簡易檢索 / 詳目顯示

研究生: 黃清龍
Ching-long Huang
論文名稱: 特定諧波消除用於以曲折繞接線變壓器為基礎之多階層變流器
Selective Harmonic Elimination for a Multi-level Inverter Based on Zig-Zag Connected Transformer
指導教授: 楊宗銘
Chung-Ming Young
口試委員: 賴炎生
Yen-Shin Lai
羅有綱
Yu-Kang Lo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 112
中文關鍵詞: 選擇諧波消除脈波寬度調變曲折繞接式變壓器總諧波失真加權總諧波失真
外文關鍵詞: SHEPWM, zig-zag connected transformer, THD, WTHD
相關次數: 點閱:278下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用選擇諧波消除脈波寬度調變技術 (SHEPWM) 計算一變流器系統之開關切換角度,並結合一曲折繞接式 (zig-zag) 變壓器於變流器之輸出端。本文之選擇諧波消除波形規劃為半波對稱波形。不同於四分之一對稱波形,半波對稱波形在計算上負擔雖更為沉重,卻能提供較多的解並有機會獲得更佳的解。歸因於選擇諧波消除技術可直接的控制特定諧波成份,因此適用於對特定諧波成份具有抑制能力的設備,如曲折繞接式變壓器。本文中以第35次與第37次諧波振幅大小、總諧波失真 (THD) 與加權總諧波失真 (WTHD) 三種標準分別選擇適當的基本波位移角度。基於曲折繞接式變壓器之特性, 次以外之諧波成份並不會呈現至變壓器之二次側,因此選擇諧波消除技術規劃為消除第11次、第13次、第23次與第25次諧波並控制基本波之振幅與相位。最後,根據上述之規範,本文建立一小型系統驗證其可行性與正確性。

    關鍵詞: 選擇諧波消除脈波寬度調變、曲折繞接式變壓器、總諧波失真、加權總諧波失真。


    This thesis applies the selective harmonic elimination pulse width modulation (SHEPWM) technique to determine the switching angles for an inverter system that is cooperated with special connected transformer called zig-zag connected transformer. The half-wave symmetry of SHEPWM is used to shift the phase of the fundamental in this thesis. Unlike quarter-wave symmetry, half-wave symmetry needs more calculation burdens than quarter-wave symmetry, but it provides wider solution space and better solutions. Attributed to directly controlling harmonics, SHEPWM technique has the adaptability to associate with apparatus which is congenitally immune to specific harmonics, such as the zig-zag connected transformer. In this thesis, three criteria are used to choose the suitable phase of fundamental, which are the amplitude of harmonics with order equal to 35 and 37, total harmonic distortion (THD) and weighted total harmonic distortion (WTHD). Prohibited by the transformer, harmonics with orders other than ( ) will not appear in the line-to-line voltage of the secondary side. Then, SHEPWM technique with half-wave symmetry is employed to eliminate harmonics with order equal to 11, 13, 23, and 25, and controls the amplitude and the phase of the fundamental. Finally, based on specification described above, a 4kVA prototype is built to verify the practical validity of the propose system.

    Keywords: SHEPWM, zig-zag connected transformer, THD, WTHD.

    摘要 I Abstract II Acknowledgements III Table of Contents IV List of Figures VI List of Tables X Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Objective of the thesis 3 1.3 Organization of the thesis 5 Chapter 2 Zig-zag connected transformer and three-phase inverter 6 2.1 Introduction 6 2.2 Analysis of the zig-zag connected transformer 7 2.3 The three-phase inverter 13 Chapter 3 Selective harmonic elimination strategies 16 3.1 Introduction 16 3.2 Fourier series expansion 16 3.2.1 The limitation of selective harmonic elimination with quarter-wave symmetry 19 3.2.2 The limitation of selective harmonic elimination with half-wave symmetry 22 3.3 Numerical analysis 28 3.3.1 Newton-Raphson Method 28 3.3.2 Newton-Raphson Method for selective harmonic elimination solved by using Matlab 30 3.4 Selection of fundamental phase shift angle 39 3.4.1 Minimizing 35-th、37-th harmonics with fundamental phase shift angle 39 3.4.2 Minimizing THD% with fundamental phase shift angle 42 3.4.3 Minimizing weighted THD% with fundamental phase shift angle 44 3.4.4 The suitability fundamental phase shift angle 47 3.5 On-line calculation through approximated polynomials 52 3.5.1 The least-squares method 52 3.5.2 Analysis of the approximation with single high order polynomials 55 3.5.3 Approximation with piecewise 2-order polynomials 62 Chapter 4 Hardware configuration and software programming 65 4.1 Introduction 65 4.2 Hardware configuration 66 4.2.1 Digital signal processor (DSP) 66 4.2.2 The related devices and peripheral circuits of the system 67 4.3 Software programming 70 4.3.1 The I/O port pins and interrupts 70 4.3.2 Voltage compensation processing 72 4.3.3 Program designing with flow charts 72 Chapter 5 Simulation and experimental results 79 5.1 Introduction 79 5.2 Development and realization of the simulation system 79 5.3 The simulation results and experimental results of the system 84 Chapter 6 Conclusion 97 Appendix A The coefficients of piecewise 2-order approximated polynomials 99 References 108

