換器設計與實現
Design and Implementation of DC/DC Converters for High Step-Up Voltage Gain Applications
指導教授: 林長華
Chang-Hua Lin
口試委員: 彭盛裕
Sheng-Yu Peng
劉添華
Tian-Hua Liu
林長華
Chang-Hua Lin
魏榮宗
Rong-Jong Wai
陳景然
Ching-Jan Chen
胡國英
Kuo-Ing Hwu
陳偉倫
Wei-Lun Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 145
中文關鍵詞: High Voltage GainDC/DC ConverterPower SharingVoltage Ripple
外文關鍵詞: High Voltage Gain, DC/DC Converter, Power Sharing, Voltage Ripple
相關次數: 點閱:231下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

This PhD dissertation proposes several DC/DC power electronic converters for high voltage and low to medium power applications such as solar photovoltaic systems, electron accelerators for X-ray production, battery charging and high voltage pulse generation systems. The proposed converters are designed to operate in continuous conduction mode (CCM) and have desirable features such as low switch voltage stresses, continuous input current, non-inverting output voltage, and wide input voltage range. To develop these converters, different combinations of various types of voltage multiplier circuits (VMC) are used. Based on the number of power switches there are two categories of converters proposed, single-switch and double-switch converters. Design parameters such as the size of the passive components are calculated and steady-state analysis is performed for each converter. Scaled power hardware prototypes for each converter are developed and verified for the feasibility of the converters, the validity of the theoretically calculated voltage gain and the power quality of the proposed systems. Parallel and series combinations of the converters for voltage sharing and output voltage ripple reduction are discussed in detail. The modular structure of power electronic systems is discussed briefly and a high voltage pulsed power supply is developed by using two modules of LLC resonant converter. Furthermore, an isolated modified SEPIC (single-ended primary inductor converter)-based converter for isolated or wireless energy transfer applications is introduced and discussed briefly.


This PhD dissertation proposes several DC/DC power electronic converters for high voltage and low to medium power applications such as solar photovoltaic systems, electron accelerators for X-ray production, battery charging and high voltage pulse generation systems. The proposed converters are designed to operate in continuous conduction mode (CCM) and have desirable features such as low switch voltage stresses, continuous input current, non-inverting output voltage, and wide input voltage range. To develop these converters, different combinations of various types of voltage multiplier circuits (VMC) are used. Based on the number of power switches there are two categories of converters proposed, single-switch and double-switch converters. Design parameters such as the size of the passive components are calculated and steady-state analysis is performed for each converter. Scaled power hardware prototypes for each converter are developed and verified for the feasibility of the converters, the validity of the theoretically calculated voltage gain and the power quality of the proposed systems. Parallel and series combinations of the converters for voltage sharing and output voltage ripple reduction are discussed in detail. The modular structure of power electronic systems is discussed briefly and a high voltage pulsed power supply is developed by using two modules of LLC resonant converter. Furthermore, an isolated modified SEPIC (single-ended primary inductor converter)-based converter for isolated or wireless energy transfer applications is introduced and discussed briefly.

Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Conventional Boost Converter . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Power Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Cascaded Boost Converter . . . . . . . . . . . . . . . . . . . . . 10 1.2.3 Hybrid Boost Converter . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Dissertation Contribution & Organisation . . . . . . . . . . . . . . . . . 13 2 Proposed Single Switch Converters . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Three Times Boost Converter . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 Steady-State Analysis . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.2 Passive Component Selection . . . . . . . . . . . . . . . . . . . 20 2.1.3 Non-Ideal Voltage Gain . . . . . . . . . . . . . . . . . . . . . . 21 2.1.4 Hardware Verification & Design Consideration . . . . . . . . . . 23 2.1.5 Comparison with Conventional Boost Converter . . . . . . . . . 26 2.2 Modified Quadratic Boost Converters . . . . . . . . . . . . . . . . . . . 27 2.2.1 Twice Quadratic Boost Converter . . . . . . . . . . . . . . . . . 27 2.2.2 Four Times Quadratic Boost Converter . . . . . . . . . . . . . . 34 2.3 Comparison & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Proposed Double Switch Converters . . . . . . . . . . . . . . . . . . . . . . . 43 3.1 Proposed Novel Boost Converter . . . . . . . . . . . . . . . . . . . . . . 43 3.1.1 Steady-State Analysis . . . . . . . . . . . . . . . . . . . . . . . 44 3.1.2 Passive Component Selection & Voltage-Stress . . . . . . . . . . 46 3.1.3 Non-Ideal Voltage Gain . . . . . . . . . . . . . . . . . . . . . . 47 3.1.4 Discontinuous Conduction Mode . . . . . . . . . . . . . . . . . 48 3.1.5 Comparison NPBC with Existing Topologies . . . . . . . . . . . 50 3.1.6 Hardware Verification & Design Consideration . . . . . . . . . . 52 3.2 Family of Two Switch Quadratic Boost Converter . . . . . . . . . . . . . 54 3.2.1 Proposed Quadratic Boost Converter-1 (PQBC-1) . . . . . . . . . 55 3.2.2 Proposed Quadratic Boost Converter-2 (PQBC-2) . . . . . . . . . 62 3.2.3 Proposed Quadratic Boost Converter-3 (PQBC-3) . . . . . . . . . 68 3.2.4 Comparison of PQBCs with Existing Topologies . . . . . . . . . 74 3.3 Proposed Quadratic Buck-Boost Converter . . . . . . . . . . . . . . . . . 76 3.3.1 Discontinuous Conduction Mode . . . . . . . . . . . . . . . . . 79 3.3.2 Comparison with Existing Topologies . . . . . . . . . . . . . . . 80 3.3.3 Hardware Verification & Design Consideration . . . . . . . . . . 82 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4 Isolated DC Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.1 High Voltage Supply Applied to X-Ray Generation . . . . . . . . . . . . 87 4.1.1 Autonomous Push-Pull Converter Modelling . . . . . . . . . . . 89 4.1.2 Modelling of High Voltage Transformer . . . . . . . . . . . . . . 92 4.1.3 Voltage Doubler Circuit and Control Unit . . . . . . . . . . . . . 94 4.1.4 Hardware Verification & Design Consideration . . . . . . . . . . 95 4.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.2 Proposed Modular Pulsed Power Supply . . . . . . . . . . . . . . . . . . 98 4.2.1 Variable Duty Ratio Voltage Sharing . . . . . . . . . . . . . . . . 99 4.2.2 Hardware Verification & Design Consideration . . . . . . . . . . 100 4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.3 Proposed Modified Isolated SEPIC Converter . . . . . . . . . . . . . . . 106 4.3.1 Steady-State Analysis . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.2 Discontinuous Conduction Mode . . . . . . . . . . . . . . . . . 110 4.3.3 Hardware Verification & Design Consideration . . . . . . . . . . 112 4.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

[1] P. Roy, J. He, T. Zhao, and Y. V. Singh, “Recent Advances of Wind-Solar Hybrid Renewable Energy
Systems for Power Generation: A Review,” IEEE Open Journal of the Industrial Electronics Society,
vol. 3, pp. 81–104, 2022.
[2] J. G. de Matos, F. S. F. e Silva, and L. A. d. S. Ribeiro, “Power Control in AC Isolated Microgrids
With Renewable Energy Sources and Energy Storage Systems,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 6, pp. 3490–3498, 2015.
[3] G. F. Gontijo, T. Kerekes, D. Sera, M. Ricco, L. Mathe, and R. Teodorescu, “Medium-Voltage
Converter Solution With Modular Multilevel Structure and Decentralized Energy Storage Integration
for High-Power Wind Turbines,” IEEE Transactions on Power Electronics, vol. 36, no. 11, pp. 12954–
12967, 2021.
[4] F. Blaabjerg, H. Wang, I. Vernica, B. Liu, and P. Davari, “Reliability of Power Electronic Systems for
EV/HEV Applications,” Proceedings of the IEEE, vol. 109, no. 6, pp. 1060–1076, 2021.
[5] C. G. Zogogianni, E. C. Tatakis, and V. Porobic, “Investigation of a Non-isolated Reduced Redundant
Power Processing DC/DC Converter for High-Power High Step-Up Applications,” IEEE Transactions
on Power Electronics, vol. 34, no. 6, pp. 5229–5242, 2019.
[6] J. Liu, J. Yang, J. Zhang, Z. Nan, and Q. Zheng, “Voltage Balance Control Based on Dual Active
Bridge DC/DC Converters in a Power Electronic Traction Transformer,” IEEE Transactions on Power
Electronics, vol. 33, no. 2, pp. 1696–1714, 2018.
[7] D. Zhou, H. Wang, and F. Blaabjerg, “Mission Profile Based System-Level Reliability Analysis of DC/
DC Converters for a Backup Power Application,” IEEE Transactions on Power Electronics, vol. 33,
no. 9, pp. 8030–8039, 2018.
[8] D. Soto Sanchez, M. Hernandez, I. Andrade Aguero, and R. Pena Guinez, “The Asymmetric Alternate
Arm Converter: A Compact Voltage Source Converter Design for HVDC,” IEEE Latin America
Transactions, vol. 16, no. 9, pp. 2354–2361, 2018.
[9] S. B. Thanikanti, K. Izharuddin, B. Aljafari, R. K. Pachauri, and K. Balasubramanian, “Power
Generation Improvement in Partially Shaded Series-Parallel PV Arrays through Junction Wires,” in
2022 IEEE India Council International Subsections Conference (INDISCON), pp. 1–6, 2022.
[10] S. K. Sahoo, M. Shah, N. A. Dawlatzai, and R. Ann Jerin Amalorpavaraj, “Assessment of mismatching
in series and parallel connection of the PV modules of different technologies and electrical
parameters,” in 2020 International Conference on Computer Communication and Informatics
(ICCCI), pp. 1–5, 2020.
118
[11] A. Prasetyaningtyas, M. Facta, and S. Handoko, “Investigation of Photovoltaic Panel Topology
Performance to Feed Electricity in Rural Area,” in 2021 8th International Conference on Information
Technology, Computer and Electrical Engineering (ICITACEE), pp. 1–6, 2021.
[12] S. Xu, R. Shao, B. Cao, and L. Chang, “Single-phase grid-connected PV system with golden section
search-based MPPT algorithm,” Chinese Journal of Electrical Engineering, vol. 7, no. 4, pp. 25–36,
2021.
[13] P. Kumar, R. K. Singh, and R. Mahanty, “Performance of MPPT-Based Minimum Phase Bipolar
Converter for Photovoltaic Systems,” IEEE Transactions on Power Electronics, vol. 36, no. 5,
pp. 5594–5609, 2021.
[14] M. E. Azizkandi, F. Sedaghati, H. Shayeghi, and F. Blaabjerg, “A High Voltage Gain DC–DC
Converter Based on Three Winding Coupled Inductor and Voltage Multiplier Cell,” IEEE Transactions
on Power Electronics, vol. 35, no. 5, pp. 4558–4567, 2020.
[15] J. Carrasco, L. Franquelo, J. Bialasiewicz, E. Galvan, R. PortilloGuisado, M. Prats, J. Leon, and
N. Moreno-Alfonso, “Power-Electronic Systems for the Grid Integration of Renewable Energy
Sources: A Survey,” IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1002–1016,
2006.
[16] F. L. Tofoli, D. d. C. Pereira, W. J. d. Paula, and D. d. S. O. Júnior, “Survey on non-isolated highvoltage
step-up dc–dc topologies based on the boost converter,” IET Power Electronics, vol. 8, no. 10,
pp. 2044–2057, 2015.
[17] X. Hu and C. Gong, “A High Voltage Gain DC–DC Converter Integrating Coupled-Inductor and
Diode–Capacitor Techniques,” IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 789–
800, 2014.
[18] L. Wang, Q. Zhu, W. Yu, and A. Q. Huang, “A Medium-Voltage Medium-Frequency Isolated DC–
DC Converter Based on 15-kV SiC MOSFETs,” IEEE Journal of Emerging and Selected Topics in
Power Electronics, vol. 5, no. 1, pp. 100–109, 2017.
[19] K.-I. Hwu and W.-Z. Jiang, “Isolated step-up converter based on flyback converter and charge pumps,”
IET Power Electronics, vol. 7, no. 9, pp. 2250–2257, 2014.
[20] P. K. Maroti, S. Padmanaban, J. B. Holm-Nielsen, M. Sagar Bhaskar, M. Meraj, and A. Iqbal, “A New
Structure of High Voltage Gain SEPIC Converter for Renewable Energy Applications,” IEEE Access,
vol. 7, pp. 89857–89868, 2019.
