簡易檢索 / 詳目顯示

研究生: 林仕恆
Shih-Heng Lin
論文名稱: 銪摻雜矽酸鋁二鈣玻璃粉之形貌與價態對於發光特性的影響
Effects of Morphology and Valence on Photoluminescence Properties for Eu-doped Gehlenite Glassy Powder
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 施劭儒
Shao-Ju Shih
顏怡文
Yee-wen Yen
王丞浩
Chen-Hao Wang
游進陽
Chin-Yang Yu
楊永欽
Yung-Chin Yang
鄒年棣
Nien-Ti Tsou
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 105
中文關鍵詞: 螢光粉矽酸鋁二鈣非晶相形貌噴霧熱解法光致發光
外文關鍵詞: phosphors, gehlenite, amorphous, morphology, spray pyrolysis, photoluminescence
相關次數: 點閱:415下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

螢光粉是一種非常普及的發光材料,常用於LED、霓虹燈、防偽標籤等等領域。矽酸鋁二鈣 (Gehlenite) 是一種螢光粉母體材料,擁有良好的化學及熱穩定性,因此具有相當重要的應用性質。三價銪 (Eu3+) 是一種常見的紅光激發因子,因為與矽酸鋁二鈣有較高的發光匹配度,因而採用銪作為激發因子。螢光粉分為兩類,一類是結晶性螢光粉,另一種為非晶性螢光粉,在之前的文獻中,大部分在探討結晶性螢光粉的性質與應用,只有極少數的文獻是討論非晶性螢光粉,因此本實驗將探討以矽酸鋁二鈣作為基底,而銪作為激發因子的非晶性螢光粉。本研究發現非晶性螢光粉與結晶性螢光粉的性質大相逕庭,非晶性螢光在多孔結構中,其發光效率較高;結晶性螢光粉在多孔結構中,其發光效率較低。又因非晶性螢光粉相較於結晶性螢光粉較難以被定量分析,而可作為良好的防偽標籤,因此非晶性螢光粉是非常具有學術價值的研究。

本研究主要使用噴霧熱解法 (Spray Pyrolysis, SP) 來製備矽酸鋁二鈣摻雜Eu (Gehlenite) 螢光粉材料,使用X光繞射儀進行結晶性分析,再以掃描式電子顯微鏡觀察其表面形貌,並利用穿透式電子顯微鏡確定其結構,最後使用光致發光光譜儀(photoluminescence)得到其發光性質。本實驗細分為四個實驗,第一個實驗為調配前驅物溶液濃度,發現其濃度越高,製備粉末粒徑越大顆,發光效率越高。第二個實驗為改變矽源的前驅物,使用兩種不同醋酸矽及矽酸乙酯作為矽的前驅物,發現以醋酸矽作為前驅物時,可以得到比以矽酸乙酯作為前驅物時較多的多孔結構顆粒,而其發光效率較高。第三個實驗為利用不同造孔劑 (聚乙二醇 (PEG)、雙氧水 (H2O2)) 製備各種結構非晶螢光粉,可得到實心、多孔及中空結構的非晶螢光粉,其中利用H2O2作為造孔劑製備的中空結構非晶螢光粉的發光效率最高,可以看出螢光強度為中空粉末>多孔粉末>實心粉末的趨勢。最後一個實驗為製備好的螢光粉使用不同氣氛下進行退火空氣 (氧分壓2.1 × 10-1 atm) 、氮氣 (氧分壓1 × 10-5 atm) 及氮氫混合氣 (氧分壓1 × 10-20 atm) ,發現在低氧分壓的氮氫混和氣體中退火之螢光粉在光致發光光譜儀分析中,其主波峰有往紅光方向偏移、綠光波長變強的變化。透過SP法成功控制多種形貌粉體以及峰值變化,至於形貌對於螢光粉發光效率的影響,實心非晶結構螢光粉材料由於顆粒間能量傳輸與非輻射途徑散失產生螢光淬滅現象,因此大大影響其螢光性質;螢光峰值變化可能原因是氫氣將Eu3+還原成Eu2+,價數的改變使能帶變寬,放出的能量變大而使波峰變化。


Phosphor is a very popular luminescent material used in LED, neon, security labels and so on. Gehlenite is a phosphor host material that has good chemical and thermal stability properties and therefore it has a very wide application. Europium (Eu3+) is a common red-light excitation factor that uses europium as an excitation factor because it has a higher luminescence match with gehlenite. Phosphors are divided into two types, one is crystalline phosphors, the other is amorphous phosphors. In the previous studies, most of those are focused on crystalline phosphors, and only very few studies discuss about amorphous phosphors, so this experiment will focus on amorphous phosphors with europium as an excitation factor and using gehlenite as a substrate. The study found that amorphous phosphor and crystalline phosphor have very different properties, amorphous phosphor in the porous structure has higher luminous efficiency; crystalline phosphor in the porous structure has lower luminous efficiency. Compared with crystalline phosphors, amorphous phosphors is more difficult to be quantitatively analyzed, so amorphous phosphors can be used as security labels. Therefore, amorphous phosphors have a great value in academic research.

In this study, amorphous gehlenite:Eu phosphorous powders were synthesized by spray pyrolysis (SP). The amorphous structures of gehlenite:Eu particles were characterized by X-ray diffraction. The morphologies of the gehlenite:Eu were observed by scanning electron microscopy, and then use transmission electron microscopy to determine its structure. The final step is using photoluminescence (PL) spectroscopy to analyze its luminous properties. The experiment can be subdivided into four experiments. The first experiment was to adjust the concentration of precursor solution. The higher the concentration, the particle size becomes bigger, then the higher the luminous efficiency. The second experiment was to change the silicon precursors using silicon acetate and tetraethoxysilane (TEOS) as the silicon precursor. We found that more porous structure particles were synthesized when silicon acetate was used as a silicon precursor than TEOS as a silicon precursor which also has higher luminous efficiency. The third experiment was using different pore-forming agent, namely poly (ethylene oxide) (PEG) and hydrogen peroxide (H2O2) to synthesize a variety of structural amorphous phosphor which can be solid, porous and hollow structure of amorphous phosphor. As the result, we found that hollow structure synthesized by H2O2 as the pore-forming agent has the highest luminous efficiency in the various structural amorphous phosphor powders. We can found that the trend of photoluminescence properties is hollow particles, porous particles and solid particles (from highest to lowest). In the last experiment, the phosphors were annealed under different atmospheres, namely air (partial pressure of oxygen is 2.1 × 10-1 atm), nitrogen (partial pressure of oxygen is 1 × 10-5 atm) and the mixed air of 95% nitrogen and 5% hydrogen (partial pressure of oxygen is 1 × 10-20 atm). It was found that the phosphors annealed in 95% nitrogen and 5% hydrogen (low partial oxygen pressure) showed the main peak shift to the higher wavelength (red light) and the green light becomes stronger in the photoluminescence spectrometer analysis. We successfully controlled multiple particle morphologies and peak shift. As for the effect of morphology on phosphors luminous efficiency, the amorphous solid phosphors have fluoresce quenching due to the energy transfer and loss in non-violation way, affects the luminous property greatly. The PL peak shift may due to the hydrogen reduce Eu3+ to divalent europium (Eu2+). The change of valence number can make the band gap wider, the more energy release and the peak shifts.

中文摘要 I 英文摘要 III 致謝 VI 目錄 VIII 圖目錄 XI 表目錄 XVI 1.緒論 1 1.1 前言 1 1.2 研究目的 5 2.文獻回顧 6 2.1 矽酸鋁二鈣 (Gehlenite) 結構介紹 6 2.2 矽酸鋁二鈣 (Gehlenite) 製程條件 7 2.3 矽酸鋁二鈣 (Gehlenite) 摻雜活化劑螢光粉 9 2.4 矽酸鋁二鈣 (Gehlenite) 螢光粉Eu2+及Eu3+ 13 2.4 非晶相矽酸鋁二鈣 (Gehlenite) 螢光粉 19 2.5螢光粉在防偽標籤之應用 21 3.實驗方法 25 3.1實驗藥品與儀器 26 3.2 Gehlenite:Eu玻璃粉體-前驅物熱重分析實驗 29 3.3 Gehlenite:Eu玻璃粉體-合成粉體之熱重分析 29 3.4 Gehlenite:Eu玻璃粉體-不同濃度前驅物 29 3.5 Gehlenite:Eu玻璃粉體-不同矽源前驅物 31 3.6 Gehlenite:Eu玻璃粉體-添加不同造孔劑 32 3.7 Gehlenite:Eu玻璃粉體-不同氣氛熱處理 33 3.8儀器分析 35 3.8.1熱重損失分析儀 (Thermogravimetry Analysis, TGA) 35 3.8.1 X光繞射儀 (X-ray Diffractometer, XRD) 36 3.8.2場發射雙束型聚焦離子束顯微鏡 (Dual Beam Focused Ion Beam (FIB)) 37 3.8.3穿透式電子顯微鏡 (Field Emission Gun Transmission Electron Microscopy, FEG-TEM) 39 3.8.4 螢光光譜分析儀 (Spectrofluorometer) 44 4.實驗結果 47 4.1 Gehlenite:Eu玻璃粉體-前驅物熱重分析實驗 47 4.2 Gehlenite:Eu玻璃粉體-合成粉體之熱重分析 51 4.2.1低掠角X光繞射分析 51 4.2.2掃描式電子顯微鏡分析 53 4.3 Gehlenite:Eu玻璃粉體-不同濃度前驅物 55 4.3.1低掠角X光繞射分析 56 4.3.2掃描式電子顯微鏡分析 57 4.3.3穿透式電子顯微鏡分析 61 4.3.4光致螢光光譜量測分析 63 4.4 Gehlenite:Eu玻璃粉體-不同矽源前驅物 64 4.4.1低掠角X光繞射分析 65 4.4.2掃描式電子顯微鏡分析 65 4.4.3穿透式電子顯微鏡分析 68 4.4.4光致螢光光譜量測分析 72 4.5 Gehlenite:Eu玻璃粉體-添加不同造孔劑 73 4.5.1低掠角 X 光繞射分析 75 4.5.2掃描式電子顯微鏡分析 76 4.5.3穿透式電子顯微鏡分析 78 4.5.4光致螢光光譜量測分析 80 4.6 Gehlenite:Eu玻璃粉體-不同氣氛熱處理 81 4.6.1低掠角X光繞射分析 82 4.6.2掃描式電子顯微鏡分析 82 4.6.3穿透式電子顯微鏡分析 84 4.6.4光致螢光光譜量測分析 86 5.討論 88 5.1 Gehlenite :Eu粉體-熱裂解溫度參數探討 88 5.1.1前驅物熱重分析 88 5.1.2合成粉體熱重分析 88 5.2 Gehlenite :Eu粉體發光性質討論 89 5.2.1 不同濃度前驅物 89 5.2.2 不同矽源前驅物 94 5.2.3 添加不同造孔劑 96 5.2.4 不同氣氛熱處理 98 6.結論 100 7.未來工作 103 8.參考文獻 104

[1] D.A. Steigerwald, J.C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M.J. Ludowise, P.S. Martin, S.L. Rudaz, Illumination with solid state lighting technology, IEEE journal of selected topics in quantum electronics 8 (2002) 310-320.
[2] R.J. Xie, N. Hirosaki, Silicon-based oxynitride and nitride phosphors for white LEDs¬-A review, Science and Technology of Advanced Materials 8 (2007) 588-600.
[3] R.J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, M. Mitomo, 2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors, Applied physics letters 90 (2007) 191101.
[4] H. Wu, Y. Hu, G. Ju, L. Chen, X. Wang, Z. Yang, Photoluminescence and thermoluminescence of Ce3+ and Eu2+ in Ca2Al2 SiO7 matrix, Journal of Luminescence 131 (2011) 2441-2445.
[5] L. Li, Technology designed to combat fakes in the global supply chain, Business Horizons 56 (2013) 167-177.
[6] I.C. Chen, T.M. Chen, Sol-gel synthesis and the effect of boron addition on the phosphorescent properties of SrAl2O4: Eu2+, Dy3+ phosphors, Journal of Materials Research 16 (2001) 644-651.
[7] T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4: Eu2+, Dy3+, Journal of the Electrochemical Society 143 (1996) 2670-2673.
[8] Y. Ding, Y. Zhang, Z. Wang, W. Li, D. Mao, H. Han, C. Chang, Photoluminescence of Eu single doped and Eu/Dy codoped Sr2Al2SiO7 phosphors with long persistence, Journal of Luminescence 129 (2009) 294-299.
[9] E. Bernardo, L. Fiocco, A. Prnová, R. Klement, D. Galusek, Gehlenite: Eu3+ phosphors from a silicone resin and nano-sized fillers, Optical Materials 36 (2014) 1243-1249.
[10] I. P. Swainson, M. T. Dove, W. W. Schmahl, A. Putnis, Neutron powder diffraction study of the åkermanite-gehlenite solid solution series, Physics and Chemistry of Minerals 19 (1992) 185-195.
[11] R.J. Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, M. Mitomo, Eu2+-doped Ca-α-SiAlON: a yellow phosphor for white light-emitting diodes, Applied physics letters 84 (2004) 5404-5406.
[12] S. Tezuka, Y. Sato, T. Komukai, Y. Takatsuka, H. Kato, M. Kakihana, Eu2+-activated CaSrSiO4: a new red-emitting oxide phosphor for white-light-emitting diodes, Applied Physics Express 6 (2013) 072101.
[13] J. Botterman, K. Van den Eeckhout, A.J. Bos, P. Dorenbos, P.F. Smet, Persistent luminescence in MSi2O2N2: Eu phosphors, Optical Materials Express 2 (2012) 341-349.
[14] K. Van den Eeckhout, P.F. Smet, D. Poelman, Luminescent afterglow behavior in the M2Si5N8: Eu family (M= Ca, Sr, Ba), Materials 4 (2011) 980-990.
[15] H. He, X. Song, R. Fu, Z. Pan, X. Zhao, Z. Deng, Y. Cao, Crystal structure and luminescence of Li2Ca0.7Sr0.3SiO4:Eu2+ and its application in multi-phosphor converted white LEDs, Journal of Alloys and Compounds 493 (2010) 401-405.
[16] Z.w. Zhang, L. Liu, X.h. Shen, Y.s. Peng, C.y. Cao, W.g. Zhang, D.j. Wang, Photoluminescence properties of Ca0.99Eu0.01(Mo1−xSix)O4 nanocrystals red-phosphors obtained by the hydrothermal method, Journal of Alloys and Compounds 577 (2013) 480-485.
[17] D.S. Jo, J. Kim, K. Senthil, H.J. Lee, H.K. Chung, M. Kakihana, T. Kenji, T. Masaki, D.H. Yoon, Influence of amorphous and crystalline type precursor intermediates on the morphology and luminescence properties of green emitting β-Ca 2SiO4: Eu2+ phosphor synthesized using a liquid phase precursor method, Journal of Alloys and Compounds 608 (2014) 311-317.
[18] 工業技術研究院, 奈米技術產業資訊, 3.
[19] 立法防偽系統公司, http://www.imstag.com.tw/index.html.
[20] W. Chen, Eu2+ and Eu3+ co-activated LaAlO3 phosphor: synthesis and tuned luminescence, Dalton Transactions 44 (2015) 17730-17735.
[21] M. Peng, G. Hong, Reduction from Eu3+ to Eu2+ in BaAl2O4: Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4: Eu, Journal of Luminescence 127 (2007) 735-740.
[22] H. Xie, J. Lu, Y. Guan, Y. Huang, D. Wei, H.J. Seo, Abnormal reduction, Eu3+→ Eu2+, and defect centers in Eu3+-doped pollucite, CsAlSi2O6, prepared in an oxidizing atmosphere, Inorganic chemistry 53 (2013) 827-834.
[23] Y. Zhang, X. Li, K. Li, H. Lian, M. Shang, J. Lin, Crystal-site engineering control for the reduction of Eu3+ to Eu2+ in CaYAlO4: structure refinement and tunable emission properties, ACS applied materials & interfaces 7 (2015) 2715-2725.
[24] M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, M. Honda, Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2Al2SiO7 melilite crystals, Physical Review B 65 (2002) 235108.
[25] S.J. Louisnathan, Refinement of the crystal structure of a natural gehlenite, Ca2Al (Al, Si)2O7, The Canadian Mineralogist 10 (1971) 822-837.
[26] Z. Jiang, Y. Wang, Near-UV excitable white Sr2Al2GeO7: Ce3+, Tb3+ phosphor for light emitting diodes, Electrochemical and Solid-State Letters 13 (2010) J68-J70.
[27] S. Sousa, J. Holanda, Characterization of non-calcareous" thin" red clay from south-eastern Brazil: applicability in wall tile manufacture, Ceramica 58 (2012) 29-35.
[28] M. Jordán, T. Sanfeliu, C. De la Fuente, Firing transformations of Tertiary clays used in the manufacturing of ceramic tile bodies, Applied Clay Science 20 (2001) 87-95.
[29] Q. Zhang, J. Wang, M. Zhang, W. Ding, Q. Su, Enhanced photoluminescence of Ca2 Al2SiO7: Eu3+ by charge compensation method, Applied Physics A: Materials Science & Processing 88 (2007).
[30] P. Yang, X. Yu, H. Yu, T. Jiang, X. Xu, Z. Yang, D. Zhou, Z. Song, Y. Yang, Z. Zhao, Ca2Al2SiO7:Bi3+, Eu3+, Tb3+: A potential single-phased tunable-color-emitting phosphor, Journal of Luminescence 135 (2013) 206-210.
[31] Hewlett-Packard Company.
[32] http://www.engineering.com/3DPrinting/3DPrintingArticles/ArticleID/7920/3D-Printed-Quantum-Dots-Could-Lead-to-Anti-Counterfeiting-Tech.aspx.
[33] 林麗娟, X光繞射原理及其應用, 工業材料第86期 (1994) 100-109.
[34] http://micro.ustc.edu.cn/CP/SEM.htm.
[35] 林智仁、羅聖全, 場發射穿透式電子顯微鏡簡介, 工業材料雜誌 201 (2003) 90-98.
[36] 汪建民, 材料分析, 中國材料科學學會 (1998) 215-258.
[37] 陳玉鴻, http://www.ccut.edu.tw/teachers/wentse/downloads/1031009-1.pdf, 工業技術研究院.
[38] S. Yuvaraj, L. Fan-Yuan, C. Tsong-Huei, Y. Chuin-Tih, Thermal decomposition of metal nitrates in air and hydrogen environments, The Journal of Physical Chemistry B 107 (2003) 1044-1047.
[39] G.L. Messing, S.C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, Journal of the American Ceramic Society 76 (1993) 2707-2726.
[40] S. Shih, J. Huang, Designing the morphology of ceria particles by precursor complexes, Ceramics International 39 (2013) 2275-2281.
[41] S.J. Shih, Y.Y. Wu, K.B. Borisenko, Control of morphology and dopant distribution in yttrium-doped ceria nanoparticles, Journal of Nanoparticle Research 13 (2011) 7021-7028.
[42] C.A. Angell, J.C. Tucker, Heat capacities and fusion entropies of the tetrahydrates of calcium nitrate, cadmium nitrate, and magnesium acetate. Concordance of calorimetric and relaxational ideal glass transition temperatures, The journal of physical chemistry 78 (1974) 278-281.
[43] P. Patnaik, Handbook of inorganic chemicals, McGraw-Hill New York, 2003.
[44] S.J. Shih, K.B. Borisenko, L.J. Liu, C.Y. Chen, Multiporous ceria nanoparticles prepared by spray pyrolysis, Journal of Nanoparticle Research 12 (2010) 1553-1559.
[45] S. Shi, L. He, L. Geng, L. Jiang, S. Wang, J. Zhang, J. Zhou, Solution combustion synthesis and enhanced luminescence of Eu3+-activated Y2Ce2O7 phosphor nanopowders, Ceramics International 41 (2015) 11960-11965.
[46] W.N. Wang, W. Widiyastuti, T. Ogi, I.W. Lenggoro, K. Okuyama, Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors, Chemistry of Materials 19 (2007) 1723-1730.
[47] C.R. Ronda, T. Jüstel, Quantum dots and nanophosphors, Luminescence: From Theory to Applications (2008) 35-59.
[48] L. JIN, Effect of critical process parameters on luminescence properties of Eu2+/Dy3+ co-doped high silica luminescence glass, Spectroscopy and Spectral Analysis 34 (2014) 34-38.
[49] S.J. Shih, P.R. Herrero, G. Li, C.Y. Chen, S. Lozano-Perez, Characterization of mesoporosity in ceria particles using electron microscopy, Microscopy and Microanalysis 17 (2011) 54-60.
[50] S.S. Jada, Study of tetraethyl orthosilicate hydrolysis by in situ generation of water, Journal of the American Ceramic Society 70 (1987).
[51] J.G. Ferry, Methane from acetate, Journal of bacteriology 174 (1992) 5489-5495.
[52] Y.C. Kang, D.J. Seo, S.B. Park, H.D. Park, Morphological and optical characteristics of Y¬2O3: Eu phosphor particles prepared by flame spray pyrolysis, Japanese Journal of Applied Physics 40 (2001) 4083.
[53] D. Perednis, O. Wilhelm, S. Pratsinis, L. Gauckler, Morphology and deposition of thin yttria-stabilized zirconia films using spray pyrolysis, Thin solid films 474 (2005) 84-95.
[54] W. Guo, G. Luo, Y. Wang, A new emulsion method to synthesize well-defined mesoporous particles, Journal of colloid and interface science 271 (2004) 400-406.
[55] O. Yatskovskaya, O. Baklanova, T. Gulyaeva, V. Drozdov, V. Gorbunov, The effect of polyethylene glycol molecular weight on characteristics of the porous structure of silica materials, Protection of Metals and Physical Chemistry of Surfaces 49 (2013) 216-221.
[56] M.K. Sharma, P. Rohani, S. Liu, M. Kaus, M.T. Swihart, Polymer and surfactant-templated synthesis of hollow and porous ZnS nano-and microspheres in a spray pyrolysis reactor, Langmuir 31 (2014) 413-423.
[57] M. Yada, T. Miyaguchi, D. Watanabe, Y. Hayashi, T. Ayabe, T. Torikai, T. Watari, Morphological control and upconversion luminescence of hollow CeO2 and Er3+–Yb3+ codoped CeO2 particles, CrystEngComm 18 (2016) 8377-8387.
[58] S.J. Shih, Y.C. Lin, S.H. Lin, P. Veteška, D. Galusek, W.H. Tuan, Preparation and characterization of Eu-doped gehlenite glassy particles using spray pyrolysis, Ceramics International 42 (2016) 11324-11329.
[59] S.J. Shih, Y.C. Lin, S.H. Lin, C.Y. Yu, Correlation of morphology and photoluminescence properties of gehlenite: Eu glassy phosphors, International Journal of Applied Ceramic Technology 14 (2017) 56-62.

QR CODE