    [1] N. Mohan, T. M. Undeland, and W. P. Robbins, “Power Electronics: Converters, Applications, and Design,” New York: Wiley, 3rd ed., 1995.
    [2] W. Zhang, and W. Chen, ‘‘Research on Voltage-Source PWM Inverter Based on State Analysis Method,” International Conference on Mechatronics and Automation, pp. 2183-2187, 2009.
    [3] W. Zhang, Y. Wang, W. Tong, H. Xu, and L. Yang, ‘‘Study of Voltage-Source PWM Inverter Based on State Combination Method,” IEEE/PES transmission and distribution conference and exhibition, pp. 1-4, 2005.
    [4] Feel-soon Kang, Sung-Jun Park, Cheul-U Kim, and Su Eog Cho, ‘‘Half-Bridge and Full-Bridge Cell Based Multilevel PWM Inverter with Cascaded Transformers,” Midwest Symposium on Circuits and Systems, vol. 2, pp. II-273-II-276, 2004.
    [5] Po-Tai Cheng, S. Bhattacharya, and D. M. Divan, ‘‘Control of Square-Wave Inverters in High-Power Hybrid Active Filter Systems,” IEEE Transactions on Industry Application, vol. 34, no. 3, pp. 458-472, 1998.
    [6] G. Poddar, and M. K. Sahu, ‘‘Natural Harmonic Elimination of Square-Wave Inverter for Medium-Voltage Application,” IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1182-1188, 2009.
    [7] J. Garcia-Garcia, J. Cardesin, J. Ribas, A. J. Calleja, E. L. Corominas, M. Rico-Secades, and J.M. Alonso, ‘‘New Control Strategy in a Square-wave Inverter for Low Wattage Metal Halide Lamp Supply to Avoid Acoustic Resonances,” IEEE Transactions on Power Electronics, vol. 21, no. 1, pp. 243-253, 2006.
    [8] J. Perez, V. Cardenas, F. Pazos, and S. Ramirez, ‘‘Voltage Harmonic Cancellation in Single-Phase Systems Using a Series Active Filter with a Low-Order Controller,” Power Electronics Congress, pp. 270-274, 2002.
    [9] A. Rao, T. A. Lipo, and A. L. Julian, ‘‘A Modified Single Phase Inverter Topology with Active Common Mode Voltage Cancellation,” Power Electronics Specialists Conference, vol. 2, pp. 850-854, 1999.
    [10] J. R. Espinoza, J. I. Guzmán, L. A. Morán, and R. P. Burgos, ‘‘Selective Harmonic Elimination and Current/Voltage Control in Current/Voltage-Source Topologies: A Unified Approach,’’ IEEE Transactions on Industrial Electronics, vol. 48, pp. 71-81, 2001.
    [11] L. Xu, and V. G. Agelidis, ‘‘A VSC Transmission System Using Flying Capacitor Multilevel Converters and Selective Harmonic Elimination PWM Control,’’ International Conference on Power Engineering, vol. 2, pp. 1176-1181, 2005.
    [12] S. A. Dahidah, and V. G. Agelidis, ‘‘Selective Harmonic Elimination PWM Control for Cascaded Multilevel Voltage Source Converters: A Generalized Formula,’’ IEEE Transactions on Power Electronics, vol. 23, pp. 1620-1630, 2008.
    [13] Q. Liang, Z. Hui, L. Kaipei, and Q. Liu, ‘‘An Improved Modulation of the Selective Harmonic Elimination Controlling,’’ International Conference on Power System Technology, pp. 1–5, 2006.
    [14] Q. Liang, Z. Hui, L. Kaipei, and Q. Liu, ‘‘An Improved Modulation of the Selective Harmonic Elimination Controlling,” International Conference on Power System Technology, pp. 1-5, 2006.
    [15] A. I. Maswood, ‘‘PWM SHE Switching Algorithm for Voltage Source Inverter,” International Conference on Power Electronics, Drives and Energy System, pp. 1-4, 2006.
    [16] N. V. Nho, and M. J. Youn, ‘‘A Simple On-line SHE PWM With Extension to Six Step Mode in Two-Level Inverters,” International Conference on Power Electronics, Drives and Energy System, vol. 2, pp. 1417-1424, 2005.
    [17] J. Sun, S. Beineke, and H. Grotstollen, ‘‘Optimal PWM Based on Real-Time Solution of Harmonic Elimination Equations,’’ IEEE Transactions on Power Electronics, vol. 11, pp. 612-62, 1996.
    [18] N. A. Azli, and A. H. Yatim, ‘‘Curve Fitting Technique for Optimal Pulse Width Modulation (PWM) Online Control of a Voltage Source Inverter (VSI),’’ TENCON, vol. 1, pp. 419-422, 2000.
    [19] J. R. Wells, B. M. Nee, P. L. Chapman, and P. T. Krein, ‘‘Selective Harmonic Control: A General Problem Formulation and Selected Solutions,’’ IEEE Transactions on Power Electronics, vol. 20, pp. 1337-1345, 2005.
    [20] H. Huang, H. Shiyan, and D. Czarkowski, “Harmonic Elimination for Constrained Optimal PWM,” IEEE on Industrial Electronics Society Conference record, vol. 3, pp. 2702-2705, 2004.
    [21] J. R. Espinoza, G. Joos, J. I. Guzman, A. L. Moran, and R. P. Burgos, “Selective Harmonic Elimination and Current/Voltage Control in Current/Voltage-source Topologies: A Unified Approach,” IEEE Transactions on Industrial Electronics, vol. 48, no. 1, pp. 71-81, 2001.
    [22] J. N. Chiasson, L. M. Tolbert, J. K. Mckenzie, and D. Zhong, “A Unified Approach to Solving the Harmonic Elimination Equations in Multilevel Converters,” IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 478-490, 2004.
    [23] A. Bhadkamkar, A. Bendre, R. Schneider, W. Kranz, and D. Divan, ‘‘Application of Zig-Zag Transformers in a Three-Wire Three-Phase Dynamic Sag Corrector System,’’ Specialist Conference on Power Electronics, vol. 3, pp. 1260-1265, 2003.
    [24] H. L. Jou, J. C. Wu, K. D. Wu, W. J. Chiang, and Y. H. Chen, ‘‘Analysis of Zig-Zag Transformer Applying in the Three-phase Four-Wire Distribution Power System,’’ IEEE Transactions on Power Delivery, vol. 20, pp.1168-1173, 2005.
    [25] 張棟樑, “以變壓器曲折繞法及特定諧波消除為基礎之三相變流器諧波消除,” 國立台灣科技大學電機工程系碩士學位論文, 民國九十三年
    [26] 巫昇峰,“基於曲折繞接線變壓器利用特定諧波消除之三階層反流器研製,” 國立台灣科技大學電機工程系碩士學位論文, 民國九十六年
    [27] 劉彥中,“基於曲折繞接線變壓器利用特定諧波消除之多階層反流器研製,” 國立台灣科技大學電機工程系碩士學位論文, 民國九十八年
    [28] C. R. Penney, ‘‘Linear Algebra: Ideas and Applications,’’ Hoboken, N. J. : Wiley-Interscience, c2004.
    [29] L. Li, K. Smedley, and T. Jin, ‘‘New Three-phase Inverter for UPS Application,” IEEE Industry Applications Conference, vol. 4, pp. 1679-1685, 2006.
    [30] S. Nonaka, ‘‘A Novel Three-Phase Sinusoidal PWM Voltage Source Inverter and its Application for Photovoltaic Power Generation System,” Nagaoka Proceedings of the Power Conversion Conference, vol. 2, pp. 755-758, 1997.
    [31] E. Ozdemir, S. Ozdemir, L. M. Tolbert, and B. Ozpineci, ‘‘Fundamental Frequency Modulated Multilevel Inverter for Three-Phase Stand-Alone Photovoltaic Application,” IEEE Applied Power Electronics Conference and Exposition, pp. 148-153, 2008.
    [32] R. Guedouani, B. Fiala, E. M. Berkouk, and M. S. Boucherit, ‘‘Control of Capacitor Voltage of Three Phase Five-Level NPC Voltage Source Inverter. Application to Inductor Motor Drive,” International Aegean Conference on Electrical Machines and Power Electronics, pp. 794-799, 2007.
    [33] A. Griffo, and D. Lauria, ‘‘Two-Leg Three-Phase Inverter Control for STATCOM and SSSC Applications,” IEEE Transactions on Power Delivery, vol. 23, no. 1, pp. 364-370, 2008.
    [34] Byeong-Mun Song, Seong-Ryong Lee, and Jih-Sheng Lai, ‘‘An Improved Three-Phase Auxiliary Resonant Snubber Inverter for AC Motor Drive Applications,” IEEE Power Electronics Specialists Conference, vol. 1, pp. 423-428, 1998.
    [35] Z. Qing, L. Zhihui, and C. Jian, ‘‘A Novel 3-Phase SPWM Technique: Instantaneously Floating the Neutral Point,” Proceedings of International Conference on Power Electronics and Drives System, vol. 2, pp. 781-786, 1997.
    [36] A. K. Gupta, and A. M. Khambadkone, ‘‘A General Space Vector PWM Algorithm for Multilevel Inverters, Including Operation in Overmodulation Range,” IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 517-526, 2007.
    [37] S. Kaboli, J. Mahdavi, and A. Agah, ‘‘Application of Random PWM Technique for Reducing the Conducted Electromagnetic Emissions in Active Filters,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 2333-2343, 2007.
    [38] Bor-Jehng Kang, and Chang-Ming Liaw, ‘‘A Robust Hysteresis Current-Controlled PWM Inverter for Linear PMSM Driven Magnetic Suspended Positioning System,” IEEE Transactions on Industrial Electronics, vol. 48, no. 5, pp. 956-967, 2001.
    [39] M. Siripruchyanun, P. Wardkein, and S. Kurutuch, ‘‘An Integrable CMOS Transconductors-Based Differentiated Input/Frequency-Constant PWM Signal Generator,” International Symposium on Signal, Circuits and Systems, vol. 2, pp. 485-488, 2003.
    [40] A. Thomas LIPO, ‘‘An Improved Weighted Total Harmonic Distortion Index for Induction Motor Drives,” University of Wisconsin, pp. 1-12.
    [41] A. Radan, A. H. Shahirinia, and M. Falahi, ‘‘Evaluation of Carrier-Based PWM Methods for Multi-Level Inverters,” IEEE International Symposium on Industrial Electronics, pp. 289-294, 2007.
    [42] I. Quesada, A. Lazaro, C. Martinez, C. Lucena, A. Barrado, R. Vazquez, I. Gonzalez, and N. Herreros, ‘‘Improved Modulator for THD Reduction in Onboard Generation of Three Phase AC Voltage,” Compatibility and Power Electronics, pp. 450-456, 2009.
    [43] Hadi Saadat, ‘‘Power System Analysis,” McGraw-Hill, 2nd ed., 2004.
    [44] V. Laurene, ‘‘Applied Numerical Analysis Using MATLAB,” Upper Saddle River, NJ: Pearson Education International, 2008.
    [45] W. Zhang, and Y. Sun, ‘‘Optimization of Output Voltage Waveform of Selective Harmonic Elimination Inverter,” International Conference on Power System Technology, pp. 1-4, 2006.
    [46] A. I. Maswood, S. Wei, M. A. Rahman, ‘‘A Flexible Way to Generate PWM-SHE Switching Patterns Using Genetic Algorithm,” IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 1130-1134, 2001.
    [47] J. N. Chiasson, L. M. Tolbert, K. J. McKenzie, and Z. Du, ‘‘Control of a Multilevel Converters Using Resultant Theory,” IEEE Transactions on Control Systems Technology, vol. 11, no. 3, pp. 345-354, 2003.
    [48] Tsorng-Juu Liang, R. M. O'Connell, and R. G. Hoft, ‘‘Inverter Harmonic Reduction Using Walsh-Function Harmonic Elimination Method,” IEEE Transactions on Power Electronics, vol. 12, no. 6, pp. 971-982, 1997.
    [49] R. A. Jabr, ‘‘Solution Trajectories of the Harmonic Elimination Problem,” IEE Proceedings Electronics Power Applications, vol. 153, no. 1, pp. 97-10, 2006.
    [50] W. Gao ‘‘New Continuous Ant Colony Algorithm,” World Congress on International Control and Automation, pp. 1280-1284, 2008.
    [51] H. Huang, S. Hu, and D. Czarkowski, ‘‘Solving the I11-Conditioned Polynomial for the Optimal PWM,” International Conference on Harmonics and Quality of Power, pp. 555-558, 2004.

    QR CODE