簡易檢索 / 詳目顯示

研究生: 簡欣慈
Shin-Tsz Jian
論文名稱: 鰭式橫向功率金氧半場效電晶體之研究
Study of Fin-Based Lateral Power MOSFET
指導教授: 莊敏宏
Miin-Horng Juang
口試委員: 張勝良
Sheng-Lyang Jang
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 59
中文關鍵詞: 功率金氧半場效電晶體鰭式橫向功率金氧半場效電晶體橫向擴散金屬氧化物半導體
外文關鍵詞: power MOSFET, fin-based power MOSFET, LDMOS
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著市場發展和科學技術進步,功率元件對於半導體產業已經是不可或缺的存在。本論文研究主題是廣泛應用高壓領域的LDMOS,由於LDMOS具有出色的熱穩定性、高增益、高效率開關、能夠承受高擊穿電壓和高工作電流等優點,因此它在射頻電路中佔有一席之地,至今仍然為大宗。
本論文的重點是利用Sentaurus TCAD軟體對半導體功率器件進行模擬分析。首先,對照組採用傳統平面橫向金屬氧化物電晶體模擬,實驗組採用鰭式橫向功率金氧半場效電晶體。根據模擬結果,將傳統平面橫向金屬氧化物電晶體與鰭式橫向功率金氧半場效電晶體相比,在保持相同崩潰電壓的情況下,鰭式橫向功率金氧半場效電晶體實現了更低的導通電阻,且具有高導通電流的特性,這是因為鰭式結構,可以提高閘極的控制通道能力,使得有效通道增加,進而提升電流。
接續討論在調整不同電性參數對功率MOSFET的影響,調整的主要參數是基板濃度、n-漂移層濃度、漂移層深度、漂移層寬度,並且要在佈局面積小和崩潰電壓40 V的前提下,找出元件最佳規格。而鰭式橫向功率金氧半場效電晶體的最佳尺寸是在元件長度4.5 μm、漂移層長度1.5 μm、深度3 μm,然後將其設置為最佳化的元件規格。透過使用N型基板濃度或P型基板濃度,以及調整適當摻雜濃度的漂移層,可以將鰭式橫向功率金氧半場效電晶體展現出最佳化的電特性結果,其導通電阻約為42 〖kΩ∙μm〗^2,阻斷電壓為約 46 V。


With the development of the market and advance in science technology, power device is indispensable to the semiconductor industry. The research topic of this thesis is about LDMOS (Laterally-Diffused Metal-Oxide Semiconductor) which was used widely in high voltage applications. LDMOS can show excellent thermal stability, high gain, high efficiency switching, capability to sustain high breakdown voltage and high operating current, which is promising for RF circuit applications.
This thesis focuses on simulation and analysis of semiconductor power devices by using Sentaurus TCAD software. Based on the simulation results, when compared to conventional planar power MOSFET, fin-based power MOSFET achieves lower specific on-resistance while maintaining the same breakdown voltage. As a result, the fin-based structure can improve the gate controllability.
Furthermore, this thesis discusses the influence of adjusting different electrical parameters for power MOSFET. The main device parameters are substrate concentration, n- drift layer concentration, n- drift layer depth, and n- drift layer length. For the layout area and the blocking voltage 40 V, the optimum fin-based power MOSFET is achieved for the device parameters with device length 4.5 μm, n- drift layer length 1.5 μm, and n- drift layer depth 3 μm. By using n-drift layer with proper doping concentration of n-substrate or p-substrate, the electric characteristics of fin-based power MOSFET can show an on-state resistance of about 42 kΩ∙μm2 for a blocking voltage of about 46 V.

摘要 I Abstract IV Acknowledgement V Contents VI List of Figures VIII List of Tables XI Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Overview of power MOSFET 2 1-2-1 Conventional planar power MOSFET 2 1-2-2 Fin-based power MOSFET 5 1-3 Device physical mechanism 6 1-3-1 Zener breakdown 6 1-3-2 Punch-through breakdown 7 1-3-3 Avalanche breakdown 7 1-4 Physical models of TCAD 8 Chapter 2 Device fabrication 10 2-1 Fin-based power MOSFET with n-type fabrication 11 2-2 Fin-based power MOSFET with p-type fabrication 16 Chapter 3 Results and Discussion 22 3-1 Conventional planar power MOSFET 22 3-1-1 Comparison with Fin-based power MOSFET 23 3-1-2 Comparison between N-Sub and P-Sub 25 3-2 Fin-based power MOSFET with n-type substrate 28 3-2-1 In different n- drift layer length condition 29 3-2-2 In different n- drift layer concentration condition 31 3-2-3 In different n-type substrate concentration condition 33 3-3 Fin-based power MOSFET with p-type substrate 35 3-3-1 In different n- drift layer depth condition 36 3-3-2 In different p-type substrate concentration condition 38 3-3-3 Comparison between N-Sub and P-Sub 40 Chapter 4 Conclusion 43 Reference 44

[1] J. Kraft, B. Loffler, M. Knaipp, and E. Wachmann, "Hot Carrier Degradation of p-LDMOS Transistors for RF Applications," 2007: IEEE International Reliability Physics Symposium Proceedings. 45th Annual, pp. 626-627, doi: 10.1109/relphy.2007.369983.
[2] A. Kashif, S. Azam, and M. Imran, "Switching behavior of RF-LDMOS for class-F power amplifier in TCAD," 2014: IEEE Proceedings of 2014 11th International Bhurban Conference on Applied Sciences & Technology (IBCAST) Islamabad, Pakistan, pp. 478-481, doi: 10.1109/ibcast.2014.6778192.
[3] G. Arienti et al., "Optimization of HV LDMOS devices accounting for packaging interaction," 2015: IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD), pp. 305-308, doi: 10.1109/ispsd.2015.7123450.
[4] A. Kashif, S. Azam, K. Hayat, and M. Imran, "Advantage of TCAD to analyze RF-LDMOS for the broadband power amplifier," 2013: IEEE Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST), pp. 385-388, doi: 10.1109/ibcast.2013.6512185.
[5] J. F. Chen, W. Kuo-Ming, L. Kaung-Wan, S. Yan-Kuin, and S. L. Hsu, "Hot-carrier reliability in submicrometer 40V LDMOS transistors with thick gate oxide," 2005: IEEE, pp. 560-564, doi: 10.1109/relphy.2005.1493148.
[6] J. Wei, Y. Wang, M. Zhang, H. Jiang, and K. J. Chen, "High-speed power MOSFET with low reverse transfer capacitance using a trench/planar gate architecture," 2017 : IEEE International Reliability Physics Symposium, pp. 331-334, doi: 10.23919/ispsd.2017.7988956.
[7] J. C. W. Ng, J. K. O. Sin, and G. Lingpeng, "A Novel Planar Power MOSFET With Laterally Uniform Body and Ion-Implanted JFET Region," IEEE Electron Device Letters, vol. 29, no. 4, pp. 375-377, 2008, doi: 10.1109/led.2008.917818.
[8] J. C. W. Ng and J. K. O. Sin, "A Low-Voltage Planar Power MOSFET With a Segmented JFET Region," IEEE Transactions on Electron Devices, vol. 56, no. 8, pp. 1761-1766, 2009, doi: 10.1109/ted.2009.2024105.
[9] W. Yu-Sheng and S. Pin, "Sensitivity of Multigate mosfets to Process Variations–-An Assessment Based on Analytical Solutions of 3-D Poisson's Equation," IEEE Transactions on Nanotechnology, vol. 7, no. 3, pp. 299-304, 2008, doi: 10.1109/tnano.2008.917835.
[10] R. F. Pierret and G. W. Neudeck, Advanced semiconductor fundamentals. Addison-Wesley Reading, MA, 1987.
[11] S. M. Sze, Y. Li, and K. K. Ng, Physics of semiconductor devices. John wiley & sons, 2021.
[12] D. A. Neamen, Semiconductor physics and devices: basic principles. McGraw-hill, 2003.
[13] C. Zhang, Y. Li, W. Yue, Z. Li, and X. Fu, "A Novel LDMOS with Quadruple RESURF Effect Breaking Silicon Limit," 2019: IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 1-3, doi: 10.1109/edssc.2019.8754161.
[14] K. Kinoshita, Y. Kawaguchi, and A. Nakagawa, "A new adaptive resurf concept for 20 V LDMOS without breakdown voltage degradation at high current," 1998:IEEE Proceedings of the 10th International Symposium on Power Semiconductor Devices and ICs, pp. 65-68, doi: 10.1109/ispsd.1998.702630.
[15] G. Wang, B. Lee, N. Wang, K. Ding, and G. Ma, "On-Resistance Improvement Impacted by Trapping Effects in Fin-LDMOS Technology,"2019 : IEEE China Semiconductor Technology International Conference (CSTIC), pp. 1-3, doi: 10.1109/cstic.2019.8755718.
[16] Z. Cao, B. Duan, H. Cai, S. Yuan, and Y. Yang, "Theoretical Analyses of Complete 3-D Reduced Surface Field LDMOS With Folded-Substrate Breaking Limit of Superjunction LDMOS," IEEE Transactions on Electron Devices, vol. 63, no. 12, pp. 4865-4872, 2016, doi: 10.1109/ted.2016.2615654.
