簡易檢索 / 詳目顯示

研究生: 楊雅筑
Ya-Zhu Yang
論文名稱: 利用生物工程建構智慧型大腸桿菌用於降解苯酚
Using Bioengineering To Construct Smart Escherichia Coli For Phenol Degradation
指導教授: 蔡伸隆
Shen-Long Tsai
口試委員: 李振綱
Cheng-Kang Lee
朱一民
I-Ming Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 80
中文關鍵詞: 生物復育技術酚降解
外文關鍵詞: bioremediation, phenol degradation
相關次數: 點閱:167下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著石化工業的發展,有機化合物被廣泛應用製造各種物品,如製造塑膠、樹酯、殺蟲劑等。然而這些有機物可能會因為處理不當或因惡意棄置而洩漏到環境中,汙染空氣、水源以及土壤,造成生態環境的破壞,甚至影響人類。在這些有機物中,酚是目前最常被使用的化合物,其結構簡單可以用來合成其他化合物,因此被廣泛的使用於工業界。但是酚是一種有毒物質,可能會致癌或是造成基因突變,過去人們嘗試以物理及化學方法去除環境中的酚,但是這些方法無法有效處理,甚至造成二次汙染。
生物復育由於具有低成本、低耗能以及可現地整治等綠色特性,所以在整治經費有限而新的污染場址卻不斷增加的情況下,勢必將成為一種越來越有具有市場競爭性的整治技術;而生物復育成功與否以及其效能如何,其實最終的關鍵都在於所使用的菌株,因此,新菌株的開發對於生物復育技術是非常重要的。本研究之目的為利用近年來新興的合成生物學技術來建構一株智慧型的酚降解菌株,所欲建構之菌株除具有易培養與無毒性的特質外,透過更高階的基因設計,此菌株將還能夠偵測酚所在處,藉由濃度梯度自動移動至該處,進而把酚降解代謝。
實驗先建構偵測酚的生物感測器,該感測器隨著偵測時間及偵測濃度的增加,會增強其綠螢光蛋白訊號。接著,加入移動基因che-Z於生物感測器,把酚作為菌株移動的誘導物,因此,重組菌株能夠依照酚的濃度誘導其鞭毛轉動,使菌株能夠由低濃度往高濃度移動。隨後,加入降解基因,使重組菌株能夠在偵測及移動的同時分泌降解酵素。實驗證實該重組菌株可於24小時內降解1mM酚。
該降解酚之智慧型大腸桿菌,可以用於處理區域型的污染場址,並可作為其他生物復育技術的模型,廣泛應用於其他汙染物的處理。


With the development of petrochemical industry, organic compounds are widely used in many cases, like plastic industry, pesticide, and so on. However, these chemical may be released into the air, water and soil affecting ecosystems and human beings alike. Among the organic compounds, Phenol is one of the most widely used in existence and is a basic structural unit for many industries including agricultural chemicals and pesticides. Phenol also can form other stable substituents in water which called phenolic compounds. But phenol is toxic, carcinogenic, and mutagenic in low concentration, it and its organic compounds are seen as the most important environmental pollutants. In the past, human used many ways to remove the phenolic compounds in the environment, like adsorption, extraction and oxidation. However, these methods cannot remove phenolic compounds effectively and may cause other problems.
Bioremediation is efficient way to remove pollutants. It is low cost and eco-friendly. For bioremediation, it is significant for bioremediation to develop a new bacterial strain. So, we want to use synthetic biology to construct a smart bacteria which can degrade phenol. It can sense the phenol in the environment and then trace it. Finally it can degrade phenol.
First, we constructed a phenol biosensor. Its reporter will be increased by phenol concentration or induction time. Then, we add che-Z gene in biosensor. Therefore, phenol can active transcription of the che-Z gene. The biosensor with motility can move from low concentration to high concentration. Finally, we constructed the smart E. coli which can degrade phenol. The bacteria can totally degrade 1mM phenol in 24 hr.
So, the smart E. coli for phenol degradation can totally remove pollutants around factory. It also can be a model for bioremediation.

