簡易檢索 / 詳目顯示

研究生: 陳偉訓
Wei-Xun Chen
論文名稱: 利用矽光子技術實現光學天線陣列
Realization of Optical Antenna Arrays with Silicon Photonics Technology
指導教授: 李三良
San-Liang Lee
口試委員: 李三良
San-Liang Lee
徐世祥
Shih-Hsiang Hsu
洪勇智
Yung-Jr Hung
宋峻宇
Jiun-Yu Sung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 142
中文關鍵詞: 光電積體電路矽光子光學雷達光學天線陣列
外文關鍵詞: Silicon Photonics, Optical Antenna Arrays
相關次數: 點閱:503下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著自駕車的發展,對於感測元件的需求與研究日益增加,利用矽光子技術實現全固態式光學雷達同時具備矽光子積體電路低功耗、可積體化的特性及全固態式光學雷達高解析度、掃瞄範圍大的優點,因此,在感測領域扮演關鍵的技術。
    本論文設計週期性側壁光柵結構波導作為光學天線,利用比利時微電子研究中心所提供之矽光子製程成功實現64通道光學相控陣列。經過量測與分析,驗證週期性側壁光柵結構波導作為光學天線的可行性,其光學天線傳播方向的光束發散角為0.15°,中心波長1550 nm之光束角度為0.43°,波長調控效率為每奈米0.16°,而光學天線陣列在陣列方向的光束發散角為0.135°,旁瓣角度約為9.66°,以上量測結果與模擬結果相符,但光學天線均勻出光的量測結果與模擬有所差異,其原因為製程誤差導致光柵形狀改變影響出光率。
    此外,本論文重新設計光學相控陣列之架構,利用光切換器實現1024通道分組切換之光學相控陣列,不僅解決製程密度規範限制光學天線間距的問題,同時增加波長掃描範圍,並成功下線此設計。


    In recent years, the demands of optical sensing devices and the research on the related technologies are fast increasing for developing autonomous vehicles. Implementation of solid-state light detection and ranging (LIDAR) with silicon photonics technology has the advantages of low power consumption, high-density integration, high resolution, and large beam-steering range. Therefore, solid-state LIDARs becomes the key technology in the field of optical sensing.
    This thesis aims to design a periodic sidewall grating structure waveguide as an optical antenna for developing a LIDAR chip and implement a 64-channel optical phased array (OPA) on the silicon-on-insulator (SOI) platform by using the multi-project-wafer (MPW) service provided by IMEC. After measurement and performance analysis, the feasibility of using the periodic sidewall grating structure waveguide as an optical antenna is verified. The divergent angle of the optical antenna is 0.15 degrees along the longitudinal direction, the beam angle is 0.43 degree at the center wavelength of 1550 nm, the wavelength-tuning steering efficiency is 0.16 degrees per 1 nm of wavelength shift, the divergent angle of the optical antenna array is 0.135 degrees along the horizontal direction, and the side lobe angle of the optical antenna array is about 9.66 degrees. The above measurement results are consistent with the simulation results. However, the measured light emission pattern for the optical antenna is different from the simulation. The major cause is from the fabrication error that changes the shape of the grating and affect the light emission rate.
    In addition, we redesigned the architecture of an OPA by using optical switches to realize a 1024-channel switched OPA which can not only overcome the limitation set by the design rules of the MPW service on the minimal pitch that can be used between the optical antennas, but also increase the steering range of wavelength-tuning on the longitudinal direction. The new design was successfully taped out to IMEC for manufacturing.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XVI 第一章 導論 1 1-1 前言 1 1-2 研究動機 2 1-3 製程平台 5 1-3-1 絕緣層覆矽平台 5 1-3-2 塊材矽製程平台 7 1-4 論文架構 8 第二章 基本原理 9 2-1 司乃耳定律 9 2-2 光柵理論 11 2-2-1 布拉格定律 11 2-2-2 光柵耦合理論 12 2-3 干涉理論 14 2-3-1 惠更斯原理 14 2-3-2 狹縫干涉理論 15 2-4 繞射理論 19 2-4-1 克希荷夫積分定律 19 2-4-2 菲涅耳-克希荷夫繞射公式 20 2-4-3 索末菲公式 23 2-4-4 菲涅耳繞射(近場繞射) 24 2-4-5 夫朗和斐繞射(遠場繞射) 26 第三章 元件介紹 27 3-1 多模干涉耦合器 27 3-2 相位位移器 29 3-3 光學天線 30 3-4 光學天線陣列 35 3-5 晶片布局 39 3-5-1 IMEC-SiPh-108A 39 3-5-2 IMEC-SiPh-109A 44 3-5-3 TN90GUTM-109A 51 第四章 元件模擬設計 55 4-1 模擬方法介紹 55 4-1-1 有限時域差分法 56 4-1-2 有限特徵模態法 58 4-2 多模干涉耦合器 59 4-3 光學天線 63 4-4 光學天線陣列 71 第五章 元件量測結果與分析 75 5-1 光譜量測分析 75 5-1-1 光譜分析量測架構 75 5-1-2 量測架構校準 77 5-1-3 光譜分析量測方法 79 5-1-4 多模干涉耦合器量測結果與分析 84 5-1-5 相位位移器量測結果與分析 85 5-1-6 光學天線量測結果與分析 89 5-2 光場分佈量測分析 93 5-2-1 光場分佈量測架構 93 5-2-2 光學天線近場量測結果與分析 95 5-2-3 光學天線陣列近場量測結果與分析 102 5-2-4 遠場光場量測方法 103 5-2-5 光學天線遠場量測結果與分析 105 5-2-6 光學天線遠場陣列量測結果與分析 112 第六章 結論與未來發展 118 6-1 成果與討論 118 6-2 未來發展方向 121 參考資料 123

    [1] J. W. Goodman, Introduction to Fourier Optics, 2nd ed. New York: McGraw Hill Higher Education, 1996.
    [2] L. B. Soldano, and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” Journal of Lightwave Technology, vol. 13, no. 4, pp. 615-627, April 1995.
    [3] L. W. Chung, S. L. Lee, and Y. J. Lin, “Principles and application of reduced beat length in MMI couplers,” Optics Express, vol. 14, no. 19, pp. 8753-8764, September 2006.
    [4] S. W. Chung, H. Abediasl, and H. Hashemi, “A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS,” IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 275-296, January 2018.
    [5] M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Optics Letters, vol. 26, no. 3, pp. 2528-2534, 2018.
    [6] 楊家亘,“利用矽光子技術實現八通道分波多工器與光學天線設計”,國立臺灣科技大學碩士論文,2019.
    [7] D. N. Hutchison, J. S., Jonathan, K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong,” High-resolution aliasing-free optical beam steering,” Optica, vol. 3, no. 8, pp. 887-890, August 2016.
    [8] D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen1, “On-chip silicon optical phased array for two-dimensional beam steering,” Optical Letters, vol. 39, no. 4, pp. 941-944, February 2014.
    [9] C. Li, X. Cao, K. Wu, X. Li, and J. Chen, “Lens-based integrated 2D beam-steering device with defocusing approach and broadband pulse operation for Lidar application,” Optics Express, vol. 27, no. 23, pp. 32970-32923, November 2019.

    [10] P. Wang, G. Luo, Y. Li, M. Wang, F. Meng, W. Yang, H. Yu, X. Zhou, Y. Zhang, and J. Pan, “Two-dimensional Large-angle Scanning Optical Phased Array with Single Wavelength Beam,” Conference on Lasers and Electro-Optics (CLEO), May 2019, San Jose, California United States.
    [11] Y. C. Chang, M. C. Shin, C. T. Phare, S. A. Miller, E. Shim, and M. Lipson, “Metalens-enabled low-power solid-state 2D beam steering,” Conference on Lasers and Electro-Optics (CLEO), May 2019, San Jose, California United States.
    [12] Y. Kane, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, May 1966.
    [13] Z. Zhu, and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Optics Express, vol. 10, no. 17, pp. 853-864, August 2002.
    [14] C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts,” Long-Range LiDAR and Free-Space Data Communication with High-Performance Optical Phased Arrays,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 5, September / October 2019.
    [15] C. S. Im, B. Bhandari, K. P. Lee, S. M. Kim, M. C. Oh, and S. S. Lee, “Silicon nitride optical phased array based on a grating antenna enabling wavelength-tuned beam steering,” Optics Express, vol. 28, no 3, pp. 3270-3279, February 2020.
    [16] C. Li, X. Cao, K. Wu, X. Li and J. Chen, “A Switch-based Integrated 2D Beam-steering device for Lidar Application,” Conference on Lasers and Electro-Optics (CLEO), May 2019, San Jose, California United States.
    [17] H. Zhang, Z. Zhang, C. Peng, W. Hu, “Phase Calibration of On-Chip Optical Phased Arrays via Interference Technique,” IEEE Photonics Journal, vol. 12, no. 2, April 2020.
    [18] T. Kim, P. Bhargava, C. V. Poulton, and J. Notaros, A. Yaacobi, E. Timurdogan, C. Baiocco, N. Fahrenkopf, S. Kruger, T. Ngai, Y. Timalsina, M. R. Watts, and V. Stojanovi´c , “A Single-Chip Optical Phased Array in a Wafer-Scale Silicon Photonics / CMOS 3D-Integration Platform,” IEEE journal of solid-state circuits, vol. 54, no. 11, pp. 3061-3074, November 2019. 
    [19] S. A. Miller, C. T. Phare, Y. C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lipson, ”512-Element Actively Steered Silicon Phased Array for Low - Power LIDAR,” Conference on Lasers and Electro-Optics (CLEO), August 2018, San Jose, CA, USA.
    [20] M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Optics Letters, vol. 42, no. 13, pp. 2563-2566, 2017.
    [21] C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Optics Letters, vol. 42, no. 1, pp. 21-24, January 2017.
    [22] M. Gehl, G. Hoffman, P. Davids, A. Starbuck, C. Dallo, Z. Barber, E. Kadlec, R. K. Mohan, S. Crouch, and C. Long, “Phase optimization of a silicon photonic two-dimensional electro-optic phased array,” Conference on Lasers and Electro-Optics (CLEO), May 2019, San Jose, California United States.
    [23] S. Zhu, T. Hu, Y. Li, Z. Xu, Q. Zhong, Y. Dong, and N. Singh, “CMOS-compatible Integrated Silicon Nitride Optical Phase Array for Electrically Tunable Off-chip Laser Beam Steering,” Electron Devices Technology and Manufacturing Conference (EDTM), Singapore, March 2019.
    [24] D. Wu, W. Guo, and Y. Yi, “Compound period grating coupler for double beams generation and steering,” Conference on Lasers and Electro-Optics (CLEO), May 2019, San Jose, California United States.
    [25] H. Hashemi, “Large-Scale Monolithic Optical Phased Arrays,” Optical Fiber Communication Conference (OFC), February 2019.
    [26] H. Ito, T. Tatebe, H. Abe, and T. Baba, “Wavelength-division multiplexing Si photonic crystal beam steering device for high-throughput parallel sensing,” Optics Express, vol. 26, no. 20, pp. 26145-26155, September 2018.
    [27] H. Nikkhah, K. V. Acoleyen, and R. Baets, “Beam steering for wireless optical links based on an optical phased array in silicon,” Annals of Telecommunications, vol. 68, pp. 57-62, February 2013.

    無法下載圖示 全文公開日期 2025/08/05 (校內網路)
    全文公開日期 2025/08/05 (校外網路)
    全文公開日期 2025/08/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE