簡易檢索 / 詳目顯示

研究生: THAGARE MANJUNATHA SUBRAHMANYA
THAGARE MANJUNATHA SUBRAHMANYA
論文名稱: 可調控官能化碳基底複合膜用於水處理之研究
Switchable Functionalized Carbon-based Composite Membranes for Water Treatment
指導教授: 洪維松
Wei-Song Hung
口試委員: Juin-Yih Lai
Juin-Yih Lai
Chien-Chieh Hu
Chien-Chieh Hu
Chih-Feng Wang
Chih-Feng Wang
Da Ming Wang
Da Ming Wang
Shiao-Wei Kuo
Shiao-Wei Kuo
Tai-Shung Chung
Tai-Shung Chung
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 175
中文關鍵詞: 薄膜蒸餾石墨烯海水淡化聚偏氟乙烯奈米碳管染料去除能源效率注射器過濾智能薄膜
外文關鍵詞: Membrane distillation, Graphene, Desalination, PVDF, CNTs, Dyes removal, energy efficiency, syringe filtration, smart membranes
相關次數: 點閱:345下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,智能聚合物奈米複合膜由於接觸不同外在條件時能夠轉換膜的特性,使其可用於包括水處理在內的各種應用而被熱切的關注著。在本論文中,我們首先展示了石墨烯-PVDF平板膜在海水淡化中「自加熱VMD模式」下的表面熱傳導。該系統消除了 TP 並在脫鹽方面表現出高性能(即 Qsh= 0.109 kWh/L,GOR= 5.72,Flux= 23.44 L/m2h 和脫鹽率= 99.41 %)。我們還進行了 FVM 模擬以驗證實驗結果。在第二項研究中,我們製造了一種新型流動式原位蒸發薄膜 (FTIEM),用於長時間VMD 模式的海水淡化。FTIEM (COOH-MWCNTs-PVA) 的中間層為網狀式熱傳導層,在其頂部塗有 PEI-PDA-SBA-15 以用作水合、鹽屏蔽和隔熱層。然而,蒸汽被PVDF 膜(FTIEM 的底層)選擇性的傳輸。因此,我們在 MD 過程中實現了最低的 Qsh (0.024 kWhL-1) 和長期穩定性,通量和脫鹽率分別為 29.25 Lm-2h-1 和 99.99%,使其成為最具吸引力的海水淡化方案。在第三項研究中,我們開發了用於注射器中能去除染料的 GO/(SBA-15/PDA)複合過濾薄膜。我們發現 GO10/(SBA-15/PDA)2 的效能是最佳的(MB 的滲透通量為2487.4 Lm-2h-1b-1、去除率為 99.61%,而EBT的滲透通量為2486.4 Lm-2h-1b-1、去除率為 90.86%),在很大的 pH 範圍內表現出良好的穩定性和性能。pH 值的變化起到了關鍵作用,增強了染料和膜之間的靜電吸引力。 這種膜在處理染料廢水方面具有很大的潛力。 總體而言,這些研究為新一代的智能薄膜開闢了新途徑。


In recent years, smart polymer nanocomposite membranes have gained great interest due to their ability to switch properties when exposed to external trigger, making them useful for various applications, including water treatment. In this dissertation, we first demonstrated Graphene-PVDF flat sheet membrane for interfacial joule heating in self- heated VMD mode of sea water desalination. The system eliminated TP and showed high performance in desalination (i.e., Qsh= 0.109 kWh/L, GOR= 5.72, Flux= 23.44 L/m2h and salt rejection= 99.41 %). Also we performed FVM simulation to validate with the experimental results. In the second study, we fabricated a novel flow-through in-situ evaporation membranes (FTIEMs) for long term VMD mode of hypersaline water desalination. The middle layer of FTIEM (COOH-MWCNTs-PVA) was deployed as joule heating network, on top of it PEI-PDA-SBA-15 was coated to serve as hydrating, salt screening as well as thermally insulating layer. Whereas, PVDF membrane (bottom layer of FTIEM) was deployed for selective vapor transport. As a result, we achieved the lowest Qsh (0.024 kWhL-1) and long term stability during MD process with flux and salt rejection of 29.25 Lm-2h-1 and 99.99% respectively, offering it to be the most attractive solution for desalination. In the third study, we developed GO/(SBA-15/PDA) composite syringe filter membranes for dyes removal. We found that the GO10/(SBA-15/PDA)2 was the optimum one (99.61 % removal with 2487.4 Lm-2h-1b-1 permeation flux for MB and 90.86 % removal with 2486.4 Lm-2h-1b-1 permeation flux for EBT), that exhibited good stability and performance over wide range of pH. The pH variation enhanced electrostatic attraction between dyes and the membrane played the key role. This membrane has great potential for the treatment of dye wastewater. Overall, these research works open new avenues for the development of a new generation smart membranes.