摘要 i Abstract ii 目錄 iii 表目錄 v 圖目錄 vi 縮寫表 viii 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 2 1.3研究內容 3 第二章 文獻回顧 5 2.1轉錄調控基因與生物感測器 5 2.2微生物的基質趨向性 8 2.3酚的生物降解系統 10 第三章 實驗材料與方法 15 3.1 菌種與質體 15 3.2 實驗藥品 17 3.3 實驗器材 19 3.4 實驗方法 20 3.4.1質體 DNA 純化法 Mini-prep(小量質體製備) 21 3.4.2聚合酶鏈反應 (Polymerase chain reaction, PCR) 23 3.4.3 DNA 瓊脂凝膠電泳(DNA Agarose gel electrophoresis) 26 3.4.4 DNA 瓊脂凝膠回收(DNA recovery) 27 3.4.5酶切(Digestion) 28 3.4.6核酸接合作用 (DNA ligation) 29 3.4.7勝任細胞(Compontent cell)製備 30 3.4.8轉殖作用 (transformation) 31 3.4.9綠螢光蛋白之活性測試 32 3.4.10生物感測器之靈敏度測試 33 3.4.11生物感測器趨向性測試 34 3.4.12 顯微鏡觀察移動行為 36 3.4.13 酚降解酵素phk的活性測試 36 3.4.14 HPLC分析 38 3-4-10 SDS-PAGE 39 第四章 結果與討論 41 4.1 生物感測器之建構 41 4.2生物感測器誘導測試 44 4.3建構具有趨向性之生物感測器 48 4.4趨向性之生物感測器功能測試 50 4.5重組質體建構所要考量的因素 56 4.6建構全功能之智慧型酚降解基因轉殖菌 57 4.7智慧型酚降解基因轉殖菌蛋白活性測試 60 4.8智慧型酚降解基因轉殖菌綠螢光蛋白活性 63 第五章 結論 65 參考文獻 66

1. Susmita, D.D.a.M., Study Of Individual And SimulTaneous Degradation Of Chromium(VI) And Phenol Using Two Potent Indigenous Micororganisms. Journal of Environmental Research And Development, 2015. 9.
2. Li, N., et al., A reusable immobilization matrix for the biodegradation of phenol at 5000 mg/L. Sci Rep, 2015. 5: p. 8628.
3. Kulkarni, S.J., Biological Wastewater Treatment for Phenol Removal: A Review. In ternational Journal of Research, 2015. 02(02).
4. Huff, J., Long-term toxicology and carcinogenicity of 2,4,6-trichlorophenol. Chemosphere, 2012: p. 521-525.
5. Hu, Z.S.X.W.H.Z.X., Dechlorination of pentachlorophenol (PCP) in aqueous solution on novel Pd-loaded electrode modified with PPy–SDBS composite film. Environ Sci Pollut Res, 2015. 22: p. 3828–3837.
6. Yu, T., et al., A highly sensitive sensing system based on photoluminescent quantum dots for highly toxic organophosphorus compounds. Rsc Advances, 2014. 4(16): p. 8321-8327.
7. 行政院環境保護署環署, 飲用水水質標準.
8. Busca, G., et al., Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater, 2008. 160(2-3): p. 265-88.
9. S. Rengaraj , S.-H.M., R. Sivabalan ,B. Arabindoo , V. Murugesan, Agricultural solid waste for the removal of organics: adsorption of phenol from water and wastewater by palm seed coat activated carbon. Waste Management, 2002. 22: p. 543-548.
10. Chufen Yang, Y.Q., Lijuan Zhang, Jianzhong Feng, Solvent extraction process development and on-site trial-plant for phenol removal from industrial coal-gasification wastewater. Chemical Engineering Journal, 2006. 117: p. 179-185.
11. Zequan Zeng , H.Z., Xin Li , Moses Arowo , Baochang Sun , Jianfeng Chen , Guangwen Chu ,Lei Shao, Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed. Chemical Engineering Journal, 2013. 229: p. 404-411.
12. Orenes-Pinero, E., F. Garcia-Carmona, and A. Sanchez-Ferrer, A new process for obtaining hydroxytyrosol using transformed Escherichia coli whole cells with phenol hydroxylase gene from Geobacillus thermoglucosidasius. Food Chem, 2013. 139(1-4): p. 377-83.
13. Jiangya Zhou, X.Y., Cong Ding, Zhiping Wang∗ , Qianqian Zhou, Hao Pao, Weimin Cai, Optimization of phenol degradation by Candida tropicalis Z-04 using Plackett-Burman design and response surface methodology. journal of environmental sciences, 2011. 23: p. 22-30.
14. Kotresha, D.a.V., G. M., Degradation of phenol by novel strain Pseudomonas aeruginosa MTCC 4997 isolated from petrochemical industrial effluent. International Journal of Microbial Resource Technology, 2012.
15. Adimulam Nagamani, R.S.a.M.L., Isolation and characterization of phenol degrading Xanthobacter flavus. African Journal of Biotechnology, 2009. 8: p. 5449-5453.
16. So-Jeong Kim, S.-J.P., Man-Young Jung , Jong-Geol Kim , Ui-Gi Min , Hee-Ji Hong & Sung-Keun Rhee, Draft genome sequence of an aromatic compound-degrading bacterium, Desulfobacula sp. TS, belonging to the Deltaproteobacteria. Federation of European Microbiological Societies, 2014. 360: p. 9-12.
17. Tsai S-L, S.S., Chen W, Arsenic Metabolism by Microbes in Nature and the Impact on Arsenic Remediation. Curr. Opin. Biotechnol, 2009: p. 179-185.
18. Long, F., A. Zhu, and H. Shi, Recent advances in optical biosensors for environmental monitoring and early warning. Sensors (Basel), 2013. 13(10): p. 13928-48.
19. Park, M., S.L. Tsai, and W. Chen, Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors (Basel), 2013. 13(5): p. 5777-95.
20. Furlong, F.S.E.E.M., Transcription factors: from enhancer binding to developmental control. Nature Reviews Genetics, 2012. 13: p. 613-626.
21. Brigitte Tomé, R.M.M.R., Guilherme N. M. Ferreira Biosensor platform for transcription factor DNA binding activity detection IEEE, 2012.
22. Xue, H., et al., Design, construction, and characterization of a set of biosensors for aromatic compounds. ACS Synth Biol, 2014. 3(12): p. 1011-4.
23. WENDER, M.A.S.A.P.E., Identification of the nahR Gene Product and Nucleotide Sequences Required for Its Activation of the sal Operon. JOURNAL OF BACTERIOLOGY, 1986. 166(01).
24. MARI´A-TRINIDAD GALLEGOS, R.S., AMOS BAIROCH, and A.J.L.R. KAY HOFMANN, AraC/XylS Family of Transcriptional Regulators. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1997.
25. Ramos, J.L., Marques, S., and Timmis, K. N., Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmidencoded regulators. Annu. Rev. Microbiol, 1997. 51: p. 341-373.
26. Mark A. SchellS, P.H.B., and Satanaryana Raju Use of Saturation Mutagenesis to Localize Probable Functional Domains in the NahR Protein, a LysR-type Transcription Activator. THE JOURNAL OF BIOLOGICAL CHEMSTRY 1989. 265.
27. MARCO C. M. JASPERS, W.A.S., ANDREAS SCHMID, DAVID A. M. GOSLINGS, HANS-PETER E. KOHLER, AND JAN ROELOF VAN DER MEER, HbpR, a New Member of the XylR DmpR Subclass within the NtrC Family of Bacterial Transcriptional Activators, Regulates Expression of 2-Hydroxybiphenyl Metabolism in Pseudomonas azelaica HBP1. JOURNAL OF BACTERIOLOGY, 2000.
28. Siham Beggah, C.V., Elena Zenaro and Jan Roelof van der Meer, Mutant HbpR transcription activator isolation for 2-chlorobiphenyl via green fluorescent protein-based flow cytometry and cell sorting. Microbial Biotechnology, 2008.
29. Shingler, V., Bartilson, M., and Moore, T., Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. J. Bacteriol., 1993. 175: p. 1596-1604.
30. Gupta, S., et al., An effective strategy for a whole-cell biosensor based on putative effector interaction site of the regulatory DmpR protein. PLoS One, 2012. 7(8): p. e43527.
31. Yagi, K., Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol, 2007. 73(6): p. 1251-8.
32. Liu, X., et al., Whole-cell fluorescent biosensors for bioavailability and biodegradation of polychlorinated biphenyls. Sensors (Basel), 2010. 10(2): p. 1377-98.
33. Wingreen, V.S.a.N.S., Responding to chemical gradients: bacterial chemotaxis. Current Opinion in Cell Biology, 2012. 24: p. 262–268.
34. ALAN J. WOLFE, M.P.C., TINA J. KRAMER, AND HOWARD C. BERG, Reconstitution of Signaling in Bacterial Chemotaxis. JOURNAL OF BACTERIOLOGY, 1987. 169(25).
35. Berg, V.S.a.H.C., Receptor sensitivity in bacterial chemotaxis. PNAS, 2002. 99(01).
36. KRISTIN C. BOESCH, R.E.S., AND ROBERT B. BOURRET, Isolation and Characterization of Nonchemotactic CheZ Mutants of Escherichia coli. JOURNAL OF BACTERIOLOGY, 2000. 182.
37. You Lia, Y.H., Wenyu Fua, Bin Xiaa, Changwen Jin, Solution structure of the bacterial chemotaxis adaptor protein CheW from Escherichia coli. Biochemical and Biophysical Research Communications, 2007. 360(4).
38. ROBERT B. BOURRET, J.F.H., AND MELVIN . SIMON, Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Proc. Nati. Acad. Sci. USA, 1990. 87.
39. Sourjik, V., Receptor clustering and signal processing in ecoli chemotaxis. TRENDS in Microbiology, 2004. 12(12).
40. Khazi Mahammedilyas Basha, A.R., and Viruthagiri Thangavelu, Recent advances in the Biodegradation of phenol:review. ASIAN J., 2010. Vol 1: p. 219-234.
41. C. Indu Nair, K.J.a.S.S., Biodegrade of phenol. African Journal of Biotechnology, 2008. 25: p. 4951-4958.
42. Chao Li, C.Z., Guanling Song, Hong Liu, Guihua Sheng, Zhongfeng Ding, Zhenglong Wang, Ying Sun, Yue Xu, Characterization of a protocatechuate catabolic gene cluster in Rhodococcus ruber OA1 involved in naphthalene degradation. Annals of Microbiology, 2015.
43. HUI ZHANG, H.L.a.Y.K., Characterization of the phenol hydroxylase from burkholderia kururiensis KP23 involved in trichloroethylene degradation by gene cloning and disruption. Microbes and Environments, 2003. 18: p. 167-173.
44. V. Sridevi , M.V.V.C.L., M. Manasa3, M. Sravani METABOLIC PATHWAYS FOR THE BIODEGRADATION OF PHENOL. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY 2012. 2(3): p. 695-705.
45. Suenaga, H., et al., Novel organization of aromatic degradation pathway genes in a microbial community as revealed by metagenomic analysis. ISME J, 2009. 3(12): p. 1335-48.
46. Niladevi KN, P.P., Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor. World J. Microbial Biotechnol, 2007. 24: p. 1215- 1222.
47. MARSHALL, R.Y.a.M.R., PHYSICOCHEMICAL PROPERTIES AND FUNCTION OF PLANT POLYPHENOL OXIDASE: A REVIEW. Journal of Food Biochemistry, 2003. 27: p. 361-422.
48. Ghioureliotis M, N.J., Assessment of soluble products of peroxidase catalysed polymerisation of aqueous phenol. Enzyme Microbial Technol., 1999. 25: p. 185-193.
49. Siegbahn, P.E., The catalytic cycle of tyrosinase: peroxide attack on the phenolate ring followed by O[bond]O cleavage. J Biol Inorg Chem, 2003. 8(5): p. 567-76.
50. Huang, C., and Stewart, R. C, CheZ mutants with enhanced ability to dephosphorylate CheY, the response regulator in bacterial chemotaxis. Biochim. Biophys. Acta, 1993: p. 297-304.
51. VICTORIA SHINGLER, J.P., AND ULRICA MARKLUND, Nucleotide Sequence and Functional Analysis of the Complete Phenol/3,4-Dimethylphenol Catabolic Pathway of Pseudomonas sp. Strain CF600. JOURNAL OF BACTERIOLOGY, 1992: p. 711-724.
52. Tsai, Y.E.A.a.S.-L., A high-throughput and selective method for the measurement of surface areas of silver nanoparticles. Analyst, 2015. 140: p. 2618–2622.
53. Parkinson, J.S., Complementation analysis and deletion mapping of Escherichia coli mutants defective in chemotaxis. J. Bacteriol. , 1978. 135: p. 45-53.

無法下載圖示 全文公開日期 2021/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE