簡易檢索 / 詳目顯示

研究生: 余澔
Hao Yu
論文名稱: 全同立構聚苯乙烯冷結晶之機制研究
Studies on Mechanism of Isotactic Polystyrene Cold Crystallization
指導教授: 洪伯達
Po-Da Hong
口試委員: 蔡協致
Hsieh-Chih Tsai
莊偉綜
Wei-Tsung Chuang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 48
中文關鍵詞: 全同立構聚苯乙烯冷結晶
外文關鍵詞: isotactic polystyrene, cold crystallization
相關次數: 點閱:223下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

高分子結晶化機制是高分子物理領域中相當重要的議題。我們使用時間解析傅立葉變換紅外光譜、廣角X-ray 繞射、小角光散射與偏光顯微鏡得到的數據分析來了解全同立構聚苯乙烯冷結晶機制。
藉由紅外光譜特徵峰相關參數的物理意義搭配廣角X-ray 繞射、去極化光散射的資訊,我們發現全同立構聚苯乙烯的螺旋結構在結晶相出現前會有分子聚集現象發生;接著,分子鏈為了排入晶格之中,需要消除分子內π-π 相互作用力;最後當結晶成長到了一定厚度後,紅外光譜中m≥16 的螺旋含量增加來源於結晶沿分子間方向生長。
透過小角度光散射與偏光顯微鏡的資訊,我們發現在全同立構聚苯乙烯的等溫冷結晶會出現球晶的型態,分析小角度光散射的數據可以計算球晶尺寸隨時間的變化,我們推測球晶產生的原因或許與結晶化前期的分子聚集有關。
最後,我們將不同結晶溫度所得結果綜合起來,繪出一張完整的時間-溫度-轉變相圖來表徵結晶動力學上的狀態,並透過二維相關光譜可發現,在不同的結晶溫度下,所表現出的初始狀態可能會有所不同,而差異主要來源於3/1 螺旋m≥5 與苯環-苯環二聚體之含量。


The mechanism of polymer crystallization was one of the important issue in polymer physics. The data of time-resolved Fourier transform infrared spectroscopy, wide-angle Xray diffraction, small-angle light scattering and polarized optical microscope were analyzed to clarify the mechanism of cold crystallization on isotactic polystyrene.
We proposed a mechanism for cold crystallization of isotactic polystyrene by comparing the IR, wide-angle X-ray diffraction and depolarized light scattering data. Before the crystalline generated, aggregation of polymer chain occurred. The polymer chain then adjusted the conformation and eliminated the inter-chain π-π interaction in order to align to lattice. At the last period of crystallization, the increasing helix content of m≥16 was come from the growth along inter-chain direction instead of intra-chain direction.
We found that spherulite structure appear in cold crystallization of isotactic polystyrene by data of depolarized small-angle light scattering and polarized optical microscope. The growth of spherulites could calculate by small-angle light scattering data. We assumed that the aggregation in the induction period impact on the morphology.
Lastly, we compared results for different cold crystallization temperature and sketched a time-temperature-transition diagram to represent the crystallization kinetics. It was found that there was some differences for the initial state of different crystallization temperature by two dimensional correlation spectroscopy. The differences came from the amounts of 3/1 helix with sequential length m≥5 and phenyl-phenyl dimer in the system.

Abstract Acknowledgements Contents Chart Catalogues Principal Notation Chapter 1. Introduction 1.1. Multi-Stage on Polymer Crystallization 1.2. Spinodal Decomposition Phase Separation before Crystallization 1.3. The Impact of Phenyl Ring and ?-? Interaction During Crystallization 1.4. The Purpose of This Thesis Chapter 2. Experimental Section 2.1. Materials and Specimen Preparation 2.2. Time-Resolved Fourier Transformation Infrared Spectroscopy (FT-IR) 2.3. Wide-Angle X-ray Diffraction (WAXD) 2.4. Small-Angle Light Scattering 2.5. Polarized Optical Microscope (POM) 2.6. Generalized Two-Dimensional Correlation Spectroscopy (2D-COS) 2.6.1. Introduction to 2D-COS 2.6.2. Generalized 2D Correlation Analysis 2.6.3. Computation from Discrete Data Chapter 3. Results and Discussion 3.1. Simulation of 2D-COS 3.1.1. 2D-COS by Changing Peak Parameter 3.1.2. Noda’s Rule 3.1.3. Application of 2D-COS 3.2. Structural Change of i-PS Cold Crystallization 3.2.1. Characteristic Peaks of i-PS in FT-IR Spectra 3.2.2. Aggregation of i-PS before crystallization 3.2.3. Conformational Change During Cold-Crystallization 3.3. Mechanism of i-PS Cold Crystallization 3.4. Cold Crystallization of i-PS in Multiple Crystallization Temperature 3.4.1. Half-Crystallization Time 3.4.2. Time-Temperature-Transition Diagram Chapter 4. Summary References

(1) Hoffman, J.; Davis, G. T.; Lauritzen, J., Treatise on solid state chemistry. Plenum Press, New York 1976, 3, 497.
(2) Wunderlich, B., Macromolecular physics. vol. 1 and 2. Academic Press: 1973.
(3) Strobl, G., The Physics of Polymers. Berlin: Springer, 2007.
(4) Clark, E. J.; Hoffman, J. D., Regime III crystallization in polypropylene. Macromolecules 1984, 17 (4), 878-885.
(5) Hoffman, J. D., Role of reptation in the rate of crystallization of polyethylene fractions from the melt. Polymer 1982, 23 (5), 656-670.
(6) Hoffman, J. D., Regime III crystallization in melt-crystallized polymers: the variable cluster model of chain folding. Polymer 1983, 24 (1), 3-26.
(7) Lauritzen Jr, J. I.; Hoffman, J. D., Extension of theory of growth of chain‐folded polymer crystals to large undercoolings. Journal of applied Physics 1973, 44 (10), 4340-4352.
(8) Strobl, G., From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: A major route followed in polymer crystallization? The European Physical Journal E 2000, 3 (2), 165-183.
(9) Imai, M.; Mori, K.; Mizukami, T.; Kaji, K.; Kanaya, T., Structural formation of poly (ethylene terephthalate) during the induction period of crystallization: 1. Ordered structure appearing before crystal nucleation. Polymer 1992, 33 (21), 4451-4456.
(10) Imai, M.; Mori, K.; Mizukami, T.; Kaji, K.; Kanaya, T., Structural formation of poly (ethylene terephthalate) during the induction period of crystallization: 2. Kinetic analysis based on the theories of phase separation. Polymer 1992, 33 (21), 4457-4462.
(11) Imai, M.; Kaji, K.; Kanaya, T., Structural formation of poly (ethylene terephthalate) during the induction period of crystallization. 3. Evolution of density fluctuations to lamellar crystal. Macromolecules 1994, 27 (24), 7103-7108.
(12) Imai, M.; Kaji, K.; Kanaya, T., Orientation fluctuations of poly (ethylene terephthalate) during the induction period of crystallization. Physical review letters 1993, 71 (25), 4162.
(13) Imai, M.; Kaji, K.; Kanaya, T.; Sakai, Y., Ordering process in the induction period of crystallization of poly (ethylene terephthalate). Physical Review B 1995, 52 (17), 12696.
(14) Zhang, J.; Tsuji, H.; Noda, I.; Ozaki, Y., Structural changes and crystallization dynamics of poly (L-lactide) during the cold-crystallization process investigated by infrared and two-dimensional infrared correlation spectroscopy. Macromolecules 2004, 37 (17), 6433-6439.
(15) Zhang, J.; Duan, Y.; Shen, D.; Yan, S.; Noda, I.; Ozaki, Y., Structure changes during the induction period of cold crystallization of isotactic polystyrene investigated by infrared and two-dimensional infrared correlation spectroscopy. Macromolecules 2004, 37 (9), 3292-3298.
(16) Kaji, K.; Nishida, K.; Kanaya, T.; Matsuba, G.; Konishi, T.; Imai, M., Spinodal crystallization of polymers: Crystallization from the unstable melt. In Interphases and Mesophases in Polymer Crystallization III, Springer: 2005; pp 187-240.
(17) Olmsted, P. D.; Poon, W. C.; McLeish, T.; Terrill, N.; Ryan, A., Spinodal-assisted crystallization in polymer melts. Physical Review Letters 1998, 81 (2), 373.
(18) Doi, M.; Edwards, S. F., The theory of polymer dynamics. oxford university press: 1988; Vol. 73.
(19) Jheng, J.-B.; Chuang, W.-T.; Hong, P.-D.; Huang, Y.-C.; Jeng, U.-S.; Su, C.-J.; Pan, G.-R., Formation of mesomorphic domains associated with dimer aggregates of phenyl rings in cold crystallization of poly (trimethylene terephthalate). Polymer 2013, 54 (22), 6242-6252.
(20) Boon, J.; Challa, G.; Van Krevelen, D., Crystallization kinetics of isotactic polystyrene. I. Spherulitic growth rate. Journal of Polymer Science Part A‐2: Polymer Physics 1968, 6 (10), 1791-1801.
(21) Lemstra, P.; Kooistra, T.; Challa, G., Melting behavior of isotactic polystyrene. Journal of Polymer Science Part A‐2: Polymer Physics 1972, 10 (5), 823-833.
(22) Sundararajan, P. R.; Tyrer, N., Crystallization of the extended conformation from the bulk in solvent-exposed films of isotactic polystyrene. Macromolecules 1982, 15 (4), 1004-1012.
(23) Sundararajan, P.; Tyrer, N.; Bluhm, T., Solvent-dependent conformations in gels of isotactic polystyrene. Macromolecules 1982, 15 (2), 286-290.
(24) Mitchell, G.; Windle, A., Structure of polystyrene glasses. Polymer 1984, 25 (7), 906-920.
(25) Natta, G.; Corradini, P.; Bassi, I., Crystal structure of isotactic polystyrene. Il Nuovo Cimento (1955-1965) 1960, 15 (1), 68-82.
(26) Swinehart, D. F., The Beer-Lambert Law. Journal of Chemical Education 1962, 39 (7), 333.
(27) Morse, P. M., Diatomic molecules according to the wave mechanics. II. Vibrational levels. Physical Review 1929, 34 (1), 57.
(28) Colthup, N., Introduction to infrared and Raman spectroscopy. Elsevier: 2012.
(29) Fröhlich, H., Theory of dielectrics: dielectric constant and dielectric loss. Clarendon Press: 1958.
(30) Ataka, K.-i.; Osawa, M., In situ infrared study of water− sulfate coadsorption on gold (111) in sulfuric acid solutions. Langmuir 1998, 14 (4), 951-959.
(31) Sefara, N. L.; Magtoto, N. P.; Richardson, H. H., Structural characterization of beta-lactoglobulin in solution using two-dimensional ft mid-infrared and ft near-infrared correlation spectroscopy. Applied spectroscopy 1997, 51 (4), 536-540.
(32) Czarnecki, M. A.; Maeda, H.; Ozaki, Y.; Suzuki, M.; Iwahashi, M., Resolution enhancement and band assignments for the first overtone of OH stretching mode of butanols by two-dimensional near-infrared correlation spectroscopy. Part I: sec-butanol. Applied spectroscopy 1998, 52 (7), 994-1000.
(33) Liu, Y.; Ozaki, Y.; Noda, I., Two-dimensional Fourier-transform near-infrared correlation spectroscopy study of dissociation of hydrogen-bonded N-methylacetamide in the pure liquid state. The Journal of Physical Chemistry 1996, 100 (18), 7326-7332.
(34) Nakano, T.; Shimada, S.; Saitoh, R.; Noda, I., Transient 2D IR correlation spectroscopy of the photopolymerization of acrylic and epoxy monomers. Applied spectroscopy 1993, 47 (9), 1337-1342.
(35) Noda, I., Two-dimensional infrared spectroscopy. Journal of the American Chemical Society 1989, 111 (21), 8116-8118.
(36) Pike, E. R.; Abbiss, J., Light scattering and photon correlation spectroscopy. Springer Science & Business Media: 2012; Vol. 40.
(37) Meurant, G., Introduction to dynamic light scattering by macromolecules. Elsevier: 2012.
(38) Bloomfield, P., Fourier analysis of time series: an introduction. John Wiley & Sons: 2004.
(39) Jennison, R. C., Fourier transforms: and convolutions for the experimentalist. Elsevier: 2013.
(40) Brillinger, D. R., Time series: data analysis and theory. Siam: 1981; Vol. 36.
(41) Brillinger, D. R., The identification of a particular nonlinear time series system. In Selected Works of David Brillinger, Springer: 2012; pp 607-613.
(42) Bilato, R.; Maj, O.; Brambilla, M., An algorithm for fast Hilbert transform of real functions. Advances in Computational Mathematics 2014, 40 (5-6), 1159-1168.
(43) Noda, I., Determination of two-dimensional correlation spectra using the Hilbert transform. Applied Spectroscopy 2000, 54 (7), 994-999.
(44) Noda, I.; Ozaki, Y., Two-dimensional correlation spectroscopy: applications in vibrational and optical spectroscopy. John Wiley & Sons: 2005.
(45) Bradley, M., Curve fitting in Raman and IR spectroscopy: basic theory of line shapes and applications. Thermo Fisher Scientific, Madison, USA, Application Note 2007, 50733.
(46) Šašić, S.; Muszynski, A.; Ozaki, Y., A New Possibility of the Generalized Two-Dimensional Correlation Spectroscopy. 1. Sample− Sample Correlation Spectroscopy. The Journal of Physical Chemistry A 2000, 104 (27), 6380-6387.
(47) Šašić, S.; Muszynski, A.; Ozaki, Y., A New Possibility of the Generalized Two-Dimensional Correlation Spectroscopy. 2. Sample− Sample and Wavenumber− Wavenumber Correlations of Temperature-Dependent Near-Infrared Spectra of Oleic Acid in the Pure Liquid State. The Journal of Physical Chemistry A 2000, 104 (27), 6388-6394.
(48) Šašić, S.; Ozaki, Y., Statistical two-dimensional correlation spectroscopy: Its theory and applications to sets of vibrational spectra. Analytical chemistry 2001, 73 (10), 2294-2301.
(49) Painter, P. C.; Koenig, J. L., A normal vibrational analysis of isotactic polystyrene. Journal of Polymer Science: Polymer Physics Edition 1977, 15 (11), 1885-1903.
(50) Tadokoro, H.; Nishiyama, Y.; Nozakura, S. i.; Murahashi, S., Stereoregular Polymers. VII. Infrared Spectra of Isotactic Polystyrene, Isotactic Poly-α, β, β-trideuterostyrene and Isotactic Poly-p-deuterostyrene. Bulletin of the Chemical Society of Japan 1961, 34 (3), 381-391.
(51) Kobayashi, M.; Akita, K.; Tadokoro, H., Infrared spectra and regular sequence lengths in isotactic polymer chains. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics 1968, 118 (1), 324-342.
(52) Kobayashi, M.; Tsumura, K.; Tadokoro, H., Infrared spectra of polymer solutions. I. Conformational stability of isotactic polymer chains in solution. Journal of Polymer Science Part A‐2: Polymer Physics 1968, 6 (8), 1493-1508.
(53) Nakaoki, T.; Katagiri, C.; Kobayashi, M., Gel-specific infrared bands for isotactic polystyrene investigated by isotope dilution using partially deuterated samples. Macromolecules 2002, 35 (20), 7708-7712.
(54) Masamichi, K.; Kunrio, A.; Hiroyuki, T., Infrared spectra and regular sequence lengths in isotactic polymer chains. Die Makromolekulare Chemie 1968, 118 (1), 324-342.
(55) Hiroyuki, T.; Yoshiyuki, N.; Shun’ichi, N.; Shunsuke, M., Stereoregular Polymers. VII. Infrared Spectra of Isotactic Polystyrene, Isotactic Poly-α, β, β-trideuterostyrene and Isotactic Poly-p-deuterostyrene. Bulletin of the Chemical Society of Japan 1961, 34 (3), 381-391.
(56) Painter, P. C.; Koenig, J. L., A normal vibrational analysis of benzene. Spectrochimica Acta Part A: Molecular Spectroscopy 1977, 33 (11), 1019-1024.
(57) Hunter, C. A.; Sanders, J. K. M., The nature of .pi.-.pi. interactions. Journal of the American Chemical Society 1990, 112 (14), 5525-5534.
(58) Katz, J., X-ray spectrography of polymers and in particular those having a rubber-like extensibility. Transactions of the Faraday Society 1936, 32, 77-94.
(59) Whittig, L., X-ray diffraction techniques for mineral identification and mineralogical composition. Methods of Soil Analysis. Part 1. Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling 1965, (methodsofsoilana), 671-698.
(60) Matsuba, G.; Kaji, K.; Nishida, K.; Kanaya, T.; Imai, M., Conformational change and orientation fluctuations of isotactic polystyrene prior to crystallization. Polymer journal 1999, 31 (9), 722.
(61) Stein, R. S.; Wilson, P. R., Scattering of light by polymer films possessing correlated orientation fluctuations. Journal of Applied Physics 1962, 33 (6), 1914-1922.
(62) Burley, S.; Petsko, G. A., Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 1985, 229 (4708), 23-28.
(63) Kakudo, M.; Kasai, N., X-ray diffraction by macromolecules. Kodansha Limited and Springer-Verlag Berlin Heidelberg: 2005.
(64) Stein, R.; Misra, A., Morphological studies on polybutylene terephthalate. Journal of Polymer Science: Polymer Physics Edition 1980, 18 (2), 327-342.
(65) Stein, R. S.; Rhodes, M. B., Photographic light scattering by polyethylene films. Journal of Applied Physics 1960, 31 (11), 1873-1884.
(66) Hong, P.D.; Chung, W.T.; Hsu, C.F., Crystallization kinetics and morphology of poly (trimethylene terephthalate). Polymer 2002, 43 (11), 3335-3343.
(67) Chuang, W.T.; Hong, P.D.; Shih, K.S., Structural formation and gelation behavior of cold-crystallized poly (trimethylene terephthalate). Polymer 2004, 45 (25), 8583-8592.

QR CODE