簡易檢索 / 詳目顯示

研究生: 劉景文
Jing-Wen Liu
論文名稱: 基於行人推算導航演算法與定位座標校正實現護理推車定位系統
A PDR-based Indoor Positioning System in a Nursing Cart with iBeacon-based Calibration
指導教授: 呂政修
Jenq-Shiou Leu
口試委員: 周承復
Cheng-Fu Chou
衛信文
Hsin-Wen Wei
王瑞堂
Ruei-Tang Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 64
中文關鍵詞: 適地性服務室內定位系統護理推車行人推算導航演算法藍牙設備接收訊號強度嵌入式設備慣性測量單元
外文關鍵詞: Location-Based Service (LBS), Indoor Positioning System (IPS), Nursing Cart, Pedestrian Dead Reckoning (PDR), iBeacon, Received Signal Strength Indicator (RSSI), Embedded Devices, Inertial Measurement Unit (IMU)
相關次數: 點閱:568下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在適地性服務(Location-Based Service, LBS)中,定位扮演著重要的角色。全球定位系統(Global Positioning System, GPS)已經廣泛被應用於室外定位(Outdoor Positioning)。然而,在室內環境中訊號受到障礙物與建築物的屏蔽而衰減,使得室內定位(Indoor Positioning)無法透過全球定位系統來取得目前所在的位置。根據護理人員回報,在醫院中有許多醫療設備使用完畢後沒有歸位,導致換班的時候,常常需要花許多時間找尋設備,因此迫切的需要一輛具有室內定位系統(Indoor Positioning System, IPS)的護理推車(Nursing Cart),應用於定位護理人員與移動式醫療設備。
    在這篇論文中,我們提出在護理推車上實現一個基於行人推算導航演算法(Pedestrian Dead Reckoning, PDR)的室內定位系統,包含透過接收端(擺放在護理推車上的電腦)接收到發送端(藍牙設備)的接收訊號強度(Received Signal Strength Indicator, RSSI)來校正定位座標的功能,並且可以在資源有限的嵌入式設備(Embedded Device)中實現。為了評估此系統,我們已經在室內環境中進行真實的實驗,並且針對系統進行測試與調整。除了測試環境、個體與硬體設備等影響因素以外,我們也比較藍牙設備(iBeacon)的建置數量對於定位精確度的影響。實驗結果顯示此定位方式的有效性。


    Abstract—The Global Positioning System (GPS) is widely applied for outdoor positioning. However, GPS signals may degrade in an indoor environment. A nursing cart with a stable and accurate indoor positioning system inside is highly demanded in the hospital. The cart can be used for tracking the employees or positioning movable medical devices. In this paper, we propose a Pedestrian Dead Reckoning (PDR) -based indoor positioning system with iBeacon calibrations. The proposed system can be implemented in the resource-limited embedded device. To evaluate the property of the proposed system, real experiments under indoor environments have been conducted. The experimental results showed the effectiveness of the proposed approach. We also compared the impact of the number of iBeacons on positioning accuracy.

    論文摘要.......................................I ABSTRACT......................................II 誌謝.........................................III 目錄..........................................IV 圖片索引......................................VI 第1章.緒論.....................................1 1.1.研究背景與動機.............................1 1.2.研究目的...................................4 1.3.章節提要...................................5 第2章.室內定位相關技術.........................6 2.1.定位原理探討...............................6 2.1.1.接收訊號時間測量技術.....................7 2.1.2.接收訊號時間差測量技術...................8 2.1.3.接收訊號角度測量技術.....................9 2.1.4.接收訊號強度測量技術....................10 2.1.5.三角測量技術............................11 2.1.6.行人推算導航演算法......................12 2.2.定位相關技術..............................13 2.2.1.無線射頻辨識定位技術....................14 2.2.2.群蜂定位技術............................15 2.2.3.無線熱點定位技術........................16 2.2.4.藍牙定位技術............................17 第3章.室內定位系統的設計......................18 3.1.設計步驟..................................18 3.2.系統架構..................................19 3.3.初始化系統參數階段........................20 3.3.1.感測器..................................20 3.3.2.數值監控儀表板..........................24 3.4.感測器數值計算階段........................25 3.4.1.水平投影向量與長度計算..................25 3.4.2.角度計算................................26 3.5.訊號濾波階段..............................27 3.5.1.移動平均濾波器..........................27 3.5.2.閥值濾波器..............................28 3.6.狀態判斷階段..............................30 3.6.1.靜止狀態與移動狀態判斷..................30 3.6.2.移動距離與移動方向判斷..................31 3.7.定位座標校正階段..........................33 3.7.1.藍牙設備校正定位座標....................33 3.7.2.撞牆處理................................35 第4章.實驗測試與評估結果......................38 4.1.硬體設備介紹..............................38 4.1.1.護理推車................................38 4.1.2.筆記型電腦..............................39 4.1.3.藍牙設備................................40 4.2.軟體工具介紹..............................40 4.2.1.室內定位系統開發環境....................41 4.2.2.室內地圖資訊系統開發環境................41 4.3.實驗測試環境介紹..........................42 4.3.1.實驗場域................................42 4.3.2.參考點..................................43 4.3.3.地圖資訊................................44 4.4.評估結果..................................45 4.4.1.不同地面平整度對於定位精確度的影響......46 4.4.2.不同手握鬆緊度對於定位精確度的影響......46 4.4.3.不同移動速度對於定位精確度的影響........47 4.4.4.參考點的建置數量對於定位精確度的影響....48 4.4.5.撞牆處理的有效性........................50 第5章.結論....................................51 參考文獻......................................52

    [1] L. Yuan-Cheng, H. Frannie, Y. Yi-Hsuan, L. Ching-Neng, and S. Yu-Chin, "A GPS navigation system with QR code decoding and friend positioning in smart phones," in 2010 2nd International Conference on Education Technology and Computer, 2010, pp. V5-66-V5-70.
    [2] X. Bao, H. Bie, and M. Wang, "Integration of multimedia and location-based services on mobile phone tour guide system," in 2009 IEEE International Conference on Network Infrastructure and Digital Content, 2009, pp. 642-646.
    [3] C. S. Yang, P. W. Tsai, M. Y. Liao, C. C. Huang, and C. E. Yeh, "Location-Based Mobile Multimedia Push System," in Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2010 International Conference on, 2010, pp. 181-184.
    [4] C. C. Ho and R. Lee, "Real-Time Indoor Positioning System Based on RFID Heron-Bilateration Location Estimation and IMU Inertial-Navigation Location Estimation," in Computer Software and Applications Conference (COMPSAC), 2015 IEEE 39th Annual, 2015, pp. 481-486.
    [5] Z. Yao, D. Liang, W. Jiang, H. Bo, and F. Yuzhuo, "Implementing indoor positioning system via ZigBee devices," in 2008 42nd Asilomar Conference on Signals, Systems and Computers, 2008, pp. 1867-1871.
    [6] J. Kim and H. Jun, "Vision-based location positioning using augmented reality for indoor navigation," IEEE Transactions on Consumer Electronics, vol. 54, pp. 954-962, 2008.
    [7] Z. Liu, Y. Xu, Z. Liu, and J. Wu, "A large scale 3D positioning method based on a network of rotating laser automatic theodolites," in Information and Automation (ICIA), 2010 IEEE International Conference on, 2010, pp. 513-518.
    [8] J. S. Leu and H. J. Tzeng, "Received Signal Strength Fingerprint and Footprint Assisted Indoor Positioning Based on Ambient Wi-Fi Signals," in Vehicular Technology Conference (VTC Spring), 2012 IEEE 75th, 2012, pp. 1-5.
    [9] C. Yang and H. r. Shao, "WiFi-based indoor positioning," IEEE Communications Magazine, vol. 53, pp. 150-157, 2015.
    [10] T. Shuo, M. Lin, and X. Yubin, "A compression and reconstruction algorithm of indoor WLAN positioning Radiomap data based on neural network," in 11th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM 2015), 2015, pp. 1-6.
    [11] G. Anastasi, R. Bandelloni, M. Conti, F. Delmastro, E. Gregori, and G. Mainetto, "Experimenting an indoor bluetooth-based positioning service," in Distributed Computing Systems Workshops, 2003. Proceedings. 23rd International Conference on, 2003, pp. 480-483.
    [12] Z. Jianyong, L. Haiyong, C. Zili, and L. Zhaohui, "RSSI based Bluetooth low energy indoor positioning," in Indoor Positioning and Indoor Navigation (IPIN), 2014 International Conference on, 2014, pp. 526-533.
    [13] W. Kang and Y. Han, "Smartpdr: Smartphone-based pedestrian dead reckoning for indoor localization," IEEE Sens. J., vol. 15, no. 5, pp. 2906–2916, May 2015.
    [14] Zhenghua Chen, Qingchang Zhu, and Yeng Chai Soh, "Smartphone Inertial Sensor-Based Indoor Localization and Tracking With iBeacon Corrections," IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 4, AUGUST 2016
    [15] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global positioning system: theory and practice: Springer Science & Business Media, 2012.
    [16] H. Elkachouchi and M. A. e. Mofeed, "Direction-of-arrival methods (DOA) and time difference of arrival (TDOA) position location technique," in Proceedings of the Twenty-Second National Radio Science Conference, 2005. NRSC 2005., 2005, pp. 173-182.
    [17] P. Prasithsangaree, P. Krishnamurthy, and P. Chrysanthis, "On indoor position location with wireless LANs," in Personal, Indoor and Mobile Radio Communications, 2002. The 13th IEEE International Symposium on, 2002, pp. 720-724 vol.2.
    [18] P. Bahl and V. N. Padmanabhan, "RADAR: an in-building RF-based user location and tracking system," in INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, 2000, pp. 775-784 vol.2.
    [19] C. B. Lim, S. H. Kang, H. H. Cho, S. W. Park, and J. G. Park, "An Enhanced Indoor Localization Algorithm Based on IEEE 802.11 WLAN Using RSSI and Multiple Parameters," in 2010 Fifth International Conference on Systems and Networks Communications, 2010, pp. 238-242.
    [20] E. C. L. Chan, G. Baciu, and S. C. Mak, "Using the Newton Trust-Region Method to Localize in WLAN Environment," in 2009 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, 2009, pp. 363-369.
    [21] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, "LANDMARC: indoor location sensing using active RFID," Wireless networks, vol. 10, pp. 701-710, 2004.
    [22] C. H. Chu, C. H. Wang, C. K. Liang, W. Ouyang, J. H. Cai, and Y. H. Chen, "High-Accuracy Indoor Personnel Tracking System with a ZigBee Wireless Sensor Network," in Mobile Ad-hoc and Sensor Networks (MSN), 2011 Seventh International Conference on, 2011, pp. 398-402.

    無法下載圖示 全文公開日期 2025/01/03 (校內網路)
    全文公開日期 2025/01/03 (校外網路)
    全文公開日期 2025/01/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE