簡易檢索 / 詳目顯示

研究生: 童翊婷
Yi-Ting Tung
論文名稱: 以活性開環複分解反應合成含剛性及軟性嵌段之聚降冰片烯三團塊共聚物及其在陰離子交換膜燃料電池之應用
Synthesis of Triblock Polynorbornenes Containing Rigid and Flexible Segments by Living Ring-Opening Metathesis Polymerization for Anion Exchange Membrane Fuel Cell Application
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 汪昆立
Kun-Li Wang
蕭育生
Yu-Sheng Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 53
中文關鍵詞: 聚降冰片烯活性開環附分解聚合三團塊共聚物相分離陰離子交換膜燃料電池
外文關鍵詞: Polynorbornenes, Living ring-opening metathesis polymerization, Triblock copolymer, Phase separation, Anion exchange membrane, Fuel cell
相關次數: 點閱:285下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以降冰片烯衍生物(norbornene derivates)為主體,利用Diels -Alder反應合成含有不同側鏈之三種單體,並採用逐次添加法(sequential addition)進行活性開環複分解聚合,製備出一系列聚降冰片三團塊共聚物,使聚合物分別含有剛硬疏水、柔軟疏水及作為傳導基團所在之親水鏈段。接著將聚合物中雙鍵進行還原,並加入交聯劑N, N, N’, N’-tetramethyl-1,3-diaminepropane(TMDAP)利用澆鑄法進行薄膜製備,將薄膜進行四級銨化及離子交換程序後成功獲得陰離子交換膜,並探討聚合物結構內不同單體組成比例對於薄膜性質所造成之差異,期望透過自組裝行為進一步控制各種薄膜性質。當聚合物中剛硬疏水鏈段之比例增加時,有效抑制吸水率並改善尺寸安定性、熱穩定性、機械強度。且成功證實可透過調控高分子中剛硬/柔軟、親水/疏水鏈段之組成進一步調控膜內之微相分離情形。其中,陰離子交換膜中離子傳導率最高的膜在80 ℃相對溼度100%之量測環境下側得之離子傳導率數值可達127 mS/cm,並且表現出優異的鹼性穩定性。以上種種數據證明自組裝行為之可行性,可自由調控薄膜之尺寸安定性、熱穩定性、機械強度、相分離現象等薄膜性質。


    In this work, three norbornene derivates with different side chains were synthesized by the Diels-Alder reaction. Triblock polynorbornenes containing hydrophobic rigid segment, hydrophobic soft segment, and anion-conducting hydrophilic segment were synthesized by living ring-opening metathesis polymerization (ROMP) using sequential monomer addition. Anion exchange membranes were obtained by solution casting, followed by quaternization and ion exchange procedures. We investigate the properties of anion exchange membranes with different monomer ratios in the polymer structures. It is expected to further control the membrane properties through self-assembly behavior or the block copolymers' hydrophilic/hydrophobic, rigid/soft phase separation. When the contents of rigid hydrophobic chain segments in the polymer increase, it effectively suppresses water uptake and improves dimensional stability, thermal stability, and mechanical strength. Furthermore, we successfully demonstrate that the phase separation of the membranes resulted from their triblock structures can affect their properties. The highest ion conductivity among these anion exchange membranes measured at 80 oC with a relative humidity of 100% is as high as 127 mS/cm. The study demonstrates that the triblock polynorbornenes prepared by living ROMP can control the membrane properties such as dimensional stability, thermal stability, and mechanical strength via phase separation.

    中文摘要 Abstract 致謝 目錄 Figure 索引 Scheme 索引 Table索引 第一章 緒論 1.1 前言 1.2 燃料電池介紹 1.3 AEMFC之原理與構造 第二章 文獻回顧 2.1 陰離子交換膜之發展 2.2 陰離子交換膜之主鏈與傳導基結構 2.3 傳導原理 2.4 鹼性穩定性與降解機制 2.5 聚降冰片烯之介紹 2.6 開環複分解聚合 2.7 研究動機與目的 第三章 實驗 3.1 實驗儀器 3.2 實驗藥品 3.3 單體合成 3.3.1 exo-1,4,4a,9,9a,10-hexahydro-9,10(1',2')-benzeno-1,4-methanoanthracene (HBMN)之合成 3.3.2 5‐butylbicyclo[2.2.1]hept‐2‐ene (NOHe)之合成 3.3.3 5‐(bromopropyl)bicyclo[2.2.1]hept‐2‐ene (NOBr)之合成 3.3.3.1 前驅物5-bromopentene 3.3.3.2 5‐(bromopropyl)bicyclo[2.2.1]hept‐2‐ene (NOBr) 3.3.4 [1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro (phenylmethylene)bis(3-bromopyridine)ruthenium(II) (G3)之合成 3.4 聚降冰片烯之合成 3.5 聚降冰片烯之還原 3.6 交聯高分子薄膜之製備 第四章 結果與討論 4.1 單體的合成與標定 4.1.1 單體A (exo-1,4,4a,9,9a,10-hexahydro-9,10(1',2')-benzeno-1,4-methanoanthracene, HBMN)之製備與標定 4.1.2 單體B (5‐butylbicyclo[2.2.1]hept‐2‐ene, NOHe)之製備與標定 4.1.3 單體C (5‐(bromopropyl)bicyclo[2.2.1]hept‐2‐ene, NOBr)之製備與標定 4.2 高分子的合成與標定 4.3 還原高分子的合成與標定 4.4 離子交換容量、吸水率、溶脹率 4.5 熱性質 4.6 機械性質 4.7 形態學 4.8 離子傳導率 4.9 鹼性穩定性 第五章 結論 參考文獻

    1. https://ukcop26.org/
    2. Schuster, M.; Rager, T.; Noda, A.; Kreuer, K. D.; Maier, J., About the choice of the protogenic group in PEM separator materials for intermediate temperature, low humidity operation: a critical comparison of sulfonic acid, phosphonic acid and imidazole functionalized model compounds. Fuel Cells 2005, 5, 355-365.
    3. Gottesfeld, S.; Dekel, D. R.; Page, M.; Bae, C.; Yan, Y.; Zelenay, P.; Kim, Y. S., Anion exchange membrane fuel cells: current status and remaining challenges. Journal of Power Sources 2018, 375, 170-184.
    4. Hren, M.; Božič, M.; Fakin, D.; Kleinschek, K. S.; Gorgieva, S., Alkaline membrane fuel cells: anion exchange membranes and fuels. Sustainable Energy & Fuels 2021, 5, 604-637.
    5. Gutru, R.; Turtayeva, Z.; Xu, F.; Maranzana, G.; Vigolo, B.; Desforges, A., A comprehensive review on water management strategies and developments in anion exchange membrane fuel cells. International Journal of Hydrogen Energy 2020, 45, 19642-19663.
    6. Yang, Y.; Li, P.; Zheng, X.; Sun, W.; Dou, S. X.; Ma, T.; Pan, H., Anion-exchange membrane water electrolyzers and fuel cells. Chemical Society Reviews 2022, 51, 9620-9693.
    7. Liu, L.; Liu, Z.; Bai, L.; Shao, C.; Chen, R.; Zhao, P.; Chu, X.; Li, N., Quaternized poly (2, 6-dimethyl-1, 4-phenylene oxide) anion exchange membranes based on isomeric benzyltrimethylammonium cations for alkaline fuel cells. Journal of Membrane Science 2020, 606, 118133-118142 .
    8. Zhu, L.; Yu, X.; Peng, X.; Zimudzi, T. J.; Saikia, N.; Kwasny, M. T.; Song, S.; Kushner, D. I.; Fu, Z.; Tew, G. N.; Mustain, W. E.; Yandrasits, M. A.; Hickner, M. A., Poly(olefin)-based anion exchange membranes prepared using Ziegler–Natta polymerization. Macromolecules 2019, 52, 4030-4041.
    9. Zhang, Z.; Xiao, X.; Yan, X.; Liang, X.; Wu, L., Highly conductive anion exchange membranes based on one-step benzylation modification of poly(ether ether ketone). Journal of Membrane Science 2019, 574, 205-211.
    10. Han, J.; Lin, B.; Peng, H.; Zhu, Y.; Ren, Z.; Xiao, L.; Zhuang, L., Aggregated and ionic cross-linked anion exchange membrane with enhanced hydroxide conductivity and stability. Journal of Power Sources 2020, 459, 227838-227847.
    11. Lin, B.; Xu, F.; Su, Y.; Han, J.; Zhu, Z.; Chu, F.; Ren, Y.; Zhu, L.; Ding, J., Ether-free polybenzimidazole bearing pendant imidazolium groups for alkaline anion exchange membrane fuel cells application. ACS Applied Energy Materials 2019, 3, 1089-1098.
    12. Zuo, P.; Xu, Z.; Zhu, Q.; Ran, J.; Ge, L.; Ge, X.; Wu, L.; Yang, Z.; Xu, T., Ion exchange membranes: constructing and tuning ion transport channels. Advanced Functional Materials 2022, 32, 2207366-2207402.
    13. Clark, T. J.; Robertson, N. J.; IV, H. A. K.; Lobkovsky, E. B.; Mutolo, P. F.; Abruña, H. D.; Coates, G. W., Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications. Journal of the American Chemical Society 2010, 132, 3400-3404.
    14. Liao, J.; Chen, Q.; Pan, N.; Yu, X.; Gao, X.; Shen, J.; Gao, C., Amphoteric blend ion-exchange membranes for separating monovalent and bivalent anions in electrodialysis. Separation and Purification Technology 2020, 242, 116793-116805.
    15. Slade, R. C. T.; Kizewski, J. P.; Poynton, S. D.; and, R. Z.; Varcoe, J. R., Fuel Cells. Springer New York, NY: 2013; p VI, 801.
    16. Pan, J.; Chen, C.; Li, Y.; Wang, L.; Tan, L.; Li, G.; Tang, X.; Xiao, L.; Lu, J.; Zhuang, L., Constructing ionic highway in alkaline polymer electrolytes. Energy Environ. Sci. 2014, 7, 354-360.
    17. Zheng, Y.; Ash, U.; Pandey, R. P.; Ozioko, A. G.; Ponce-González, J.; Handl, M.; Weissbach, T.; Varcoe, J. R.; Holdcroft, S.; Liberatore, M. W.; Hiesgen, R.; Dekel, D. R., Water uptake study of anion exchange membranes. Macromolecules 2018, 51, 3264-3278.
    18. Merle, G.; Wessling, M.; Nijmeijer, K., Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science 2011, 377, 1-35.
    19. KyleN.Grew; WilsonK.S.Chiu, A dusty fluid model for predicting hydroxyl anion conductivity in alkaline anion exchange membranes. Journal of The Electrochemical Society 2010, 157, 327-337.
    20. Marino, M. G.; Kreuer, K. D., Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids. ChemSusChem 2015, 8, 513-523.
    21. Chen, N.; Lee, Y. M., Anion exchange polyelectrolytes for membranes and ionomers. Progress in Polymer Science 2021, 113, 101345-101379.
    22. Mohanty, A. D.; Tignor, S. E.; Krause, J. A.; Choe, Y.-K.; Bae, C., Systematic alkaline stability study of polymer backbones for anion exchange membrane applications. Macromolecules 2016, 49, 3361-3372.
    23. Arges, C. G.; Ramani, V., Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes. Proceedings of the National Academy of Sciences 2013, 110, 2490-2495.
    24. Treichel, M.; Gaitor, J. C.; Birch, C.; Vinskus, J. L.; Noonan, K. J. T., Anion-exchange membranes derived from main group and metal-based cations. Polymer 2022, 249, 124811-124823.
    25. Kun Cao; Bei Yuan; Xue Liu; Minfang Wu; Yao, Z., Preparation and applications of the chiral norbornene derivatives. Progress in Chemistry 2017, 29, 605-616.
    26. Kobayashi, S., Ring-opening metathesis polymerization. Encyclopedia of Polymeric Nanomaterials 2014, 642, 1-12.
    27. Walsh, D. J.; Lau, S. H.; Hyatt, M. G.; Guironnet, D., Kinetic study of living ring-opening metathesis polymerization with third-generation Grubbs catalysts. Journal of the American Chemical Society 2017, 139, 13644-13647.
    28. Chen, W.; Mandal, M.; Huang, G.; Wu, X.; He, G.; Kohl, P. A., Highly Conducting anion-exchange membranes based on cross-linked poly(norbornene): ring opening metathesis polymerization. ACS Applied Energy Materials 2019, 2, 2458-2468.
    29. Cao, D.; Yang, F.; Sheng, W.; Zhou, Y.; Zhou, X.; Lu, Y.; Nie, F.; Li, N.; Pan, L.; Li, Y., Polynorbornene-based anion exchange membranes with hydrophobic large steric hindrance arylene substituent. Journal of Membrane Science 2022, 641, 119938-119949.
    30. Widjonarko, N., Introduction to advanced X-ray diffraction techniques for polymeric thin films. Coatings 2016, 6, 54-70.
    31. Nam, S.-E.; Kim, S.-O.; Kang, Y.; Lee, J. W.; Lee, K.-H., Preparation of Nafion/sulfonated poly(phenylsilsesquioxane) nanocomposite as high temperature proton exchange membranes. Journal of Membrane Science 2008, 322, 466-474.

    QR CODE