研究生: |
江翊先 Yi-Hsien Chiang |
---|---|
論文名稱: |
高功率具主動均流之 數位控制雙向DC-DC轉換系統研製 A Digital Controlled High-power Bi-directional DC-DC Conversion System with Active Current Sharing |
指導教授: |
邱煌仁
Huang-Jen Chiu 林景源 Jing-Yuan Lin |
口試委員: |
謝耀慶
Hsieh, Yao-Ching 黃仁宏 Peter J. Huang |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 電子工程系 Department of Electronic and Computer Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 雙向 、直流微電網 、碳化矽模組 、控制器區域網路 、主動式均流控制 |
外文關鍵詞: | Bi-directional, DC micro-grid,, SiC module, CAN, Active output current -sharing |
相關次數: | 點閱:382 下載:26 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在研製「高功率具主動均流之數位控制雙向DC-DC轉換系統」,囊括硬體、軟體、週邊保護機制與參數設計等完整系統規劃,功率開關元件皆採用CREE所製造之碳化矽模組(SiC module),相較於IGBT能大幅提升效率。硬體方面,功率電路三相串聯諧振式隔離型轉換器與交錯式降/升壓雙向轉換器串聯而成,功率開關元件採用CREE所製造之碳化矽半橋模組,實現提升功率密度、效率以及模組化之目標;韌體方面,以TI®生產之TMS320F28035數位信號處理器(DSP)作為數位控制器,並以CAN通訊協定達成主動式均流控制,實現各模組間輸出電流平衡;參數設計方面,探討電路之頻率響應、Z-轉換之雙線性轉換法及預畸變誤差修正等原理,並且設計對應本系統之數位控制器,再輔以週邊保護機制及系統機構等設計,最終實現連接於電網端750 V、電池端400 V之間,具備充/放電模式,功率達20 kW之雙向DC-DC轉換系統。經模擬與實驗結果驗證,當系統操作於充電模式、輸出功率為20 kW時,最高效率可達95%。本系統可廣泛應用於直流微電網及高速車用充電器等雙向充放電應用。
The aim of this thesis is to study and implement an isolated digital-controlled high-power bi-directional DC-DC conversion system, including hardware implementation, firmware design, circuit protection design and digital controller parameter design. The system is connected between DC micro-grid and Li-ion battery, and composed of several isolated bi-directional converter modules connecting in parallel. Hardware wise, the converter modules consist of isolated three-phase series resonant converters and interleaved buck/boost converter, due to specific control strategies, the output ripple can be significantly reduced. The CREE® SiC half-bridge module are introduced as power switches, which can significantly increase the efficiency and decrease the difficulty of system modularization. Firmware wise, TI® TMS320F28035 digital signal processor is introduced as a digital controller. Control Area Network (CAN) is introduced to implement an active output current -sharing technique. Parameter design wise, frequency-response analysis of the power converter, Z-transform and prewarping technique are studied. From the simulation and the experiment result, an 20 kW DC-DC conversion system with two modules are implemented, connected between Grid side 750 V and Battery side 400 V. When the load comes to 20 kW, the efficiency of the system can reach 95%, and the output current are balanced.
[1] 陳建伯,碳化矽模組應用於微電網型雙向直流隔離是轉換器之研究,國立臺灣科大學電子工程系碩士論文,民國105年。
[2] 孫清華(2003),最新可充電電池技術大全(第二版),台北市:全華科技圖書股份有限公司。
[3] F. Nejabatkhah and Y. W. Li, “Overview Of Power Management Strategies of Hybrid AC/DC Microgrid”, IEEE Transactions on Power Electronics, Vol. 30, No. 12, December 2015.
[4] 中興電工,http://www.chem.com.tw/products/微電網簡介/。
[5] 台灣智慧型電網展業協會,http://www.smart-grid.org.tw/。
[6] CREE, “CAS300M12BM2 All-Silicon Carbide Half-Bridge Module”, Datasheet, 2014
[7] CREE, “CAS120M12BM2 All-Silicon Carbide Half-Bridge Module”, Datasheet, 2014
[8] 林文韜,高功率隔離型雙向直流-直流轉換器研製,國立臺灣科大學電子工程系碩士論文,民國105年。
[9] 朱致緯,具均流控制之高功率隔離雙向直流-直流系統研製,國立臺灣科大學電子工程系碩士論文,民國107年。
[10] Yusuke Nakakohara and Hirotaka Otake “Three-Phase LLC Series Resonant DC/DC Converter Using SiC MOSFETs to Realize High-Voltage and High-Frequency Operation”, IEEE Transactions on Industrial Electronics, Vol. 63, No. 4, April 2016.
[11] Ho-Sung Kim and Ju-Won Baek “The High-Efficiency Isolated AC-DC Converter Using the Three-phase Interleaved LLC Resonant Converter Employing the Y-Connected Rectifier”, IEEE Transactions on Power Elevtronics, Vol. 29, No. 8, August 2014.
[12] M. Sami Fadali and Antonio Visioli(2013), “Digital Control Engineering Analysis and
84
Design (2/e)”, United States of America: Academic Press.
[13] 姜學軍(2005),計算機控制技術(第二版),清華大學出版社。
[14] Norman S. Nise(2001), “Control Systems Enginerring (6/e)”, United States of America: John Wiley & Sons, Inc.
[15] 吳義利,切換式電源轉換器,第二版,文笙書局,民國94年。
[16] Robert W. Erickson and Dragon Maksimovic (2001), “Fundamentals of Power Electronics (2/e)”, New York: Kluwer Academic/Plenum Publishers.
[17] H. Dean Venable, “The K Factor: A New Mathematical Tool for Stability Analysis and Synthesis”, Reference Reading, Linear Technology, 1983.
[18] 李其陵,應用於微電網之數位控制雙向直流-直流轉換器,國立臺灣科大學電子工程系碩士論文,民國105年。
[19] 蔡富斌,具同步整流之數位控制半橋串聯諧振轉換器之研製,國立臺灣科大學電子工程系碩士論文,民國101年。
[20] Texas Instruments Inc., “TMS320x2803x Piccolo™ Microcontrollers”, Datasheet, June 2016.
[21] Texas Instruments Inc., “TMS320x2802x, 2803x Piccolo Control Law Accelerator (CLA)”, Reference Guide, March 2010.
[22] Texas Instruments Wiki, “Control Law Accelerator (C2000 CLA) FAQ”, http://processors.wiki.ti.com/index.php/Control_Law_Accelerator_(C2000_CLA)_FAQ/.
[23] Zeroplus,CAN BUS 在車用儀表板應用之量測,技術文件,民國98年。
[24] National Instruments,Controller Area Network (CAN BUS) 通訊協定原理概述,技術文件,民國106年。
[25] Texas Instruments Inc., “TMS320x2802x, 2803x Piccolo Enhanced Controller Area
85
Network (eCAN)”, Reference Guide, March 2011.
[26] Texas Instruments Inc., “TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and Comparator”, Reference Guide, December 2011.
[27] Texas Instruments Inc., “TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator (ePWM)”, Reference Guide, March 2011.
[28] Texas Instruments Inc., “Configuring Source of Multiple ePWM Trip-Zone Events”, Application Report, October 2007.
[29] State Machine Diagrams, https://www.uml-diagrams.org/state-machine-diagrams.html
[30] Waterfall Model, https://en.wikipedia.org/wiki/Waterfall_model
[31] Texas Instruments Inc., “TMS320x2802x, 2803x Piccolo System Control and Interrupts”, Reference Guide, March 2013.