ABSTRACT I 摘 要 III CERTIFICATE IV DECLARATION V ACKNOWLEDGEMENT VI TABLE OF CONTENTS VIII LIST OF FIGURES XII LIST OF TABLES XXI LIST OF ABBREVIATIONS XXIII CHAPTER I INTRODUCTION 1 1.1 INTRODUCTION 2 1.2 DISSERTATION GOALS AND OUTLINE 6 CHAPTER II LITERATURE REVIEW 8 2.1 BACKGROUND OF MEMBRANE SCIENCE AND TECHNOLOGY 9 2.2 INTRODUCTION TO MEMBRANE SCIENCE AND TECHNOLOGY 11 2.3 PRESSURE DRIVEN MEMBRANE PROCESSES FOR WATER TREATMENT 12 2.4 THERMALLY DRIVEN MEMBRANE PROCESSES FOR WATER TREATMENT 13 2.5 CONVENTIONAL MD CONFIGURATIONS 15 2.5.1 Direct contact membrane distillation (DCMD) 15 2.5.2 Vacuum membrane distillation (VMD) 16 2.5.3 Air gap membrane distillation (AGMD) 16 2.5.4 Sweeping gas membrane distillation (SGMD) 16 2.6 TRADITIONAL MEMBRANES FOR PRESSURE AND THERMAL DRIVEN WATER TREATMENT 17 2.6.1 Inorganic membrane materials 18 2.6.2 Polymeric membrane materials 18 2.7 SMART POLYMER NANOCOMPOSITE MEMBRANES FOR WATER TREATMENT 19 2.8 SELF-HEATING MEMBRANES FOR WATER TREATMENT AND THEIR WORKING PRINCIPLES 22 2.8.1 Photothermal membranes 22 2.8.2 Induction heating membranes 23 2.8.3 Joule heating membranes 24 CHAPTER III High performance self-heated membrane distillation system for energy efficient desalination process 25 3.1 INTRODUCTION 26 3.2 EXPERIMENTAL 29 3.2.1 Materials 29 3.2.2 Fabrication of Graphenex-PVDF1 flat sheet membrane joule heaters 30 3.2.3 Preparation of PDMS treated PET nonwoven support layer for Graphenex –PVDF1 flat sheet membrane joule heaters. 30 3.2.4 Membrane characterization 31 3.2.5 Determination of Bulk porosity (%) and liquid entry pressure (LEP). 32 3.2.6 Experimental set up. 33 3.2.7 Simulation 36 3.2.8 Polynomial response surfaces with respect to the VMD experimental variables: 37 3.2.9 Determining the optimal temperature such that the difference between the ratio of the effective heating area of membrane and the ratio of pure water flux was minimized: 38 3.3 RESULT AND DISCUSSION 39 3.3.1 Morphological characterization of Graphenex-PVDF1 flat sheet membrane joule heaters 40 3.3.2 Physicochemical Characterization of Graphenex-PVDF1 flat sheet membrane joule heaters 43 3.3.3 Characterization of PDMS treated PET nonwoven support layer 51 3.3.4 Characterization of Few-layer graphene used in the fabrication of membrane joule heaters: 53 3.3.5 Self-heated VMD desalination performance of Graphenex-PVDF1 flat sheet membrane joule heaters 54 3.3.6 Simulation 63 3.3.7 SUMMARY 65 CHAPTER IV Flow-through in-situ evaporation membrane enabled self-heated membrane distillation for efficient desalination of hypersaline water 67 4.1 INTRODUCTION 68 4.2 EXPERIMENTAL 69 4.2.1 Materials 69 4.2.2 Fabrication of FTIEMs 70 4.2.3 Materials characterization 71 4.2.4 FTIEMD experiments 72 4.3 RESULT AND DISCUSSION 74 4.3.1 Morphological and physico-chemical characterization of SBA-15 and PEI-PDA-SBA-15 75 4.3.2 Morphological characterization of FTIEMs 78 4.3.3 Physico-chemical characterization and thermographic investigations of FTIEMs 82 4.3.4 FTIEMD performance 89 4.4 SUMMARY 96 CHAPTER V An eco-friendly and reusable syringe filter membrane for the efficient removal of dyes from water via low pressure filtration assisted self-assembling of Graphene Oxide and SBA-15/PDA 98 5.1 INTRODUCTION 99 5.2 EXPERIMENTAL 101 5.2.1 Materials and methods 101 5.2.2 Synthesis of SBA -15/PDA composite powder 102 5.2.3 Fabrication of GO/(SBA-15/PDA) syringe filter membranes 103 5.2.4 Characterization 104 5.2.5 Permeate flux and dye removal 105 5.2.6 Sorption performance of GO/(SBA-15/PDA) syringe filter membranes 106 5.2.7 Cyclic stability study of GO/(SBA-15/PDA) syringe filter membranes 106 5.2.8 Effect of pH 106 5.3 RESULT AND DISCUSSION 107 5.3.1 Morphological and physico-chemical characterization of SBA-15 and SBA-15/PDA composite 107 5.3.2 Morphological and physico-chemical characterization of GO/(SBA-15/PDA) Syringe filter membranes 109 5.3.3 Performance study of the GO/(SBA-15/PDA) syringe filter membranes. 115 5.4 SUMMARY 128 CHAPTER VI CONCLUSIONS AND FUTURE PERSPECTIVE 130 6.1 CONCLUSIONS 131 6.2 FUTURE PERSPECTIVE 133 6.3 LIST OF PUBLICATIONS 134 6.4 ACHIEVEMENTS 138 REFERENCES 138

[1] L. Francis, F.E. Ahmed, N. Hilal, Advances in Membrane Distillation Module Configurations, Membranes, 12 (2022) 81.
[2] L. Ren, E. Cui, H. Sun, Temporal and spatial variations in the relationship between urbanization and water quality, Environmental Science and Pollution Research, 21 (2014) 13646-13655.
[3] B.E. Logan, M. Elimelech, Membrane-based processes for sustainable power generation using water, Nature, 488 (2012) 313-319.
[4] C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, State-of-the-art of reverse osmosis desalination, Desalination, 216 (2007) 1-76.
[5] H. Nassrullah, S.F. Anis, R. Hashaikeh, N. Hilal, Energy for desalination: A state-of-the-art review, Desalination, 491 (2020) 114569.
[6] Q. Chen, M. Burhan, M.W. Shahzard, R. Alrowais, D. Ybyraiymkul, F.H. Akhtar, Y. Li, K.C. Ng, A novel low-temperature thermal desalination technology using direct-contact spray method, Desalination-Challenges and Opportunities, (2020).
[7] M.H.D.A. Farahani, V. Vatanpour, A. Taheri, Desalination: challenges and opportunities, (2020).
[8] N. Dow, S. Gray, J.-d. Li, J. Zhang, E. Ostarcevic, A. Liubinas, P. Atherton, G. Roeszler, A. Gibbs, M. Duke, Pilot trial of membrane distillation driven by low grade waste heat: Membrane fouling and energy assessment, Desalination, 391 (2016) 30-42.
[9] M.R. Qtaishat, F. Banat, Desalination by solar powered membrane distillation systems, Desalination, 308 (2013) 186-197.
[10] R. Kaplan, D. Mamrosh, H.H. Salih, S.A. Dastgheib, Assessment of desalination technologies for treatment of a highly saline brine from a potential CO2 storage site, Desalination, 404 (2017) 87-101.
[11] A. Pak, T. Mohammadi, Wastewater treatment of desalting units, Desalination, 222 (2008) 249-254.
[12] L. Francis, N. Ghaffour, A.S. Al-Saadi, G. Amy, Performance of different hollow fiber membranes for seawater desalination using membrane distillation, Desalination and Water Treatment, 55 (2015) 2786-2791.
[13] K. Kezia, J. Lee, M. Weeks, S. Kentish, Direct contact membrane distillation for the concentration of saline dairy effluent, Water Research, 81 (2015) 167-177.
[14] A. Hausmann, P. Sanciolo, T. Vasiljevic, U. Kulozik, M. Duke, Performance assessment of membrane distillation for skim milk and whey processing, Journal of Dairy Science, 97 (2014) 56-71.
[15] M. Yao, Y.C. Woo, L.D. Tijing, J.-S. Choi, H.K. Shon, Effects of volatile organic compounds on water recovery from produced water via vacuum membrane distillation, Desalination, 440 (2018) 146-155.
[16] C. Boi, S. Bandini, G.C. Sarti, Pollutants removal from wastewaters through membrane distillation, Desalination, 183 (2005) 383-394.
[17] H. Attia, S. Alexander, C.J. Wright, N. Hilal, Superhydrophobic electrospun membrane for heavy metals removal by air gap membrane distillation (AGMD), Desalination, 420 (2017) 318-329.
[18] M.A. Hammami, J.G. Croissant, L. Francis, S.K. Alsaiari, D.H. Anjum, N. Ghaffour, N.M. Khashab, Engineering Hydrophobic Organosilica Nanoparticle-Doped Nanofibers for Enhanced and Fouling Resistant Membrane Distillation, ACS Applied Materials & Interfaces, 9 (2017) 1737-1745.
[19] A. Anvari, A. Azimi Yancheshme, K.M. Kekre, A. Ronen, State-of-the-art methods for overcoming temperature polarization in membrane distillation process: A review, Journal of Membrane Science, 616 (2020) 118413.
[20] S. Dutta, B. Gupta, S.K. Srivastava, A.K. Gupta, Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review, Materials Advances, 2 (2021) 4497-4531.
[21] J.K.H. Wong, H.K. Tan, S.Y. Lau, P.-S. Yap, M.K. Danquah, Potential and challenges of enzyme incorporated nanotechnology in dye wastewater treatment: A review, Journal of Environmental Chemical Engineering, 7 (2019) 103261.
[22] F. Lu, D. Astruc, Nanocatalysts and other nanomaterials for water remediation from organic pollutants, Coordination Chemistry Reviews, 408 (2020) 213180.
[23] S. Benkhaya, S. M' rabet, A. El Harfi, A review on classifications, recent synthesis and applications of textile dyes, Inorganic Chemistry Communications, 115 (2020) 107891.
[24] E. Guerra, M. Llompart, C. Garcia-Jares, Analysis of Dyes in Cosmetics: Challenges and Recent Developments, Cosmetics, 5 (2018) 47.
[25] M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: A review, Journal of Hazardous Materials, 177 (2010) 70-80.
[26] C.J. Ogugbue, T. Sawidis, Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by <i>Aeromonas hydrophila</i> Isolated from Industrial Effluent, Biotechnology Research International, 2011 (2011) 967925.
[27] Y. Belmoujahid, M. Bonne, Y. Scudeller, D. Schleich, Y. Grohens, B. Lebeau, SBA-15 mesoporous silica as a super insulating material, The European Physical Journal Special Topics, 224 (2015) 1775-1785.
[28] S. Homaeigohar, M. Elbahri, Graphene membranes for water desalination, NPG Asia Materials, 9 (2017) e427-e427.
[29] L.D. Tijing, Y.C. Woo, J.-S. Choi, S. Lee, S.-H. Kim, H.K. Shon, Fouling and its control in membrane distillation—A review, Journal of Membrane Science, 475 (2015) 215-244.
[30] H. Maab, L. Francis, A. Al-saadi, C. Aubry, N. Ghaffour, G. Amy, S.P. Nunes, Synthesis and fabrication of nanostructured hydrophobic polyazole membranes for low-energy water recovery, Journal of Membrane Science, 423-424 (2012) 11-19.
[31] L. Eykens, I. Hitsov, K. De Sitter, C. Dotremont, L. Pinoy, B. Van der Bruggen, Direct contact and air gap membrane distillation: Differences and similarities between lab and pilot scale, Desalination, 422 (2017) 91-100.
[32] S. Lin, N.Y. Yip, M. Elimelech, Direct contact membrane distillation with heat recovery: Thermodynamic insights from module scale modeling, Journal of Membrane Science, 453 (2014) 498-515.
[33] M. Khayet, Membranes and theoretical modeling of membrane distillation: A review, Advances in Colloid and Interface Science, 164 (2011) 56-88.
[34] M.R. Rahimpour, N.M. Kazerooni, M. Parhoudeh, Chapter 8 - Water Treatment by Renewable Energy-Driven Membrane Distillation, in: A. Basile, A. Cassano, A. Figoli (Eds.) Current Trends and Future Developments on (Bio-) Membranes, Elsevier, 2019, pp. 179-211.
[35] K.-K. Yan, L. Jiao, S. Lin, X. Ji, Y. Lu, L. Zhang, Superhydrophobic electrospun nanofiber membrane coated by carbon nanotubes network for membrane distillation, Desalination, 437 (2018) 26-33.
[36] A.S. Alsaadi, L. Francis, G.L. Amy, N. Ghaffour, Experimental and theoretical analyses of temperature polarization effect in vacuum membrane distillation, Journal of Membrane Science, 471 (2014) 138-148.
[37] A.S. Alsaadi, N. Ghaffour, J.D. Li, S. Gray, L. Francis, H. Maab, G.L. Amy, Modeling of air-gap membrane distillation process: A theoretical and experimental study, Journal of Membrane Science, 445 (2013) 53-65.
[38] Y.C. Woo, L.D. Tijing, W.-G. Shim, J.-S. Choi, S.-H. Kim, T. He, E. Drioli, H.K. Shon, Water desalination using graphene-enhanced electrospun nanofiber membrane via air gap membrane distillation, Journal of Membrane Science, 520 (2016) 99-110.
[39] A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: A comprehensive review, Desalination, 287 (2012) 2-18.
[40] M.M.A. Shirazi, A. Kargari, D. Bastani, L. Fatehi, Production of drinking water from seawater using membrane distillation (MD) alternative: direct contact MD and sweeping gas MD approaches, Desalination and Water Treatment, 52 (2014) 2372-2381.
[41] J.Y. Chin, A.L. Ahmad, S.C. Low, Anti-Wetting Membrane Distillation to Treat High Salinity Wastewater: Review, Journal of Membrane Science and Research, 6 (2020) 401-415.
[42] S.C. Mamah, P.S. Goh, A.F. Ismail, N.D. Suzaimi, L.T. Yogarathinam, Y.O. Raji, T.H. El-badawy, Recent development in modification of polysulfone membrane for water treatment application, Journal of Water Process Engineering, 40 (2021) 101835.
[43] E. Eray, V.M. Candelario, V. Boffa, H. Safafar, D.N. Østedgaard-Munck, N. Zahrtmann, H. Kadrispahic, M.K. Jørgensen, A roadmap for the development and applications of silicon carbide membranes for liquid filtration: Recent advancements, challenges, and perspectives, Chemical Engineering Journal, 414 (2021) 128826.
[44] S. Masmoudi, R. Ben Amar, A. Larbot, H. El Feki, A.B. Salah, L. Cot, Elaboration of inorganic microfiltration membranes with hydroxyapatite applied to the treatment of wastewater from sea product industry, Journal of Membrane Science, 247 (2005) 1-9.
[45] M.B. Asif, Z. Zhang, Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects, Chemical Engineering Journal, 418 (2021) 129481.
[46] Q. Gu, T.C.A. Ng, Y. Bao, H.Y. Ng, S.C. Tan, J. Wang, Developing better ceramic membranes for water and wastewater Treatment: Where microstructure integrates with chemistry and functionalities, Chemical Engineering Journal, 428 (2022) 130456.
[47] T. Arumugham, N.J. Kaleekkal, S. Gopal, J. Nambikkattu, R. K, A.M. Aboulella, S. Ranil Wickramasinghe, F. Banat, Recent developments in porous ceramic membranes for wastewater treatment and desalination: A review, Journal of Environmental Management, 293 (2021) 112925.
[48] J. Ravi, M.H.D. Othman, T. Matsuura, M. Ro'il Bilad, T.H. El-badawy, F. Aziz, A.F. Ismail, M.A. Rahman, J. Jaafar, Polymeric membranes for desalination using membrane distillation: A review, Desalination, 490 (2020) 114530.
[49] B. Keskin, B. Zeytuncu-Gökoğlu, I. Koyuncu, Polymer inclusion membrane applications for transport of metal ions: A critical review, Chemosphere, 279 (2021) 130604.
[50] A. Mollahosseini, A. Abdelrasoul, Recent advances in thin film composites membranes for brackish groundwater treatment with critical focus on Saskatchewan water sources, Journal of Environmental Sciences, 81 (2019) 181-194.
[51] P.S. Goh, A.F. Ismail, Chemically functionalized polyamide thin film composite membranes: The art of chemistry, Desalination, 495 (2020) 114655.
[52] P. Karami, B. Khorshidi, M. McGregor, J.T. Peichel, J.B.P. Soares, M. Sadrzadeh, Thermally stable thin film composite polymeric membranes for water treatment: A review, Journal of Cleaner Production, 250 (2020) 119447.
[53] F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li, Progress in the production and modification of PVDF membranes, Journal of Membrane Science, 375 (2011) 1-27.
[54] G.-d. Kang, Y.-m. Cao, Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review, Journal of Membrane Science, 463 (2014) 145-165.
[55] I. Luzinov, S. Minko, V.V. Tsukruk, Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers, Progress in Polymer Science, 29 (2004) 635-698.
[56] S. Minko, Responsive Polymer Brushes, Journal of Macromolecular Science, Part C, 46 (2006) 397-420.
[57] Z. Liu, W. Wang, R. Xie, X.-J. Ju, L.-Y. Chu, Stimuli-responsive smart gating membranes, Chemical Society Reviews, 45 (2016) 460-475.
[58] T. Kwon, J. Chun, ON/OFF Switchable Nanocomposite Membranes for Separations, Polymers, 12 (2020) 2415.
[59] Y.-S. Jun, X. Wu, D. Ghim, Q. Jiang, S. Cao, S. Singamaneni, Photothermal Membrane Water Treatment for Two Worlds, Accounts of Chemical Research, 52 (2019) 1215-1225.
[60] P. Wang, Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight, Environmental Science: Nano, 5 (2018) 1078-1089.
[61] L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, J. Zhu, Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation, Science Advances, 2 (2016) e1501227.
[62] F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, G. Yu, Highly efficient solar vapour generation via hierarchically nanostructured gels, Nature Nanotechnology, 13 (2018) 489-495.
[63] P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine, Accounts of Chemical Research, 41 (2008) 1578-1586.
[64] S.L. and, M.A. El-Sayed, Optical Properties and Ultrafast Dynamics of Metallic Nanocrystals, Annual Review of Physical Chemistry, 54 (2003) 331-366.
[65] H. Sarnago, A. Mediano, L. Ó, High Efficiency AC–AC Power Electronic Converter Applied to Domestic Induction Heating, IEEE Transactions on Power Electronics, 27 (2012) 3676-3684.
[66] O. Lucía, P. Maussion, E.J. Dede, J.M. Burdío, Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges, IEEE Transactions on Industrial Electronics, 61 (2014) 2509-2520.
[67] A. Anvari, K.M. Kekre, A. Azimi Yancheshme, Y. Yao, A. Ronen, Membrane distillation of high salinity water by induction heated thermally conducting membranes, Journal of Membrane Science, 589 (2019) 117253.
[68] X. Xuan, Joule heating in electrokinetic flow, ELECTROPHORESIS, 29 (2008) 33-43.
[69] A.V. Dudchenko, C. Chen, A. Cardenas, J. Rolf, D. Jassby, Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes, Nature Nanotechnology, 12 (2017) 557-563.
[70] A.V. Dudchenko, J. Rolf, K. Russell, W. Duan, D. Jassby, Organic fouling inhibition on electrically conducting carbon nanotube–polyvinyl alcohol composite ultrafiltration membranes, Journal of Membrane Science, 468 (2014) 1-10.
[71] C.F. de Lannoy, D. Jassby, D.D. Davis, M.R. Wiesner, A highly electrically conductive polymer–multiwalled carbon nanotube nanocomposite membrane, Journal of Membrane Science, 415-416 (2012) 718-724.
[72] M. Elimelech, W.A. Phillip, The Future of Seawater Desalination: Energy, Technology, and the Environment, Science, 333 (2011) 712.
[73] M.C.M. van Loosdrecht, D. Brdjanovic, Anticipating the next century of wastewater treatment, Science, 344 (2014) 1452.
[74] M.S. El-Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, Journal of Membrane Science, 285 (2006) 4-29.
[75] M. Khayet, T. Matsuura, Introduction to Membrane Distillation, in, 2011, pp. 1-16.
[76] M.A.E.-R. Abu-Zeid, Y. Zhang, H. Dong, L. Zhang, H.-L. Chen, L. Hou, A comprehensive review of vacuum membrane distillation technique, Desalination, 356 (2015) 1-14.
[77] A. Deshmukh, C. Boo, V. Karanikola, S. Lin, A.P. Straub, T. Tong, D.M. Warsinger, M. Elimelech, Membrane distillation at the water-energy nexus: limits, opportunities, and challenges, Energy & Environmental Science, 11 (2018) 1177-1196.
[78] D. González, J. Amigo, F. Suárez, Membrane distillation: Perspectives for sustainable and improved desalination, Renewable and Sustainable Energy Reviews, 80 (2017) 238-259.
[79] A. Politano, P. Argurio, G. Di Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H.A. Arafat, E. Curcio, Photothermal Membrane Distillation for Seawater Desalination, Advanced Materials, 29 (2017) 1603504.
[80] A. Politano, G. Di Profio, E. Fontananova, V. Sanna, A. Cupolillo, E. Curcio, Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes, Desalination, 451 (2019) 192-199.
[81] H. Ye, X. Li, L. Deng, P. Li, T. Zhang, X. Wang, B.S. Hsiao, Silver Nanoparticle-Enabled Photothermal Nanofibrous Membrane for Light-Driven Membrane Distillation, Industrial & Engineering Chemistry Research, 58 (2019) 3269-3281.
[82] B. Gong, H. Yang, S. Wu, G. Xiong, J. Yan, K. Cen, Z. Bo, K. Ostrikov, Graphene Array-Based Anti-fouling Solar Vapour Gap Membrane Distillation with High Energy Efficiency, Nano-Micro Letters, 11 (2019) 51.
[83] J. Wu, K.R. Zodrow, P.B. Szemraj, Q. Li, Photothermal nanocomposite membranes for direct solar membrane distillation, Journal of Materials Chemistry A, 5 (2017) 23712-23719.
[84] X. Wu, Q. Jiang, D. Ghim, S. Singamaneni, Y.-S. Jun, Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process, Journal of Materials Chemistry A, 6 (2018) 18799-18807.
[85] X. Han, W. Wang, K. Zuo, L. Chen, L. Yuan, J. Liang, Q. Li, P.M. Ajayan, Y. Zhao, J. Lou, Bio-derived ultrathin membrane for solar driven water purification, Nano Energy, 60 (2019) 567-575.
[86] P.D. Dongare, A. Alabastri, O. Neumann, P. Nordlander, N.J. Halas, Solar thermal desalination as a nonlinear optical process, Proceedings of the National Academy of Sciences, 116 (2019) 13182.
[87] P.D. Dongare, A. Alabastri, S. Pedersen, K.R. Zodrow, N.J. Hogan, O. Neumann, J. Wu, T. Wang, A. Deshmukh, M. Elimelech, Q. Li, P. Nordlander, N.J. Halas, Nanophotonics-enabled solar membrane distillation for off-grid water purification, Proceedings of the National Academy of Sciences, 114 (2017) 6936.
[88] C. Zhang, H.-Q. Liang, Z.-K. Xu, Z. Wang, Harnessing Solar-Driven Photothermal Effect toward the Water–Energy Nexus, Advanced Science, 6 (2019) 1900883.
[89] W. Wang, Y. Shi, C. Zhang, S. Hong, L. Shi, J. Chang, R. Li, Y. Jin, C. Ong, S. Zhuo, P. Wang, Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation, Nature Communications, 10 (2019) 3012.
[90] X. Meng, T. Chen, Y. Li, S. Liu, H. Pan, Y. Ma, Z. Chen, Y. Zhang, S. Zhu, Assembly of carbon nanodots in graphene-based composite for flexible electro-thermal heater with ultrahigh efficiency, Nano Research, 12 (2019) 2498-2508.
[91] L. Song, Q. Huang, Y. Huang, R. Bi, C. Xiao, An electro-thermal braid-reinforced PVDF hollow fiber membrane for vacuum membrane distillation, Journal of Membrane Science, 591 (2019) 117359.
[92] A. Asad, D. Sameoto, M. Sadrzadeh, Chapter 1 - Overview of membrane technology, in: M. Sadrzadeh, T. Mohammadi (Eds.) Nanocomposite Membranes for Water and Gas Separation, Elsevier, 2020, pp. 1-28.
[93] S.S. Ray, S.-S. Chen, C.T. Ngoc Dan, H.-T. Hsu, H.-M. Chang, N.C. Nguyen, H.-T. Nguyen, Casting of a superhydrophobic membrane composed of polysulfone/Cera flava for improved desalination using a membrane distillation process, RSC Advances, 8 (2018) 1808-1819.
[94] Z. Guo, R. Xiu, S. Lu, X. Xu, S. Yang, Y. Xiang, Submicro-pore containing poly(ether sulfones)/polyvinylpyrrolidone membranes for high-temperature fuel cell applications, Journal of Materials Chemistry A, 3 (2015) 8847-8854.
[95] X.Q. Cheng, L. Shao, C.H. Lau, High flux polyethylene glycol based nanofiltration membranes for water environmental remediation, Journal of Membrane Science, 476 (2015) 95-104.
[96] C. Wang, Z. Li, J. Chen, Z. Li, Y. Yin, L. Cao, Y. Zhong, H. Wu, Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination, Journal of Membrane Science, 523 (2017) 273-281.
[97] W. Sun, T. Chen, C. Chen, J. Li, A study on membrane morphology by digital image processing, Journal of Membrane Science, 305 (2007) 93-102.
[98] J. Widakdo, Y.-H. Chiao, Y.-L. Lai, A.C. Imawan, F.-M. Wang, W.-S. Hung, Mechanism of a Self-Assembling Smart and Electrically Responsive PVDF–Graphene Membrane for Controlled Gas Separation, ACS Applied Materials & Interfaces, 12 (2020) 30915-30924.
[99] J. S, A. Surendran, S. Ghosh, S. Anandhan, A. Venimadhav, Electroactive poly(vinylidene fluoride) fluoride separator for sodium ion battery with high coulombic efficiency, Solid State Ionics, 292 (2016).
[100] W.-S. Hung, S.-Y. Ho, Y.-H. Chiao, C.-C. Chan, W.-Y. Woon, M.-J. Yin, C.-Y. Chang, Y.M. Lee, Q.-F. An, Electrical Tunable PVDF/Graphene Membrane for Controlled Molecule Separation, Chemistry of Materials, 32 (2020) 5750-5758.
[101] T. Huang, S. Yang, P. He, J. Sun, S. Zhang, D. Li, Y. Meng, J. Zhou, H. Tang, J. Liang, G. Ding, X. Xie, Phase-Separation-Induced PVDF/Graphene Coating on Fabrics toward Flexible Piezoelectric Sensors, ACS Applied Materials & Interfaces, 10 (2018) 30732-30740.
[102] Y.C. Woo, Y. Kim, W.-G. Shim, L.D. Tijing, M. Yao, L.D. Nghiem, J.-S. Choi, S.-H. Kim, H.K. Shon, Graphene/PVDF flat-sheet membrane for the treatment of RO brine from coal seam gas produced water by air gap membrane distillation, Journal of Membrane Science, 513 (2016) 74-84.
[103] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature Nanotechnology, 8 (2013) 235-246.
[104] L. Eykens, K. De Sitter, C. Dotremont, L. Pinoy, B. Van der Bruggen, Membrane synthesis for membrane distillation: A review, Separation and Purification Technology, 182 (2017) 36-51.
[105] S. Munirasu, F. Banat, A.A. Durrani, M.A. Haija, Intrinsically superhydrophobic PVDF membrane by phase inversion for membrane distillation, Desalination, 417 (2017) 77-86.
[106] M. Rezaei, D.M. Warsinger, J.H. Lienhard V, M.C. Duke, T. Matsuura, W.M. Samhaber, Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention, Water Research, 139 (2018) 329-352.
[107] Z. Chen, L. Dong, D. Yang, H. Lu, Superhydrophobic Graphene-Based Materials: Surface Construction and Functional Applications, Advanced Materials, 25 (2013) 5352-5359.
[108] L.M. Johnson, L. Gao, C.W. Shields Iv, M. Smith, K. Efimenko, K. Cushing, J. Genzer, G.P. López, Elastomeric microparticles for acoustic mediated bioseparations, Journal of Nanobiotechnology, 11 (2013) 22.
[109] H.J. Kim, S.W. Han, J.H. Kim, H.O. Seo, Y.D. Kim, Oil absorption capacity of bare and PDMS-coated PET non-woven fabric; dependency of fiber strand thickness and oil viscosity, Current Applied Physics, 18 (2018) 369-376.
[110] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, 97 (2006) 187401.
[111] S. T. M, P.T. Lin, Y.-H. Chiao, J. Widakdo, C.-H. Chuang, S.F. Rahmadhanty, S. Yoshikawa, W.-S. Hung, High performance self-heated membrane distillation system for energy efficient desalination process, Journal of Materials Chemistry A, 9 (2021) 7868-7880.
[112] T.M. Subrahmanya, J. Widakdo, S. Mani, H.F.M. Austria, W.-S. Hung, M. H K, J.K. Nagar, C.-C. Hu, J.-Y. Lai, An eco-friendly and reusable syringe filter membrane for the efficient removal of dyes from water via low pressure filtration assisted self-assembling of graphene oxide and SBA-15/PDA, Journal of Cleaner Production, 349 (2022) 131425.
[113] J. Gao, L. Shi, Y. Jiang, L. Zhou, Y. He, Formation of lipase Candida sp. 99–125 CLEAs in mesoporous silica: characterization and catalytic properties, Catalysis Science & Technology, 3 (2013) 3353-3359.
[114] P.-Y. Hoo, A.Z. Abdullah, Direct synthesis of mesoporous 12-tungstophosphoric acid SBA-15 catalyst for selective esterification of glycerol and lauric acid to monolaurate, Chemical Engineering Journal, 250 (2014) 274-287.
[115] J.-K. Gao, L.-A. Hou, G.-H. Zhang, P. Gu, Facile functionalized of SBA-15 via a biomimetic coating and its application in efficient removal of uranium ions from aqueous solution, Journal of Hazardous Materials, 286 (2015) 325-333.
[116] H. Xu, Y. Gao, Q. Tao, A. Li, Z. Liu, Y. Jiang, H. Liu, R. Yang, Y. Liu, Synthesizing a surface-imprinted polymer based on the nanoreactor SBA-15 for optimizing the adsorption of salicylic acid from aqueous solution by response surface methodology, New Journal of Chemistry, 45 (2021) 6192-6205.
[117] X. Zheng, Q. Li, J. Tian, H. Zhan, C. Yu, S. Wang, X. Sun, Novel Strategy of Mussel-Inspired Immobilization of Naringinase with High Activity Using a Polyethylenimine/Dopamine Co-deposition Method, ACS Omega, 6 (2021) 3267-3277.
[118] Y. Song, H. Jiang, B. Wang, Y. Kong, J. Chen, Silver-Incorporated Mussel-Inspired Polydopamine Coatings on Mesoporous Silica as an Efficient Nanocatalyst and Antimicrobial Agent, ACS Applied Materials & Interfaces, 10 (2018) 1792-1801.
[119] S. Schlücker, Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications, Angewandte Chemie International Edition, 53 (2014) 4756-4795.
[120] W. Ye, D. Wang, H. Zhang, F. Zhou, W. Liu, Electrochemical growth of flowerlike gold nanoparticles on polydopamine modified ITO glass for SERS application, Electrochimica Acta, 55 (2010) 2004-2009.
[121] P. Xu, H. Yu, X. Li, Functionalized Mesoporous Silica for Microgravimetric Sensing of Trace Chemical Vapors, Analytical Chemistry, 83 (2011) 3448-3454.
[122] S. Janakiraman, A. Surendran, S. Ghosh, S. Anandhan, A. Venimadhav, Electroactive poly(vinylidene fluoride) fluoride separator for sodium ion battery with high coulombic efficiency, Solid State Ionics, 292 (2016) 130-135.
[123] T.L. do Amaral Montanheiro, F.H. Cristóvan, J.P.B. Machado, D.B. Tada, N. Durán, A.P. Lemes, Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites, Journal of Materials Research, 30 (2015) 55-65.
[124] S. Mallakpour, M. Dinari, V. Behranvand, Anionic clay intercalated by multi-walled carbon nanotubes as an efficient 3D nanofiller for the preparation of high-performance l-alanine amino acid containing poly(amide-imide) nanocomposites, Journal of Materials Science, 49 (2014) 7004-7013.
[125] B. Pratap Singh, V. Choudhary, S. Teotia, T. Kumar Gupta, V. Nand Singh, S. Rangnath Dhakate, R. Behari Mathur, Solvent Free, Efficient, Industrially Viable, Fast Dispersion Process Based Amine Modified MWCNT Reinforced Epoxy Composites Of Superior Mechanical Properties, Advanced Materials Letters, 6 (2015) 104-113.
[126] C. Hu, Y. Zhang, X. Wang, L. Xing, L. Shi, R. Ran, Stable, Strain-Sensitive Conductive Hydrogel with Antifreezing Capability, Remoldability, and Reusability, ACS Applied Materials & Interfaces, 10 (2018) 44000-44010.
[127] F.E. Ahmed, B.S. Lalia, R. Hashaikeh, N. Hilal, Intermittent direct joule heating of membrane surface for seawater desalination by air gap membrane distillation, Journal of Membrane Science, 648 (2022) 120390.
[128] P.D. Dongare, A. Alabastri, S. Pedersen, K.R. Zodrow, N.J. Hogan, O. Neumann, J. Wu, T. Wang, A. Deshmukh, M. Elimelech, Q. Li, P. Nordlander, N.J. Halas, Nanophotonics-enabled solar membrane distillation for off-grid water purification, Proceedings of the National Academy of Sciences, 114 (2017) 6936-6941.
[129] P.D. Dongare, A. Alabastri, O. Neumann, P. Nordlander, N.J. Halas, Solar thermal desalination as a nonlinear optical process, Proceedings of the National Academy of Sciences, 116 (2019) 13182-13187.
[130] R. Kishor, D. Purchase, G.D. Saratale, R.G. Saratale, L.F.R. Ferreira, M. Bilal, R. Chandra, R.N. Bharagava, Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety, Journal of Environmental Chemical Engineering, 9 (2021) 105012.
[131] V.K. Gupta, Suhas, Application of low-cost adsorbents for dye removal – A review, Journal of Environmental Management, 90 (2009) 2313-2342.
[132] E. Rathore, K. Biswas, Selective and ppb level removal of Hg(ii) from water: synergistic role of graphene oxide and SnS2, Journal of Materials Chemistry A, 6 (2018) 13142-13152.
[133] A. Bhatnagar, M. Sillanpää, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review, Chemical Engineering Journal, 157 (2010) 277-296.
[134] M. Kamali, L. Appels, E.E. Kwon, T.M. Aminabhavi, R. Dewil, Biochar in water and wastewater treatment - a sustainability assessment, Chemical Engineering Journal, 420 (2021) 129946.
[135] M. Al-Shannag, Z. Al-Qodah, K. Bani-Melhem, M.R. Qtaishat, M. Alkasrawi, Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance, Chemical Engineering Journal, 260 (2015) 749-756.
[136] P. Kush, K. Deori, A. Kumar, S. Deka, Efficient hydrogen/oxygen evolution and photocatalytic dye degradation and reduction of aqueous Cr(vi) by surfactant free hydrophilic Cu2ZnSnS4 nanoparticles, Journal of Materials Chemistry A, 3 (2015) 8098-8106.
[137] N.K. Gupta, Y. Ghaffari, S. Kim, J. Bae, K.S. Kim, M. Saifuddin, Photocatalytic Degradation of Organic Pollutants over MFe2O4 (M = Co, Ni, Cu, Zn) Nanoparticles at Neutral pH, Scientific Reports, 10 (2020) 4942.
[138] P. Sirajudheen, P. Karthikeyan, S. Meenakshi, Mechanistic performance of organic pollutants removal from water using Zn/Al layered double hydroxides imprinted carbon composite, Surfaces and Interfaces, 20 (2020) 100581.
[139] V. Yönten, N.K. Sanyürek, M.R. Kivanç, A thermodynamic and kinetic approach to adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Vitis vinifera L, Surfaces and Interfaces, 20 (2020) 100529.
[140] F.S.A. Khan, N.M. Mubarak, Y.H. Tan, M. Khalid, R.R. Karri, R. Walvekar, E.C. Abdullah, S. Nizamuddin, S.A. Mazari, A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes, Journal of Hazardous Materials, 413 (2021) 125375.
[141] W. Gao, M. Majumder, L.B. Alemany, T.N. Narayanan, M.A. Ibarra, B.K. Pradhan, P.M. Ajayan, Engineered Graphite Oxide Materials for Application in Water Purification, ACS Applied Materials & Interfaces, 3 (2011) 1821-1826.
[142] L. Chen, J.-H. Moon, X. Ma, L. Zhang, Q. Chen, L. Chen, R. Peng, P. Si, J. Feng, Y. Li, J. Lou, L. Ci, High performance graphene oxide nanofiltration membrane prepared by electrospraying for wastewater purification, Carbon, 130 (2018) 487-494.
[143] E.F.D. Januário, T.B. Vidovix, N.d.C.L. Beluci, R.M. Paixão, L.H.B.R.d. Silva, N.C. Homem, R. Bergamasco, A.M.S. Vieira, Advanced graphene oxide-based membranes as a potential alternative for dyes removal: A review, Science of The Total Environment, 789 (2021) 147957.
[144] G. Zhao, R. Hu, X. Zhao, Y. He, H. Zhu, High flux nanofiltration membranes prepared with a graphene oxide homo-structure, Journal of Membrane Science, 585 (2019) 29-37.
[145] K. Nakagawa, M. Kunimatsu, K. Yasui, T. Yoshioka, T. Shintani, T. Yasui, E. Kamio, W.-S. Hung, K.-R. Lee, S.C. Edman Tsang, H. Matsuyama, HNb3O8 Nanosheet–Graphene Oxide Composite Membranes for Molecular Separation, ACS Applied Nano Materials, 4 (2021) 3455-3466.
[146] W.L. Xu, C. Fang, F. Zhou, Z. Song, Q. Liu, R. Qiao, M. Yu, Self-Assembly: A Facile Way of Forming Ultrathin, High-Performance Graphene Oxide Membranes for Water Purification, Nano Letters, 17 (2017) 2928-2933.
[147] H. Zeng, Z. Yu, L. Shao, X. Li, M. Zhu, Y. Liu, X. Feng, X. Zhu, A novel strategy for enhancing the performance of membranes for dyes separation: Embedding PAA@UiO-66-NH2 between graphene oxide sheets, Chemical Engineering Journal, 403 (2021) 126281.
[148] C. Buelke, A. Alshami, J. Casler, Y. Lin, M. Hickner, I.H. Aljundi, Evaluating graphene oxide and holey graphene oxide membrane performance for water purification, Journal of Membrane Science, 588 (2019) 117195.
[149] R. Chang, S. Ma, X. Guo, J. Xu, C. Zhong, R. Huang, J. Ma, Hierarchically Assembled Graphene Oxide Composite Membrane with Self-Healing and High-Efficiency Water Purification Performance, ACS Applied Materials & Interfaces, 11 (2019) 46251-46260.
[150] W.-S. Hung, C.-H. Tsou, M. De Guzman, Q.-F. An, Y.-L. Liu, Y.-M. Zhang, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Cross-Linking with Diamine Monomers To Prepare Composite Graphene Oxide-Framework Membranes with Varying d-Spacing, Chemistry of Materials, 26 (2014) 2983-2990.
[151] E.F. Aboelfetoh, M.E. Zain Elabedien, E.-Z.M. Ebeid, Effective treatment of industrial wastewater applying SBA-15 mesoporous silica modified with graphene oxide and hematite nanoparticles, Journal of Environmental Chemical Engineering, 9 (2021) 104817.
[152] P. Liu, C. Zhu, A.P. Mathew, Mechanically robust high flux graphene oxide - nanocellulose membranes for dye removal from water, Journal of Hazardous Materials, 371 (2019) 484-493.
[153] E. Salehi, P. Daraei, A. Arabi Shamsabadi, A review on chitosan-based adsorptive membranes, Carbohydrate Polymers, 152 (2016) 419-432.
[154] M.R. Adam, M.H.D. Othman, R. Abu Samah, M.H. Puteh, A.F. Ismail, A. Mustafa, M. A. Rahman, J. Jaafar, Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development, Separation and Purification Technology, 213 (2019) 114-132.
[155] T.S. Vo, M.M. Hossain, H.M. Jeong, K. Kim, Heavy metal removal applications using adsorptive membranes, Nano Convergence, 7 (2020) 36.
[156] R. Das, C.D. Vecitis, A. Schulze, B. Cao, A.F. Ismail, X. Lu, J. Chen, S. Ramakrishna, Recent advances in nanomaterials for water protection and monitoring, Chemical Society Reviews, 46 (2017) 6946-7020.
[157] C.P. Okoli, P.N. Diagboya, I.O. Anigbogu, B.I. Olu-Owolabi, K.O. Adebowale, Competitive biosorption of Pb(II) and Cd(II) ions from aqueous solutions using chemically modified moss biomass (Barbula lambarenensis), Environmental Earth Sciences, 76 (2016) 33.
[158] L. Zhang, Y.-H. Zhao, R. Bai, Development of a multifunctional membrane for chromatic warning and enhanced adsorptive removal of heavy metal ions: Application to cadmium, Journal of Membrane Science, 379 (2011) 69-79.
[159] A. Sepehri, M.-H. Sarrafzadeh, Effect of nitrifiers community on fouling mitigation and nitrification efficiency in a membrane bioreactor, Chemical Engineering and Processing - Process Intensification, 128 (2018) 10-18.
[160] B.I. Olu-Owolabi, P.N. Diagboya, F.M. Mtunzi, R.-A. Düring, Utilizing eco-friendly kaolinite-biochar composite adsorbent for removal of ivermectin in aqueous media, Journal of Environmental Management, 279 (2021) 111619.
[161] X. Yang, Z. Shi, L. Liu, Adsorption of Sb(III) from aqueous solution by QFGO particles in batch and fixed-bed systems, Chemical Engineering Journal, 260 (2015) 444-453.
[162] S. Kabiri, D.N.H. Tran, S. Azari, D. Losic, Graphene-Diatom Silica Aerogels for Efficient Removal of Mercury Ions from Water, ACS Applied Materials & Interfaces, 7 (2015) 11815-11823.
[163] A. Lamy-Mendes, R.F. Silva, L. Durães, Advances in carbon nanostructure–silica aerogel composites: a review, Journal of Materials Chemistry A, 6 (2018) 1340-1369.
[164] N. Tang, J. Liang, C. Niu, H. Wang, Y. Luo, W. Xing, S. Ye, C. Liang, H. Guo, J. Guo, Y. Zhang, G. Zeng, Amidoxime-based materials for uranium recovery and removal, Journal of Materials Chemistry A, 8 (2020) 7588-7625.
[165] T.-H. Liou, Y.K. Tseng, S.-M. Liu, Y.-T. Lin, S.-Y. Wang, R.-T. Liu, Green synthesis of mesoporous graphene oxide/silica nanocomposites from rich husk ash: Characterization and adsorption performance, Environmental Technology & Innovation, 22 (2021) 101424.
[166] S. T. M, A.B. Arshad, P.T. Lin, J. Widakdo, M. H. K, H.F.M. Austria, C.-C. Hu, J.-Y. Lai, W.-S. Hung, A review of recent progress in polymeric electrospun nanofiber membranes in addressing safe water global issues, RSC Advances, 11 (2021) 9638-9663.
[167] Y. Zhou, J. Lu, Y. Zhou, Y. Liu, Recent advances for dyes removal using novel adsorbents: A review, Environmental Pollution, 252 (2019) 352-365.
[168] M. Sivakumar, S. Yadav, W.-S. Hung, J.-Y. Lai, One-pot eco-friendly synthesis of edge-carboxylate graphene via dry ball milling for enhanced removal of acid and basic dyes from single or mixed aqueous solution, Journal of Cleaner Production, 263 (2020) 121498.
[169] M.N. Costa, B. Veigas, J.M. Jacob, D.S. Santos, J. Gomes, P.V. Baptista, R. Martins, J. Inácio, E. Fortunato, A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper, Nanotechnology, 25 (2014) 094006.
[170] P. Zhang, J.-L. Gong, G.-M. Zeng, C.-H. Deng, H.-C. Yang, H.-Y. Liu, S.-Y. Huan, Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal, Chemical Engineering Journal, 322 (2017) 657-666.
[171] C. Xu, A. Cui, Y. Xu, X. Fu, Graphene oxide–TiO2 composite filtration membranes and their potential application for water purification, Carbon, 62 (2013) 465-471.
[172] Y. Zhang, L.-j. Huang, Y.-x. Wang, J.-g. Tang, Y. Wang, M.-m. Cheng, Y.-c. Du, K. Yang, M.J. Kipper, M. Hedayati, The Preparation and Study of Ethylene Glycol-Modified Graphene Oxide Membranes for Water Purification, Polymers, 11 (2019) 188.
[173] Z. Zhu, L. Wang, Y. Xu, Q. Li, J. Jiang, X. Wang, Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection, Journal of Colloid and Interface Science, 504 (2017) 429-439.
[174] M.-m. Cheng, L.-j. Huang, Y.-x. Wang, Y.-c. Zhao, J.-g. Tang, Y. Wang, Y. Zhang, M. Hedayati, M.J. Kipper, S.R. Wickramasinghe, Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification, Journal of Materials Science, 54 (2019) 252-264.

無法下載圖示 全文公開日期 2024/08/10 (校內網路)
全文公開日期 2024/08/10 (校外網路)
全文公開日期 2024/08/10 (國家圖書館:臺灣博碩士論文系統)
QR CODE