[17] B. Toner et al., "Addressing the challenges of sub-50nm channel LDMOS," 2021 : IEEE 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 291-294, doi: 10.23919/ispsd50666.2021.9452248.
[18] B. Yi, J. Cheng, M. Kong, B. Zhang, and X. B. Chen, "A high-voltage p-LDMOS with enhanced current capability comparable to double RESURF n-LDMOS," 2018: IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 148-151, doi: 10.1109/ispsd.2018.8393624.
[19] S. Pendharkar, T. Efland, and C. Y. Tsai, "Analysis of high current breakdown and UIS behavior of resurf LDMOS (RLDMOS) devices," 2002: Inst. Electr. Eng. Japan, pp. 419-422, doi: 10.1109/ispsd.1998.702735.
[20] S. R. Marjorie, P. A. Govindacharyulu, and K. L. Kishore, "Studies on the dependence of breakdown voltages LDMOS devices on their structure and doping profiles of LDD regions," 2012: IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics, pp. 42-45, doi: 10.1109/primeasia.2012.6458624.
[21] F. Lin et al., "A Study of n-LDMOS Off-state Breakdown Degradation with 0.18μm BCD Technology," 2019: IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA), pp. 1-4, doi: 10.1109/ipfa47161.2019.8984858.
[22] J. F. Chen, J. R. Lee, K.-M. Wu, T.-Y. Huang, C. M. Liu, and S. L. Hsu, "off-State Avalanche-Breakdown-Induced on-Resistance Degradation in Lateral DMOS Transistors," IEEE Electron Device Letters, vol. 28, no. 11, pp. 1033-1035, 2007, doi: 10.1109/led.2007.907416.
[23] A. Arvanitopoulos, N. Lophitis, K. N. Gyftakis, S. Perkins, and M. Antoniou, "Validated physical models and parameters of bulk 3C–SiC aiming for credible technology computer aided design (TCAD) simulation," Semiconductor Science and Technology, vol. 32, no. 10, p. 104009, 2017.
[24] E. Buturla, "The use of TCAD in semiconductor technology development," in Proceedings of the IEEE 1991 Custom Integrated Circuits Conference, 1991: IEEE, pp. 23.1/1-23.1/7.
[25] Y.-T. Wu et al., "Simulation-Based Study of Hybrid Fin/Planar LDMOS Design for FinFET-Based System-on-Chip Technology," IEEE Transactions on Electron Devices, vol. 64, no. 10, pp. 4193-4199, 2017, doi: 10.1109/ted.2017.2736442.
[26] J. Wei et al., "Analyses and Experiments of Ultralow Specific On-Resistance LDMOS With Integrated Diodes," IEEE Journal of the Electron Devices Society, vol. 9, pp. 1161-1165, 2021, doi: 10.1109/jeds.2021.3114738.
[27] N. Klein, S. Levin, G. Fleishon, S. Levy, A. Eyal, and S. Shapira, "Device design tradeoffs for 55v ldmos driver embedded in 0.18 micron platform," 2008: IEEE 25th Convention of Electrical and Electronics Engineers in Israel, pp. 736-740, doi: 10.1109/eeei.2008.4736631.
[28] A. Saadat, P. B. Vyas, M. L. V. D. Put, M. V. Fischetti, H. Edwards, and W. G. Vandenberghe, "Channel Length Scaling Limit for LDMOS Field-Effect Transistors: Semi-classical and Quantum Analysis," 2020: IEEE 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 443-446, doi: 10.1109/ispsd46842.2020.9170157.
[29] B. Yi, M. Kong, and J. Cheng, "Simulation Study of a p-LDMOS With Double Electron Paths to Enhance Current Capability," IEEE Electron Device Letters, vol. 39, no. 11, pp. 1700-1703, 2018, doi: 10.1109/led.2018.2870582.
[30] B. Duan, S. Yuan, Z. Cao, and Y. Yang, "New Superjunction LDMOS With the Complete Charge Compensation by the Electric Field Modulation," IEEE Electron Device Letters, vol. 35, no. 11, pp. 1115-1117, 2014, doi: 10.1109/led.2014.2359293.

無法下載圖示 全文公開日期 2025/06/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE