簡易檢索 / 詳目顯示

研究生: 梁瑞庭
Jui-Ting Liang
論文名稱: 探討利用氣體霧化法製備之AlCoCrFeNi高熵合金粉末性質之研究
Study on the Properties of Atomized AlCoCrFeNi High-Entropy Alloy Powder
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 王朝正
Chaur-Jeng Wang
楊智超
Chih-Chao Yang
黃爾文
E-Wen Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 70
中文關鍵詞: 高熵合金氣體霧化法AlCoCrFeNi粉末退火處理相組成分析奈米壓痕
外文關鍵詞: HEAs, gas atomization, AlCoCrFeNi powders, annealing, EBSD, nanoindentation
相關次數: 點閱:424下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在此篇研究中,利用氣體霧化法制備AlCoCrFeNi高熵合金粉末取代傳統的球磨法,並利用各種儀器,如X光繞射儀(XRD)、場發射掃描式電子顯微鏡(SEM)、示差掃描熱卡量計(DSC)及奈米壓痕儀,探討退火溫度對於晶體結構、微觀結構、相變化及機械性質的影響,此等原子比高熵合金粉末因為快速冷卻的原因,使其擁有初始相純BCC,而不是文獻中提及的雙相結構BCC+FCC,藉由DSC結果能夠發現居禮溫度大約發生在600℃,並於此處發生了相變化,故可以利用退火熱處理使其轉變為FCC相,進而達到相控制的目的,對應XRD分析,此合金系統當熱處理溫度到達600℃時,BCC相開始轉變為FCC相,且越高的溫度所得到的FCC峰值也越高,除了溫度對熱處理有影響外,時間對於FCC相的飽和狀態也有影響,越久的退火時間,能夠使FCC持續成長至一定的程度,而且每個退火溫度的飽和峰值不同,藉由EDS分析,退火後的粉末能夠分為兩部分,一個是富含Cr金屬的區域,另一個則是Al及Ni一同析出的區域,此兩個區代表著不同的相組成,利用EBSD對此合金粉末做相鑑定,發現此合金退火後為BCC (FeCo)、FCC (AlNi3)及σ (Fe0.5Cr0.5)三種相結構組成,故其擁有相異的機械性質,此研究將對其做個別的探討,而熱處理時間對於微觀硬度及相飽和的影響也會在此篇研究中做探討。


In this study, the AlCoCrFeNi high entropy alloy powder was prepared by gas atomization process instead of ball milling method and influences of annealing temperature on the crystal structure, microstructure, phase transformation and mechanical properties using XRD, SEM, DSC and nanoindenter were investigated. From DSC data, it was observed a Curie temperature about 600℃, suggesting that the point occurs phase transition. This equatomic HEAs powder has initial phase: BCC while the FCC phase can be adjusted via annealing treatment. It can be found that the FCC phase begin to grow after annealing treatment above 600℃ and the higher the annealing temperature the stronger the FCC phase. We also found each heat treatment temperature has own specific phase-saturated annealing time. Through the EDS analysis, the powder was divided into two groups: Cr rich region and Al-Ni rich region, these two region has different phases and mechanical properties resulting from distinct constituent phase, so the effects of different heat treatment time on micro-hardness and phase-saturated were also discussed.

致謝 I 摘要 II Abstract III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 簡介 1 第二章 文獻回顧 3 2.1高熵合金的定義及發展 3 2.2高熵合金的特性及機械性質 4 2.2.1高熵合金的特性 4 2.2.2高熵合金的機械性質 7 2.3高熵合金的應用 8 2.4 AlxCoCrFeNi高熵合金介紹 9 2.5 熵的定義及Gibbs rule 13 2.6氣體霧化法 14 2.7總結 16 第三章 實驗方法 17 3.1實驗流程 17 3.2高熵合金粉末之實驗步驟 18 3.2.1高熵合金粉末熱處理 18 3.2.2高熵合金粉末鑲埋 19 3.2.3高熵合金粉末之研磨 19 3.2.4高熵合金粉末之拋光 19 3.2.5高熵合金粉末之腐蝕 20 3.3實驗分析及儀器原理 21 3.3.1光學顯微鏡(OM) 22 3.3.2場發射掃描式電子顯微鏡(FE-SEM) 23 3.3.3能量色散X射線光譜(EDS) 23 3.3.4背向電子散射繞射技術(EBSD) 24 3.3.5 X光繞射儀(XRD) 24 3.3.6奈米壓痕儀(Nano-indentation) 25 第四章 結果與討論 27 4.1高熵粉末之微觀結構 27 4.1.1未退火高熵粉末之微觀結構 28 4.1.2退火高熵粉末之微觀結構 28 4.1.3高熵粉末之腐蝕微觀結構 32 4.2高熵粉末之成份分析 35 4.3高熵粉末之相組成分析 39 4.3.1高熵粉末之相變化分析[74] 39 4.3.2高熵粉末之XRD分析 41 4.3.3高熵粉末之EBSD分析 45 4.4高熵粉末之機械性質探討 50 4.4.1未退火高熵粉末之硬度分析 50 4.4.2退火高熵粉末之硬度分析 52 第五章 結論 54

[1] Huang K.H., Yeh J.W. (1996). A study on the multicomponent alloy systems containing equal-mole elements. National Tsing Hua University, Hsinchu.
[2] Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Chang S.Y. (2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299-303.
[3] Yeh J.W (2006). Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 31(6), 633-648.
[4] Yeh J.W., Chen S.K., Chen Y.L. (2007). Novel alloy concept, challenges and opportunities of high-entropy alloys. In Frontiers in the design of materials (pp. 31-47). CRC Press.
[5] Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T. Adv. Eng. Mater. 6
(2004) 299–303.
[6] Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng, A 2004;375–377:213–8.
[7] Zhang C., Zhang F., Diao H., Gao M. C., Tang Z., Poplawsky J. D., Liaw P. K. (2016). Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys. Materials & Design, 109, 425-433.
[8] Ma D., Tan H., Zhang Y., Li Y. Correlation between glass formation and type of eutectic coupled zone in eutectic alloys. Mater Trans 2003;44(10):2007–10.
[9] Zhang Y., Yang X., Liaw P.K., Alloy design and properties optimization of high-entropy alloys. JOM 2012;64(7):830–8.
[10] Zhang Y., Ma S.G., Liaw P.K., Tang Z, Cheng YQ. Broad guidelines in predicting phase formation of high-entropy alloys, MRS Communications, submitted for publication.
[11] Ma S.G., Zhang Y., Liaw P.K., Damping behaviors of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer, J Alloy Compd, in preparation.
[12] Zhang Y., Zuo T.T., Liaw P.K., Cheng Y.Q. High-entropy alloys with high saturation magnetization and electrical resistivity. Sci Rep 2013:3:1455
[13] Yang X., Zhang Y., Liaw P.K., Microstructure and compressive properties of TiZrNbMoVx high-entropy alloys. Proc Eng 2012:292–8.
[14] Yeh J.W., Recent progress in high-entropy alloys. Presentation at Changsha meeting; 2011.
[15] Zhang Y., Wang X.F., Chen G.L., Qiao Y., Effect of Ti on microstructure and properties of CoCrCuFeNiTix high-entropy alloys. Ann Chim Sci Matér 2006;31(6):699–709.
[16] Yeh J.W., Lin S.J., Chin T.S., Gan J.Y., Chen S.K., Shun T.T., et al. Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements. Metall Mater Trans A 2004;35(8):2533–6.
[17] Zhou Y.J., Zhang Y., Wang Y.L., Chen G.L., Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl Phys Lett 2007;90(18):181904.
[18] Wang X.F., Zhang Y., Qiao Y., Chen G.L., Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 2007;15(3):357–62.
[19] Senkov O.N., Wilks G.B., Scott J.M., Miracle D.B., Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011;19:698–706.
[20] Singh S., Wanderka N., Murty B.S., Glatzel U., Banhart J., Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater 2011;59:182–90.
[21] Senkov O.N., Wilks G.B., Miracle D.B., Chuang C.P., Liaw P.K., Refractory high-entropy alloys. Intermetallics 2010;18(9):1758–65.
[22] Zhang Y., Zhou Y.J., Lin J.P., Chen G.L., Liaw P.K., Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater 2008;10(6):534–8.
[23] Li C., Li J.C., Zhao M., Jiang Q., Effect of alloying elements on microstructure and properties of multiprincipal elements highentropy alloys. J Alloy Compd 2009;475(1–2):752–7.
[24] Chang H.W., Huang P.K., Davison A., Yeh J.W., Tsau C.H., Yang C.C., Nitride films deposited from an equimolar AlCrMoSiTi alloy target by reactive direct current magnetron sputtering. Thin Solid Films 2008;516(18):6402–8.
[25] Zhang Y., Chen G.L., Gan C.L., Phase change and mechanical behaviors of TixCoCrFeNiCu1yAly high entropy alloys. J ASTM Int 2010;7(5):102527.
[26] Zhang Y., Mechanical properties and structures of high entropy alloys and bulk metallic glasses composites. Mater Sci Forum 2010;654–656:1058–61.
[27] Zhang Y., Zhou Y.J., Solid solution formation criteria for high entropy alloys. Mater Sci Forum 2007;561–565:1731–9.
[28] Zhang Y., Zhou Y.J., Hui X.D., Wang M.L., Chen G.L., Minor alloying behavior in bulk metallic glasses and high-entropy alloys. Sci China, Ser G 2008;51(4):427–37.
[29] Cai H., Zhang H., Zheng H., Soft magnetic devices applied for low zero excursion four-mode ring laser gyro. IEEE Trans Magn 2007;43(6):2686–8.
[30] Zhang H., Pan Y., He Y., Jiao H., Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating. Appl Surf Sci 2011;257(6):2259–63.
[31] Lin C., Tsai H., Bor H., Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy. Intermetallics 2010;18:1244–50.
[32] Lin C., Tsai H. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics 2011;19(3):288–94.
[33] Yang X., Zhang Y. Prediction of high-entropy stabilized solid solution in multi-component alloys. Mater Phys Chem 2012;132(2–3):233–8.
[34] Greer A.L. Confusion by design. Nature 1993;366:303.
[35] Canton B., Audebert F., Galano M., Kim K.B., Warren P.J. Novel multicomponent alloys. Warren J Metastable Nanocryst Mater 2005;24–25:1–6.
[36] Tong C.J., Chen Y.L., Chen S.K., Yeh J.W., Shun T.T., Tsau C.H., et al. Microstructural characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans 2005;36A:881-93.
[37] Tong C.J., Chen M.R., Chen S.K., Yeh J.W., Shun T.T., Lin S.J., et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans 2005;36A:1263-71.
[38] Wu J.M., Lin S.J., Yeh J.W., Chen S.K., Huang Y.S., Chen H.C. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 2006;261:513-9.
[39] Tung C.C., Yeh J.W., Shun T.T., Chen S.K., Huang Y.S., Chen H.C. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater Lett 2007;61:1-5.
[40] Zhang K.B., Fu Z.Y., Zhang J.Y., Shi J., Wang W.M., Wang H., et al. Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J Alloys Comp 2009;485:L31-4.
[41] Zhang K.B., Fu Z.Y., Zhang J.Y., Wang W.M., Wang H., Zhang Q.J., et al. Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Mater Sci Eng A 2009;508:214-9.
[42] Wang X.F., Zhang Y., Qiao Y., Chen G.L. Novel microstructure of multicomponent CoCrCuFeNiTix alloys. Intermetallics 2007;15:357-62.
[43] Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 2004;375-377:213-8.
[44] Chen Y.L., Hu Y.H., Tsai C.W., Hsieh C.A., Kuo S.W., Yeh J.W., et al. Alloying behavior of binary to octonary alloys based on CuNiAlCoCrFeTiMo during mechanical alloying. J Alloys Comp 2009;477:696-705.
[45] Chen Y.L., Hu Y.H., Hsieh C.A., Yeh J.W., Chen S.K.. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J Alloys Comp 2009;481:768-75.
[46] Yeh J.W., Chang S.Y., Hong Y.D., Chen S.K., Lin S.J. Anomalous decrease in X-ray diffraction intensities of CueNieAleCoeCreFeeSi alloy systems with multiprincipal elements. Mater Chem Phys 2007;103:41-6.
[47] Zhou Y.J., Zhang Y., Wang Y.L., Chen G.L. Microstructural and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100x high-entropy alloys. Mater Sci Eng A 2007;454-455:260-5.
[48] Yeh, J.W. Chim, A. – Sci. Mater. 31 (2006) 633.
[49] Zhao K., Xia X.X., Bai H.Y., Zhao D.Q., Wang W.H. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature. Appl Phys Lett 2011;98:141913.
[50] Yang X., Zhang Y. Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys. In: Zhang YF, Su CW, Xia H, Xiao PF, editors. Advanced materials and processing 2010, proceedings of the 6th international conference on ICAMP, Yunnan, 19–3 July 2010.
[51] Zhang, D.L. (2004). Processing of advanced materials using high-energy mechanical milling. Progress in Materials Science, 49(3-4), 537-560.
[52] Basak C.B., Krishnan M., Kumar R., Abdullah K.K., Anantharaman S. (2014). Characterization and process evaluation of Ni–Ti–Fe shape memory alloy macro-spheres directly fabricated via rotating electrode process. Journal of Alloys and Compounds, 597, 15-20.
[53] Kao Y.F., Chen T.J., Chen S.K., Yeh J.W. (2009). Microstructure and mechanical property of as-cast,-homogenized, and-deformed AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys. Journal of Alloys and Compounds, 488(1), 57-64.
[54] Li C., Li J.C., Zhao M., Jiang Q. (2010). Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys. Journal of Alloys and Compounds, 504, S515-S518.
[55] Wang W.R., Wang W.L., Wang S.C., Tsai Y.C., Lai C.H., Yeh J.W. (2012). Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 26, 44-51.
[56] Zhuang Y.X., Xue H.D., Chen Z.Y., Hu Z.Y., He J.C. (2013). Effect of annealing treatment on microstructures and mechanical properties of FeCoNiCuAl high entropy alloys. Materials Science and Engineering: A, 572, 30-35.
[57] Sheng H.F., Gong M., Peng L.M. (2013). Microstructural characterization and mechanical properties of an Al0. 5CoCrFeCuNi high-entropy alloy in as-cast and heat-treated/quenched conditions. Materials Science and Engineering: A, 567, 14-20.
[58] Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. (2014). Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61, 1-93.
[59] Chang S.Y., Wang C.Y., Chen M.K., Li C.E. (2011). Ru incorporation on marked enhancement of diffusion resistance of multi-component alloy barrier layers. Journal of Alloys and Compounds, 509(5), L85-L89.
[60] Chang S.Y., Li C.E., Chiang S.C., Huang Y.C. (2012). 4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr) Nx as robust diffusion barrier for Cu interconnects. Journal of Alloys and Compounds, 515, 4-7.
[61] Kao Y.F., Chen S.K., Sheu J.H., Lin J.T., Lin W.E., Yeh J.W., Wang C.W. (2010). Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. international journal of hydrogen energy, 35(17), 9046-9059.
[62] Guo S., Ng C., Liu C.T. (2013). Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. Journal of Alloys and Compounds, 557, 77-81.
[63] Wang W.R., Wang W.L., Yeh J.W. (2014). Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. Journal of Alloys and Compounds, 589, 143-152.
[64] Gearhart C.A. (1990). Einstein before 1905: The early papers on statistical mechanics. American Journal of Physics, 58(5), 468-480.
[65] Ruffa A.R. (1982). Thermal potential, mechanical instability, and melting entropy. Physical Review B, 25(9), 5895.
[66] Si C., Tang X., Zhang X., Wang J., Wu W. (2017). Characteristics of 7055Al alloy powders manufactured by gas-solid two-phase atomization: A comparison with gas atomization process. Materials & Design, 118, 66-74.
[67] Goldstein J.I., Newbury D.E., Michael J.R., Ritchie N.W., Scott J.H.J., Joy D.C .(2017). Scanning electron microscopy and X-ray microanalysis. Springer.
[68] FE-SEM/CL/EBSD 分析技術簡介, 黃宏勝、林麗娟
[69] X光繞射原理及應用, 林麗娟
[70] Oxford公司網頁
[71] Chen M., et al. "Experimental study on macro-and microstress state, microstructural evolution of austenitic and ferritic steel processed by shot peening." Surface and Coatings Technology 359 (2019): 511-519.
[72] Iacoviello, Francesco, Vittorio Di Cocco, Laura D'Agostino. "Integranular corrosion susceptibility analysis in austeno-ferritic (duplex) stainless steels." Procedia Structural Integrity 3 (2017): 276-282.
[73] Hou S.C. et al. "The synergistic effects of combining the high energy mechanical milling and wet milling on Si negative electrode materials for lithium ion battery." Journal of Power Sources 349 (2017): 111-120.
[74] Cheng K.C., et al. "Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process." Applied Surface Science (2019).
[75] Esfandiarpour, A., and M. N. Nasrabadi. "Investigation of the effect of composing elements of CuNiCoFeV high entropy alloy on thermal-elastic properties: An ab initio study." Intermetallics 104 (2019): 59-65.
[76] Linear Thermal Expansion Coefficients of Metals and Alloys.

QR CODE