簡易檢索 / 詳目顯示

研究生: 陳怡瑾
Yi-Jin Chen
論文名稱: 基於脈波縮減/擴增機制之低抖動寬範圍工作週期校正電路
Low Jitter Wide Range Duty Cycle Corrector Based on Pulse Shrinking/Stretching Mechanism
指導教授: 陳伯奇
Poki Chen
口試委員: 劉深淵
Shen-Iuan Liu
李鎮宜
Chen-Yi Lee
鄭國興
Kuo-Hsing Cheng
楊育哲
Yu-Che Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 90
中文關鍵詞: 工作週期校正脈波寬度縮減/擴增機制低功耗低抖動廉價寬範圍
外文關鍵詞: pulse shrinking/stretching mechanism, low jitter, low cost and wide range
相關次數: 點閱:237下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

工作週期校正電路(Duty Cycle Corrector、簡稱DCC)的功能主要在於將訊號的工作週期調整到50%,廣泛地使用在雙倍資料速度同步動態隨機存取記憶體(double data rate SDRAM、簡稱DDR SDRAM),雙取樣類比至數位轉換器(Double-Sampling ADC),延遲鎖定迴路(delay locked loop、簡稱DLL)與鎖相迴路(phase locked loop、簡稱PLL)等需要在時脈訊號的上升緣與下降緣同時運作的電路,其效能之優劣往往取決於參考時脈正負半週之對稱程度,工作週期校正電路之重要性不言可喻。
工作週期校正電路在設計上可分為數位式與類比式兩種架構。數位式架構又可分為回授型與非回授型兩種,可以達到快速鎖定,但其精準度較差。類比式架構通常為回授型,以較長的鎖定時間來獲得較精準的工作週期校正。
本論文將提出一個架構極為簡單之類比負回授工作週期校正電路,利用脈波縮減/擴增延遲線來調整輸入訊號的脈波寬度使輸出訊號達到50%的工作週期,經由TSMC 0.18μm 標準CMOS製程來實現測試晶片,其面積只有0.18 × 0.14 mm2。經實驗證明,該電路具有20%~80%寬廣的輸入工作週期範圍、100MHz~1.4GHz超高動態輸入頻率操作範圍與-0.56%∼0.6%相當小之工作週期校正誤差。此晶片在1GHz操作頻率下之功率消耗只有1 mW,而峰值對峰值輸出抖動在1.4GHz下也僅僅達9.3ps,效能優異,非常適合低功耗、低抖動且極為廉價之應用。


The Duty cycle correctors (DCCs) are widely used to adjust the clock duty cycle to 50% for DDR (double data rate)-SDRAM, Double-Sampling ADC, DLL (delay locked loop) and PLL (phase locked loop) where both clock rising and falling edges are used for operation since clock signals with 50% duty cycle are extremely important for high-performance IC or system designs.
The implementations of DCCs are divided into two categories in literature: the digital and the analog structures. The realization of digital-structure DCCs is further categorized as feedback type and nonfeedback type. Both own fast locking speed ate the expense of relatively poor accuracy. The analog-structure DCCs are usually implemented as feedback type to get better accuracy with relatively long locking time.
In this thesis, an analog feedback duty cycle corrector with an extremely simple structure will be presented. The pulse width of the input clock is properly shrunk or stretched by a pulse shrinking/stretching delay line to ensure 50% duty cycle for the output signal. The proposed DCC has been implemented in a TSMC 0.18μm CMOS digital process. An input duty cycle range of 20%~80% is achieved. The duty cycle error is between -0.56% to +6% for the widest dynamic frequency operation range of 100MHz~1.4GHz. The chip area is merely 0.18 × 0.14 mm2. The power consumption is 1mW at 1GHz and the peak-to-peak output jitter is measured to be 9.3ps @ 1.4 GHz only.

第一章 緒論 1 1-1研究背景 1 1-2研究動機 4 1-3論文架構 5 第二章 工作週期校正電路 6 2-1數位式工作週期校正電路 6 2-2類比式工作週期校正電路 22 2-3綜合比較 29 第三章 利用脈動縮減/擴增機制之工作週期校正電路 30 3-1架構簡介 30 3-2壓控脈波縮減/擴增延遲線 34 3-3充電幫浦 36 3-4迴路濾波 41 3-5電路分析 42 第四章 電路模擬設計與晶片佈局 47 4-1設計流程與考量 47 4-2脈波縮減/擴增延遲線模擬 49 4-3充電幫浦模擬 52 4-4迴路濾波模擬 55 4-5工作週期校正電路整體模擬 57 4-6晶片佈局與考量 73 第五章 晶片量測 76 5-1量測環境 77 5-2量測結果 79 第六章 結論與未來展望 85 6-1晶片效能比較 85 6-2未來展望 86 參考文獻 87

[1] P.-H. Yang and J.-S. Wang, “Low-voltage pulsewidth control loops for SOC applications”, IEEE J. Solid-State Circuits, vol.37, pp. 1348-1351, Oct. 2002.
[2] P.-K. Hanumolu et al., “A analysis of PLL clock jitter in high-speed serial links,” IEEE Transactions on Circuits and Systems II, vol. 50, pp. 879-886, Nov. 2003.
[3] H. Huh et al., “A CMOS dual-band fractional-n synthesizer with reference doubler and compensated charge pump,” IEEE ISSCC, pp. 100-516, Feb. 2004.
[4] J. Kim, M.-A. Horowitz, and G.-Y. Wei, “Design of CMOS adaptive-bandwidth PLL/DLLs : A general approach,” IEEE Transactions on Circuits and Systems II, vol. 50, pp. 860-869, Nov. 2003.
[5] B.-G. Kim et al., “A 500MHz DLL with second order duty cycle corrector for low Jitter,” IEEE CICC, pp. 325-328, Sep. 2005.
[6] L. Li, J.-H. Chen, and R.-C. Chang, “A low jitter delay-locked loop with a realignment duty cycle corrector,” IEEE SOCC, pp. 73-76, Sep. 2005.
[7] C. Jeong et al., “Digital delay locked loop with open-loop digital duty cycle corrector for 1.2Gb/s/pin double data rate SDRAM,” IEEE ISSCC, pp. 379-382, Sep. 2004.
[8] Y.-J. Jung et al., “A dual-loop delay-locked loop using multiple voltage -controlled delay lines,” IEEE J. Solid-State Circuits, vol. 36, pp. 784-791, May 2001.
[9] Y.-J. Jung et al., “A Low jitter dual loop DLL using multiple VCDLs with a duty cycle corrector,” IEEE SOVC, vol. 36, pp. 784-791, May 2001.
[10] T.-H. Lee et al., “A 2.5V CMOS delay locked loop for 18Mbit 500 megabyte/s DRAM,” IEEE J. Solid-State Circuits, vol. 29, pp. 1491-1496, Dec. 1994.
[11] J.-B. Lee et al., “Digitally-controlled DLL and I/O circuits for 500 Mb/s/pin 16 DDR SDRAM,” IEEE ISSCC, pp. 68-69, Feb. 2001.
[12] K.-H. Kim et al., “Built-in duty cycle corrector using coded phase blending scheme for DDR/DDR2 synchronous DRAM applications,” IEEE Symposium on VLSI Circuits, pp. 287-288, Jun. 2003.
[13] S.-J. Jang et al., “ASMD with duty cycle correction scheme for high-speed DRAM,” IET Electronics Letters, vol. 37, pp. 1004-1006, Aug. 2001.
[14] T. Mantano et al., “A 1-Gb/s/pin 512-Mb DDRII SDRAM using a digital DLL and a slew-rate-controlled output buffer,” IEEE J. Solid-State Circuits, vol. 35, pp. 762-768, May. 2003.
[15] Y. Takai et al., “A 250-Mb/s/pin, 1-Gb Double-Data-Rate SDRAM with a bidirectional delay and an interbank shated redundancy scheme,” IEEE J. Solid-State Circuits, vol. 35, pp. 149-159, Feb. 2000.
[16] T. Saeki et al., “A 2.5-ns clock access, 250-MHz, 256-Mb SDRAM with synchronous mirror delay,” IEEE J. Solid-State Circuits, vol. 31, pp. 1656-1668, Nov. 1996.
[17] Y.-M. Wang and J.-S. Wang, “An all-digital 50% duty-cycle corrector,” IEEE ISCAS, vol. 2, pp. 925-928, May 2004.
[18] B.-J. Chen, S.-K. Kao, and S.-I. Liu, “An All-Digital Duty Cycle Corrector,” IEEE Symposium on VLSI-DAT, pp. 1-4, Apr. 2006.
[19] C. Yoo, C. Jeong, and J. Kih, “Open-loop full-digital duty cycle correction circuit,” IET Electronic Letters, vol. 41, pp. 635-636, May 2005.
[20] B.-W. Garlepp et al., “A portable digital DLL for high-speed CMOS interface circuits,” IEEE J. Solid-State Circuits, vol. 34, pp. 632-644, May 1999.
[21] S.-K. Kao, and S.-I. Liu, “A Wide-Range All-Digital Duty Cycle Corrector with a Period Monitor,” IEEE EDSSC, pp. 349-352, Dec. 2007.
[22] J.-J. Nam and H.-J. Park, “An all-digital CMOS duty cycle corrector circuit with a duty-cycle correction range of 15-to85% for multi-phase applications,” IEICE Trans. Electron., vol. 88, pp. 773-777, Apr. 2005.
[23] K. Agarwal and R. Montoye, “A Duty-Cycle Correction Circuit for High-Frequency Clocks,” IEEE SoVC, pp. 106-107, Jun. 2006.
[24] Joonsuk Lee and Beomsup Kim, “A low-noise fast-lock phase-lock loop with adaptive bandwidth control ,” IEEE J. Solid-State Circuits, vol. 35, no. 8, pp.1137-1145, Aug. 2000.
[25] T. Ogawa and k. Taniguchi, “A 50% Duty Cycle Correction Circuit for PLL Output,” IEEE Int’l Symposium Circuits and Systems, pp. 21-24, May 2002.
[26] J.-S. Humble et al., “A Clock Duty-Cycle Correction and Adjustment Circuit,” IEEE ISSCC, pp. 2132-2141, Feb. 2006.
[27] 劉深淵,楊清淵”鎖相迴路”2006年11月
[28] J.-S. Lee, M.-S. Keel, S.-I. Lim, and S. Kim, “Charge Pump with Perfect Current Matching Characteristics in Phase-Locked Loops,” IET Electronics Letters, vol. 126 36, pp. 1907-1908, Nov. 2000.
[29] T. S. Fiez, D. J. Allstot, G. Liang, and P. Lao, “Signal-Dependent Clock Feedthrough Cancellation in Switched-Current Circuits,” in Proc. CICCAS, June 1991, pp. 785–788.
[30] E. A. VIittoz, and O. Neyround, “A Low-Voltage CMOS Bandgap Reference,” IEEE J. Solid-State Circuits, vol. 14, pp. 573-579, Jun. 1979.
[31] M. A. P. Pertijs, A. Bakker, and J. H. Huijsing, “A High-Accuracy Temperature Sensor with Second-Order Curvature Correction and Digital Bus Interface,” in Proc. IEEE ISCAS, vol. 1, pp. 368-371, May 2001.
[32] M. Tuthill, “A Switched-Current, Switched-capacitor Temperature Sensor in 0.6-um CMOS,” IEEE J. Solid-State Circuits, vol. 33, pp. 1117-1122, July 1998.
[33] C, Hsiang Hui, L. Jyh Woei, Y. Ching Yuan, L. Shen Iuan, “ A Wide-Range Delay-Locked Loop With a Fixed Latency of One Clock Cycle,” IEEE J. Solid-State Circuits, vol. 37, pp. 1021-1027, Aug. 2002.

無法下載圖示 全文公開日期 2014/07/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE