簡易檢索 / 詳目顯示

研究生: 林聖智
Sheng-Chih Lin
論文名稱: 使用有限時域差分法於筆記型電腦的多頻天線設計
NB Antenna Design for Multi-Band System using XFDTD
指導教授: 黃進芳
Jhin-Fang Huang
口試委員: 黃正亮
none
徐敬文
note
陳國龍
none
蔡智明
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 59
中文關鍵詞: 迴圈天線無線廣堿網路
外文關鍵詞: Loop antenna, WWAN
相關次數: 點閱:193下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文主要是針對筆記型電腦的內藏式天線進行研究與設計,在產品接收與發射端的天線之特性,直接對通訊的優劣有著關鍵性的影響,因此在愈趨複雜的天線空間以及各種不同的特性需求下,如何研發出適合的天線設計,是產品最大的挑戰;在論文中提出一迴圈天線創新的設計架構外,並針對天線及其它參數的特性進行探討,此操作頻寬涵蓋了GSM(Global System for Mobile)四頻及UMTS(Universal Mobile Telecommunications System)系統的操作需求,可以應用於無線廣域網路(Wireless Wide Area Network,WWAN)系統的天線設計,相當符合多頻帶信號發射、接收的需求;此天線結構簡單、製作容易、可以很容易印刷在價格較低的微波介質基板上,可以有效降低成本,設計安裝於筆電內以提昇使用時訊號接收之可靠度。

    論文中使用XFDTD的模擬軟體來分析並和測量的數據比較,在電壓柱波比(VSWR)小於3,低頻頻率900 MHz所量測到的印刷式迴圈天線頻寬大於136 MHz、天線增益約為2 dBi且效率範圍約在43~63%之間;高頻頻率1800 MHz所量測到的印刷式迴圈天線頻寬大於460 MHz、天線增益約為4 dBi且效率約在55~75%之間,將模擬和量測數據加以比較得到相當吻合的結果;故此天線具有良好頻寬、增益與輻射特性,將可滿足無線廣域網路GSM四頻及WCDMA頻帶的使用。


    In thesis, we proceed to research for internal antenna inside notebook computer. Launch and receive the characteristic of the antenna in the products, having key point of the communication quality directly, so under antenna space and all kinds of performance request that become the more complicated, how to research and develop the suitable antenna design, one of the greatest challenge of the product; in the thesis provide new structure of the antenna, and carry on the discussion to the characteristic and other parameters of the antenna, this operation bandwidth is contain GSM (Global System for Mobile) Quad-Band and UMTS (Universal Mobile Telecommunications System) system request, antenna design for WWAN (Wireless Wide Area Network, WWAN) system application, accord with the demand that the signal of multi-band transmits and receives; antenna of simple structure, manufacture easy, can very easy to print at the PCB, can lower costs effectively, design and install in notebook computer can enhance signal receivers of reliability.
    Use the simulation software of XFDTD to analyze and compare with data measured in the thesis, in the Voltage-Standing-Wave-Ratio (VSWR) smaller than 3, low-band frequency at 900 MHz in printing type loop antenna measured bandwidth greater than 136 MHz, gain about 2 dBi, efficiency about 43~63%, and high-band frequency at 1800 MHz in printing type loop antenna measured bandwidth greater than 460 MHz, gain about 4 dBi, efficiency about 55~75%, the simulation and measured results are very similar; So the antenna have better bandwidth, gain and radiating the performance, can satisfy the WWAN system use.

    摘 要 I Abstract II 誌 謝 III Contents IV Figures and Table contents VI 第 一 章 1 序 論 1 (Introduction) 1 1.1 概述 1 1.2 論文內容 2 第 二 章 3 理 論 分 析 3 (Theoretical Analysis) 3 2.1 有限時域差分法 3 2.2 吸收邊界條件 8 第 三 章 12 天線設計的參數討論 12 (Parameter Discussion for Antenna Design) 12 3.1 設計原由 12 3.2 初始設計 13 3.3 天線設計參數分析-變更高頻路徑 15 3.4 天線設計參數分析-變更低頻路徑 18 3.5 天線設計參數分析-變更MEANDER 20 3.6 天線設計參數分析-變更GAP距離 22 3.7 天線設計參數分析-變更GAP為元件 23 第 四 章 25 適用於筆記型電腦的多頻天線設計 25 (Notebook Antenna Design for Multi-Band System) 25 4.1 天線設計原理 25 4.2 模擬與實驗結果 30 4.2 模擬驗證分析 32 4.3 天線場型、增益及效率 34 第 五 章 41 結 論 41 (Conclusion) 41 References 42 作者簡介 46 附錄-研討會文章 49 附錄A:應用於GSM/WCDMA系統之筆記型電腦天線設計 49 附錄B:應用於行動通訊之多頻平面倒F形天線 52 附錄C:適用於無線區域網路之超寬頻偶極天線 56