[21] Y. Tang, T. Wang, and Y. He, “A Switched-Capacitor-Based Active-Network Converter With High
Voltage Gain,” IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2959–2968, 2014.
[22] L. Schmitz, D. C. Martins, and R. F. Coelho, “Generalized High Step-Up DC-DC Boost-Based
Converter With Gain Cell,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64,
no. 2, pp. 480–493, 2017.
119
[23] B. Chandrasekar, C. Nallaperumal, S. Padmanaban, M. S. Bhaskar, J. B. Holm-Nielsen, Z. Leonowicz,
and S. O. Masebinu, “Non-Isolated High-Gain Triple Port DC–DC Buck-Boost Converter With
Positive Output Voltage for Photovoltaic Applications,” IEEE Access, vol. 8, pp. 113649–113666,
2020.
[24] K. Patidar and A. C. Umarikar, “High step-up converters based on quadratic boost converter for microinverter,”
Electric Power Systems Research, vol. 119, pp. 168–177, 2015.
[25] A. Alzahrani, M. Ferdowsi, and P. Shamsi, “A Family of Scalable Non-Isolated Interleaved DC-DC
Boost Converters With Voltage Multiplier Cells,” IEEE Access, vol. 7, pp. 11707–11721, 2019.
[26] Y. Wang, C. Zhao, and L. Zhang, “Adaptive High-Power Laser-Based Simultaneous Wireless
Information and Power Transfer System With Current-Fed Boost MPPT Converter,” IEEE Photonics
Journal, vol. 13, no. 4, pp. 1–11, 2021.
[27] J. Kim and C. Kim, “A DC–DC Boost Converter With Variation-Tolerant MPPT Technique and
Efficient ZCS Circuit for Thermoelectric Energy Harvesting Applications,” IEEE Transactions on
Power Electronics, vol. 28, no. 8, pp. 3827–3833, 2013.
[28] J.-E. Hernández-Díez, C.-F. Méndez-Barrios, S.-I. Niculescu, and E. Bárcenas-Bárcenas, “A Current
Sensorless Delay–Based Control Scheme for MPPT–Boost Converters in Photovoltaic Systems,”
IEEE Access, vol. 8, pp. 174449–174462, 2020.
[29] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-Up DC–
DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and
Applications,” IEEE Transactions on Power Electronics, vol. 32, no. 12, pp. 9143–9178, 2017.
[30] H. Torkaman and F. Karimi, “Influence of ambient and test conditions on insulation resistance/
polarization index in hv electrical machines - a survey,” IEEE Transactions on Dielectrics and
Electrical Insulation, vol. 22, no. 1, pp. 241–250, 2015.
[31] S. Mohapatro and S. Allamsetty, “NOX abatement from filtered diesel engine exhaust using batterypowered
high-voltage pulse power supply,” High Voltage, vol. 2, no. 2, pp. 69–77, 2017.
[32] S.-K. Changchien, T.-J. Liang, J.-F. Chen, and L.-S. Yang, “Novel High Step-Up DC–DC Converter
for Fuel Cell Energy Conversion System,” IEEE Transactions on Industrial Electronics, vol. 57, no. 6,
pp. 2007–2017, 2010.
[33] M. Abbasi and J. Lam, “A Modular SiC-Based Step-Up Converter With Soft-Switching-Assisted
Networks and Internally Coupled High-Voltage-Gain Modules for Wind Energy System With a
Medium-Voltage DC-Grid,” IEEE Journal of Emerging and Selected Topics in Power Electronics,
vol. 7, no. 2, pp. 798–810, 2019.
[34] Y. Du, J. Wang, G. Wang, and A. Q. Huang, “Modeling of the High-Frequency Rectifier With 10-kV
SiC JBS Diodes in High-Voltage Series Resonant Type DC–DC Converters,” IEEE Transactions on
Power Electronics, vol. 29, no. 8, pp. 4288–4300, 2014.
120
[35] X. Liu, X. Zhang, X. Hu, H. Chen, L. Chen, and Y. Zhang, “Interleaved high step-up converter with
coupled inductor and voltage multiplier for renewable energy system,” CPSS Transactions on Power
Electronics and Applications, vol. 4, no. 4, pp. 299–309, 2019.
[36] M. Abbasi, R. Emamalipour, M. A. M. Cheema, and J. Lam, “A Constant-Frequency High-Voltage
Gain Resonant Converter Module With Semiactive Phase-Shifted Voltage Multiplier for MVdc
Distribution,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 4,
pp. 3603–3616, 2022.
[37] P. Mohseni, S. Mohammadsalehian, M. R. Islam, K. M. Muttaqi, D. Sutanto, and P. Alavi, “Ultrahigh
Voltage Gain DC–DC Boost Converter With ZVS Switching Realization and Coupled Inductor
Extendable Voltage Multiplier Cell Techniques,” IEEE Transactions on Industrial Electronics, vol. 69,
no. 1, pp. 323–335, 2022.
[38] S. Mao, J. Popović, and J. A. Ferreira, “Diode Reverse Recovery Process and Reduction of a Half-
Wave Series Cockcroft–Walton Voltage Multiplier for High-Frequency High-Voltage Generator
Applications,” IEEE Transactions on Power Electronics, vol. 34, no. 2, pp. 1492–1499, 2019.
[39] N. Ahmed, H. W. Lee, and M. Nakaoka, “A novel prototype of soft-switching inverter-fed DCDC
converter with step-up high-frequency planer transformer secondary-side phase-shifted PWM
rectifier,” in The 3rd IET International Conference on Power Electronics, Machines and Drives, 2006.
PEMD 2006, pp. 236–241, 2006.
[40] D. M. Robert W. Erickson, Fundamentals of Power Electronics. Springer New York, NY, 2001.
[41] D. W. Hart, Power electronics / Daniel W. Hart. New York: McGraw-Hill, 2011.
[42] M. H. Rashid, Power Electronics: Devices, Circuits, and Applications, International Edition, 4th
edition. Pearson, 2013.
[43] N. Idir, Y. Weens, and J.-J. Franchaud, “Skin effect and dielectric loss models of power cables,” IEEE
Transactions on Dielectrics and Electrical Insulation, vol. 16, no. 1, pp. 147–154, 2009.
[44] H. Li, C. Liu, X. Zhang, Z. Guo, and T. Q. Zheng, “Stability Analysis for Two-Stage Cascaded DCDC
Converters System Based on Describing Function Method,” in 2018 IEEE Energy Conversion
Congress and Exposition (ECCE), pp. 4141–4147, 2018.
[45] R. KIGUCHI and Y. NISHIDA, “Boost DC-DC Converter Cascade System for High Boost-Rate
Application,” in 2018 International Conference on Smart Grid (icSmartGrid), pp. 283–286, 2018.
[46] J. Ahmad, I. Pervez, A. Sarwar, M. Tariq, M. Fahad, R. K. Chakrabortty, and M. J. Ryan, “Performance
Analysis and Hardware-in-the-Loop (HIL) Validation of Single Switch High Voltage Gain DC-DC
Converters for MPP Tracking in Solar PV System,” IEEE Access, vol. 9, pp. 48811–48830, 2021.
[47] J. Leyva-Ramos, R. Mota-Varona, M. G. Ortiz-Lopez, L. H. Diaz-Saldierna, and D. Langarica-
Cordoba, “Control Strategy of a Quadratic Boost Converter With Voltage Multiplier Cell for High-
121
Voltage Gain,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 4,
pp. 1761–1770, 2017.
[48] L. Schmitz, D. C. Martins, and R. F. Coelho, “Generalized High Step-Up DC-DC Boost-Based
Converter With Gain Cell,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64,
no. 2, pp. 480–493, 2017.
[49] Y. Wang, Y. Qiu, Q. Bian, Y. Guan, and D. Xu, “A Single Switch Quadratic Boost High Step Up DC–
DC Converter,” IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4387–4397, 2019.
[50] M. R. Amini and H. Farzanehfard, “Novel Family of PWM Soft-Single-Switched DC–DC Converters
With Coupled Inductors,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2108–2114,
2009.
[51] S. B. Santra, D. Chatterjee, Y. P. Siwakoti, and F. Blaabjerg, “Generalized Switch Current Stress
Reduction Technique for Coupled-Inductor-Based Single-Switch High Step-Up Boost Converter,”
IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 2, pp. 1863–1875,
2021.
[52] D. S. Wijeratne and G. Moschopoulos, “Quadratic Power Conversion for Power Electronics:
Principles and Circuits,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 2,
pp. 426–438, 2012.
[53] G. Li, X. Jin, X. Chen, and X. Mu, “A novel quadratic boost converter with low inductor currents,”
CPSS Transactions on Power Electronics and Applications, vol. 5, no. 1, pp. 1–10, 2020.
[54] M. Ashok Bhupathi Kumar and V. Krishnasamy, “Quadratic Boost Converter With Less Input Current
Ripple and Rear-End Capacitor Voltage Stress for Renewable Energy Applications,” IEEE Journal of
Emerging and Selected Topics in Power Electronics, vol. 10, no. 2, pp. 2265–2275, 2022.
[55] J. Ahmad, M. Zaid, A. Sarwar, M. Tariq, and Z. Sarwer, “A New Transformerless Quadratic Boost
Converter with High Voltage Gain,” Smart Science, vol. 8, pp. 163–183, July 2020. Publisher: Taylor
& Francis.
[56] S. Saravanan and N. R. Babu, “Design and Development of Single Switch High Step-Up DC–DC
Converter,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 2,
pp. 855–863, 2018.
[57] A. Farakhor, M. Abapour, and M. Sabahi, “Study on the derivation of the continuous input current
high-voltage gain DC/DC converters,” IET Power Electronics, vol. 11, no. 10, pp. 1652–1660, 2018.
[58] B. Wu, S. Li, Y. Liu, and K. Ma Smedley, “A New Hybrid Boosting Converter for Renewable Energy
Applications,” IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1203–1215, 2016.
[59] R. Gules, W. M. dos Santos, R. C. Annunziato, E. F. R. Romaneli, and C. Q. Andrea, “A modified
SEPIC converter with high static gain for renewable applications,” in XI Brazilian Power Electronics
Conference, pp. 162–167, 2011.
122
[60] M. Maalandish, S. H. Hosseini, S. Ghasemzadeh, E. Babaei, R. Shalchi Alishah, and T. Jalilzadeh,
“Six-phase interleaved boost dc/dc converter with high-voltage gain and reduced voltage stress,” IET
Power Electronics, vol. 10, no. 14, pp. 1904–1914.
[61] N. Gupta, M. S. Bhaskar, D. Almakhles, P. Sanjeevikumar, U. Subramaniam, Z. Leonowicz, and
M. Mitolo, “Novel Non-Isolated Quad-Switched Inductor Double-Switch Converter for DC Microgrid
Application,” in 2020 IEEE International Conference on Environment and Electrical Engineering and
2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / ICPS Europe), pp. 1–6, 2020.
[62] M. R. Banaei and S. G. Sani, “Analysis and Implementation of a New SEPIC-Based Single-Switch
Buck–Boost DC–DC Converter With Continuous Input Current,” IEEE Transactions on Power
Electronics, vol. 33, no. 12, pp. 10317–10325, 2018.
[63] N. Zhang, G. Zhang, K. W. See, and B. Zhang, “A Single-Switch Quadratic Buck–Boost Converter
With Continuous Input Port Current and Continuous Output Port Current,” IEEE Transactions on
Power Electronics, vol. 33, no. 5, pp. 4157–4166, 2018.
[64] P. K. Maroti, S. Padmanaban, J. B. Holm-Nielsen, M. Sagar Bhaskar, M. Meraj, and A. Iqbal, “A New
Structure of High Voltage Gain SEPIC Converter for Renewable Energy Applications,” IEEE Access,
vol. 7, pp. 89857–89868, 2019.
[65] K. Varesi and M. Ghorbani, “A generalized common-ground single-switch continuous input-current
boost converter favourable for DC microgrids,” International Journal of Circuit Theory and
Applications, vol. 48, no. 10, pp. 1658–1675, 2020.
[66] Y. Tang, D. Fu, T. Wang, and Z. Xu, “Hybrid Switched-Inductor Converters for High Step-Up
Conversion,” IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1480–1490, 2015.
[67] C.-T. Pan, C.-F. Chuang, and C.-C. Chu, “A Novel Transformer-less Adaptable Voltage Quadrupler
DC Converter with Low Switch Voltage Stress,” IEEE Transactions on Power Electronics, vol. 29,
no. 9, pp. 4787–4796, 2014.
[68] Y. Tang, T. Wang, and Y. He, “A Switched-Capacitor-Based Active-Network Converter With High
Voltage Gain,” IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2959–2968, 2014.
[69] J. Fu, B. Zhang, D. Qiu, and W. Xiao, “A novel single-switch cascaded DC-DC converter of Boost and
Buck-boost converters,” in 2014 16th European Conference on Power Electronics and Applications,
pp. 1–9, 2014.
[70] S. Miao, F. Wang, and X. Ma, “A New Transformerless Buck–Boost Converter With Positive Output
Voltage,” IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 2965–2975, 2016.
[71] J. C. Rosas-Caro, V. M. Sanchez, J. E. Valdez-Resendiz, J. C. Mayo-Maldonado, F. Beltran-Carbajal,
and A. Valderrabano-Gonzalez, “Quadratic buck–boost converter with positive output voltage and
continuous input current for PEMFC systems,” International Journal of Hydrogen Energy, vol. 42,
no. 51, pp. 30400–30406, 2017.
123
[72] J. C. Rosas-Caro, J. E. Valdez-Resendiz, J. C. Mayo-Maldonado, A. Alejo-Reyes, and
A. Valderrabano-Gonzalez, “Quadratic buck–boost converter with positive output voltage and
minimum ripple point design,” IET Power Electronics, vol. 11, no. 7, pp. 1306–1313, 2018.
[73] S. Ding and F. Wang, “A New Negative Output Buck–Boost Converter with Wide Conversion Ratio,”
IEEE Transactions on Industrial Electronics, vol. 64, no. 12, pp. 9322–9333, 2017.
[74] J. Li and J. Liu, “A Negative-Output High Quadratic Conversion Ratio DC–DC Converter With Dual
Working Modes,” IEEE Transactions on Power Electronics, vol. 34, no. 6, pp. 5563–5578, 2019.
[75] M. R. Banaei and H. A. F. Bonab, “A Novel Structure for Single-Switch Nonisolated Transformerless
Buck–Boost DC–DC Converter,” IEEE Transactions on Industrial Electronics, vol. 64, no. 1,
pp. 198–205, 2017.
[76] M. R. Banaei and S. G. Sani, “Analysis and Implementation of a New SEPIC-Based Single-Switch
Buck–Boost DC–DC Converter With Continuous Input Current,” IEEE Transactions on Power
Electronics, vol. 33, no. 12, pp. 10317–10325, 2018.
[77] A. Sarikhani, B. Allahverdinejad, and M. Hamzeh, “A Nonisolated Buck–Boost DC–DC Converter
With Continuous Input Current for Photovoltaic Applications,” IEEE Journal of Emerging and
Selected Topics in Power Electronics, vol. 9, no. 1, pp. 804–811, 2021.
[78] J. Zhang, W. G. Hurley, and W. H. Wölfle, “Gapped Transformer Design Methodology and
Implementation for LLC Resonant Converters,” IEEE Transactions on Industry Applications, vol. 52,
no. 1, pp. 342–350, 2016.
[79] X.-F. Cheng, C. Liu, D. Wang, and Y. Zhang, “State-of-the-Art Review on Soft-Switching
Technologies for Non-Isolated DC-DC Converters,” IEEE Access, vol. 9, pp. 119235–119249, 2021.
[80] A. Gupta, R. Ayyanar, and S. Chakraborty, “Soft-Switching Mechanism for a High-Gain, Interleaved
Hybrid Boost Converter,” IEEE Journal of Emerging and Selected Topics in Industrial Electronics,
vol. 2, no. 4, pp. 420–430, 2021.
[81] A. Yu, X. Zeng, D. Xiong, M. Tian, and J. Li, “An Improved Autonomous Current-Fed Push-Pull
Parallel-Resonant Inverter for Inductive Power Transfer System,” Energies, vol. 11, no. 10, 2018.
[82] C.-M. Lai and Y.-H. Liao, “Modeling, Analysis, and Design of an Interleaved Four-Phase Current-
Fed Converter With New Voltage Multiplier Topology,” IEEE Transactions on Industry Applications,
vol. 49, no. 1, pp. 208–222, 2013.

QR CODE