    [1] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302-307, May 1966.
    [2] 林振華, “電磁場與天線分析 使用時域有限差分法(FDTD),” 全華科技圖書.
    [3] D. M. Sheen, S. M. Ali, M. D. Abouzahra, and J. A. Kong, “Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits,” IEEE Trnas. Microwave Theory Tech., vol. 38, pp.849-857, July 1990.
    [4] M. Pilet-May, A. Taflove, and J. Baron, “FDTD modeling of digital signal propagation in 3-D circuits with passive and active loads,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1514-1523, 1994.
    [5] V. A. Thomas, M. E. Jones, M. Piket-May, A. Taflove, and E. Harrigan, “The use of SPICE lumped circuits as sub-grid models for FDTD analysis,” IEEE Microwave Guided Wave Lett., vol. 4, pp. 141-143, 1994.
    [6] XFDTD v6.4, “User’manual,” REMCOM Corp., U.S.A.
    [7] C. K. Aanadan, P. Mohanan and K. G Nair ”Broad-band gap coupled Microstrip antenna”, IEEE Trans. Antennas Propagat., Vol. 38, p 1581-86, 1990.
    [8] Nauwelaers, B.; Van De Capelle, A.; ”Surface Wave Losses of Rectangular Microstrip Antennas” Electronics Letters Vol 25, 25 May 1989 P696 - 697
    [9] J. D. Kraus, R. J. Marhefka ”Antennas For All Application” McGraw-Hill Book Company, 2002, p 11-52.
    [10] S. Drabowitch, A. Papiernik, H. Griffiths and J. Encinas ”Modern Antenna” Chapman & Hall, 1998
    [11] R. E. Collin ”Antennas and Radio wave Propagation” McGraw-Hill Book Company 1985
    [12] D. M. Pozar ”Microwave Engineering” University of Massachusetts at Amherst, John Wiley & Sons, INC, second edition, p258-266
    [13] G. H. Brown and O. M. Woodward, Jr., ”Experimentally Determined Impedance Characteristics of Cylindrical Antenna” Proc. IRE, Vol. 33, 1945, pp. 257-262
    [14] J.R. James, P. S. Hall, and C. Wood, ”Microstrip Antenna Theory and Design” Stevenage, U. K. Peter Peregrinus, 1981, pp. 51.64
    [15] Warren L. Stutzman, Gary A. Thiele, ”Antenna Theory and Design”, John Wiley & Sons, 1998, p493-514.
    [16] N. Boisbouvier, F. L. Bolzer and A. Louzir, “A compact radiation pattern diversity antenna for WLAN applications,” in 2002 IEEE Antennas Propagat. Soc. Int. Symp. Dig., vol. 4, pp. 64-67, 2002.
    [17] Y. L. Kuo and K. L. Wong, “A novel dual-band printed inverted-F antenna,” Microwave Opt. Technol. Lett., vol. 31, pp. 353-355, 2001.
    [18] S. H. Yeh and K. L. Wong, “Integrated F-shaped monopole antenna for 2.4/5.2 GHz dual-band operation,” Microwave Opt. Technol. Lett., vol. 34, pp. 24-26, 2001.
    [19] K. L. Wong and Y. F. Lin, “Stripline-fed printed triangular monopole,” IEEE Electron. Lett., vol. 33, pp. 1428-1429, 1997.
    [20] N. P. Agrawall, G. Kumar and K. P. Ray, “New wideband monopole antennas,” in 1997 IEEE Antennas Propagat. Soc. Int. Symp. Dig., vol. 1, pp. 13-18, 1997.
    [21] K. Yegin and A. Q. Martin, “Very broadband loaded monopole antennas,” in 1997 IEEE Antennas Propagat. Soc. Int. Symp. Dig., vol. 1, pp. 232-235, 1997.
    [22] N. P. Agrawall, G. Kumar and K. P. Ray, “Wide-band planar monopole antennas,” IEEE Trans. Antennas Propagat., vol. 46, pp. 294-295, 1998.
    [23] A. Kerkhoff and H. Ling, “Design of a planar monopole antenna for use with ultra-wideband (uwb) having a band-notched characteristic,” in 2003 IEEE Antennas Propagatl. Soc. Int. Symp. Dig., vol. 1, pp. 22-27, 2003.
    [24] K. L. Wong, S. W. Su and Y. L. Kuo, “A printed ultra-wideband diversity monopole antenna,” Microwave Opt. Technol. Lett., vol. 38, pp. 257-259, 2003.
    [25] K. L. Wong, G. Y. Lee and T. W. Chou, “A Low-profile Planar Monopole Antenna for Multiband Operation of Mobile Handsets,” IEEE Trans. Antennas Propagat., vol. 51, pp. 121-125, 2003.
    [26] E. Lee, P. S. Hall, and P. Gardner, “Compact wideband planar monopole antenna,” Electron. Lett., vol. 35, pp. 2157-2158, 1999.
    [27] W. Dou and W. Y. M. Chia, “Small broadband stacked planar monopole,” Microwave Opt. Technol. Lett., vol. 27, pp. 288-289, 2000.
    [28] F. R. Hsiao, H. T. Chen, T. W. Chiou, G. Y. Lee, and K. L. Wong, “A Dual-Band Planar Inverted-F Patch Antenna with a Branch-Line Slit,” Microwave Opt. Technol. Lett., vol. 32, pp. 310-312, 2002.
    [29] K. L. Wong, Planar Antennas for Wireless Communications, Wiley, New York, 2003, Chap. 3.
    [30] P. L. Teng, H. T. Chen, and K. L. Wong, “Multi-frequency planar monopole antenna for GSM/DCS/PCS/WLAN operation,” Microwave Opt. Technol. Lett., vol. 36, pp. 350-352, 2003.

    QR CODE