簡易檢索 / 詳目顯示

研究生: 張中興
Chung-shin Chang
論文名稱: 承載型氯化亞銅觸媒於合成碳酸二烷酯的特性
The Properties of Supported Cuprous Chloride Catalysts in the Synthesis of Dialkyl Carbonates
指導教授: 劉端祺
Tuan-chi Liu
口試委員: 翁鴻山
Hung-shan Weng
陳郁文
Yu-wen Chen
萬本儒
Ben-zu Wan
吳紀聖
Chi-sheng Wu
蕭敬業
Ching-yeh Shiau
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 134
中文關鍵詞: 氧化羰基化CuCl/C觸媒CuCl-PdCl2/C觸媒動力碳酸二乙酯碳酸二甲酯
外文關鍵詞: Oxidative carbonylation, CuCl/C catalyst, CuCl-PdCl2/C catalyst, Kinetic, Diethyl carbonate, Dimethyl carbonate
相關次數: 點閱:242下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究製備了一個甚少被研究的CuCl/C觸媒,以微分反應器進行甲醇氧化羰基化反應。觸媒以含浸法製備,不溶於水的氯化亞銅是以鹽酸溶解。研究中探討製備觸媒時的煅燒溫度對活性的影響。結果顯示,當煅燒溫度增加時,觸媒表面的主要成分由 轉變為 CuCl,然後變為 Cu2Cl(OH)3,最後再轉變為Cu0,其中CuCl被認為是生成碳酸二甲酯的活性成分。研究並發現,當觸媒於300 oC煅燒時其表面具有最多的CuCl。
活性碳承載氯化亞銅的觸媒於微分反應器進行甲醇氧化羰基化的動力研究。動力數據的收集於常壓及溫度11O oC 至130 oC進行。此操作情形下,產物有碳酸二甲酯和甲酸甲酯。動力數據利用Power law模式所推導的速率方程式,可以準確的描述碳酸二甲酯和甲酸甲酯的生成速率。Power law模式亦顯示反應於低溫、低甲醇分壓、低氧分壓和高一氧化碳分壓可以獲得碳酸二甲酯的高選擇率。
CuCl/C觸媒添加第二種金屬,用以提升觸媒的活性。PdCl2相對於其他金屬鹽類為最佳的促進劑。後續研究,利用添加PdCl2的最佳觸媒CuCl-PdCl2/C進行甲醇氧化羰基化反應,以探討其對活性的影響。觸媒結構部份主要是利用X-ray繞射分析(XRD)、程式升溫脫附(TPD)、X-ray光電子光譜(XPS)、能量散射X-ray光譜(EDX)等觸媒性質鑑定方法。PdCl2在CuCl-PdCl2/C觸媒中所扮演的角色利用活性和表面結構的關係加以討論。
CuCl/C和CuCl-PdCl2/C觸媒亦用於碳酸二乙酯的合成。催化性質利用X-ray繞射分析(XRD)、程式升溫脫附(TPD)、X-ray光電子光譜(XPS)、鑑定。乙醇氧化羰基化的活性測試於一連續流動的微反應器內進行。結果顯示CuCl-PdCl2/C觸媒不僅對碳酸二乙酯的合成具有活性,並且擁有高選擇率,選擇率於120oC為100%。除了上述優點之外,此觸媒於反應過程是容易失活,失活的主要原因是氯化亞銅形成聚集以及氯化鈀的分解。


Activated carbon supported cuprous chloride, a rarely examined catalyst, was prepared and applied to the oxidative carbonylation of methanol. The catalyst was prepared by impregnation. Water insoluble cuprous chloride was dissolved in hydrochloric acid. The effects of the calcination temperature in preparing the catalysts were examined. The results showed that, as the temperature was increased, the major surface species in the catalyst shifted from to CuCl, then to Cu2Cl(OH)3, and finally to Cuo. Cuprous chloride appeared to be the active species for the production of dimethyl carbonate (DMC), and maximum amount of cuprous chloride in the catalyst occurred at a calcination temperature of 300oC.
Kinetics of oxidative carbonylation of methanol was studied using a continuous flow micro-reactor. A novel catalyst, activated carbon supported cuprous chloride, was used for the reaction. Kinetic data were collected under atmospheric pressure and at temperatures between 110 and 130 oC. Under the reaction conditions, dimethyl carbonate as well as methyl formate were formed. Power-law models were derived and found to be perfect to describe the rates of formation of the products. The models also indicated that a high selectivity of dimethyl carbonate could be obtained by conducting the reaction at low temperature, low concentrations of methanol and oxygen, and at high concentration of carbon monoxide.
The second metal was added to the CuCl/C catalyst as a promoter to elevate the catalytic performance. The PdCl2 is the best promoter than the other metal salts. The next, is used the CuCl-PdCl2/C catalyst in methanol oxidative carbonylation to study the influence of PdCl2 in the activity. The catalysts were characterized by using XRD, EDX, TPD and XPS. The role of PdCl2 in CuCl-PdCl2/C catalyst was discussed by the activity and surface structure.
CuCl/C and CuCl-PdCl2/C catalysts were also used for the synthesis of diethyl carbonate. Catalytic properties were characterized by XRD, XPS and TPD. The activities of the catalysts in the oxidative carbonylation of ethanol were measured using a continuous flow micro-reactor. The results revealed that CuCl-PdCl2/C catalyst was not only active but also very selective for the production of diethyl carbonate. The selectivity was 100% at a reaction temperature below 120C. However, despite all the merits, the catalyst was easily deactivated in the reaction. The main causes of the deactivation were the sintering of the cuprous chloride and the decomposition of the palladium chloride.

中文摘要………………………………………………………………..Ⅰ 英文摘要………………………………………………………………Ⅲ 致 謝……………………………………………………………………Ⅴ目 錄……………………………………………………………………Ⅵ 圖表索引………………………………………………………………..Ⅹ 第一章 緒 論………………………..…………………………………1 第二章 文獻回顧………………………………………………………6 2.1碳酸二甲酯的合成………………………………………………..6 2.1.1 光氣法………………………………………………………..6 2.1.2 酯交換法……………………………………………………..7 2.1.3 羰基化法……………………………………………………..9 2.1.4 其它製程……………………………………………………21 2.2 碳酸二甲酯的應用……………………………………………..25 2.2.1 羰基化劑……………………………………………………25 2.2.2 甲基化劑……………………………………………………29 2.2.3其他用途……………………...……………………………31 第三章 實 驗………………………………………………………… 32 3.1 前言 ………………………………………………………………32 3.2 實驗試料及氣體 ………………………………………………... 32 3.2.1 實驗氣體 …………………………………………………… 32 3.2.2 實驗藥品……………………………………………………32 3.3 觸媒的製備……………………………………………………..34 3.3.1 CuCl/C觸媒的製備……………………………………..34 3.3.2 CuCl-PdCl2/C觸媒的製備………………………………….. 34 3.4 觸媒活性測試…………………………………………………..35 3.4.1甲醇氧化羰基化反應…….….………………………………..35 3.4.2乙醇氧化羰基化反應…….….………………………………..39 3.5 觸媒的鑑定…….…..….…….….……………………………….. 39 3.5.1 X光繞射分析(XRD)…….……..……………………….39 3.5.2 EDX 分析…………………… ………………………………40 3.5.3程式升溫脫附(TPD) ……………………………..………….. 45 3.5.4 X-ray光電子光譜(XPS)………………………..………… 48 第四章 製備用於碳酸二甲酯合成的CuCl/C觸媒:煅燒溫度的效應 4.1 前言………………………………………………………………..52 4.2 結果和討論… ……… ……………………………………………52 4.2.1 EDX分析……………………………………………………52 4.2.2 TPD-NH3……………………………………………………54 4.2.3 XRD分析………….……..…………………………………54 4.2.4 XPS…………...….….…………………………………….57 4.3 觸媒活性…… ……… ……………………………………………59 4.4結論…………...….….…………………………………….63 第五章 CuCl/C觸媒進行氣相甲醇氧化羰基化反應合成碳酸二甲酯的動力研究 5.1 前言………………………………………………………………..64 5.2 結果和討論… ……… ……………………………………………66 5.2.1 穩定狀態……………………………………………………66 5.2.2 傳送阻力……………………………………………………66 5.2.3微分模式操作……….……..…………………………………70 5.2.4分壓的影響 ……...….….……………………………………73 5.2.5反應溫度的影響……………………………………………73 5.2.6 動力模式……………………………………………………73 5.3結論…………...….….…………………………………….86 第六章 甲醇於CuCl-PdCl2/C觸媒的氣相氧化羰基化反應 6.1 前言………………………………………………………………..87 6.2 結果和討論………… …………………………………………… 88 6.2.1添加第二種金屬對觸媒活性的影響………………………88 6.2.2 XRD……………………………………………………………90 6.2.3 程式升溫脫附(TPD)……..…………………………………90 6.2.4 XPS………………...….….……………………………………93 6.2.5 EDX ……………………………………………………………93 6.3 觸媒活性…… ……… ……………………………………………99 6.4 結論 ………………...….….…………………………………….105 第七章 乙醇於CuCl-PdCl2/C觸媒的氣相氧化羰基化反應 7.1 前言 …………………………………………………………… 106 7.2 結果和討論 ………… ………………………………………… 107 7.2.1 XRD……………………………………………………………107 7.2.2 XPS …………………………..………………………………108 7.2.3 TPD ……………...….….……………………………………108 7.3 觸媒活性和反應步驟……………………………………………116 7.4結論 …………………...….….………………………………… 122 第八章 結論…………...….….……………………………………. 123 參考文獻 …...…………...….….……………………………………. 125 作者簡介…………...….….……………………………………133

1. Anderson ,S.A. and T. W. Root, “Invesitgation of the effect of carbon monoxide on the oxidative carbonylation of methanol to dimethyl carbonate over Cu+X and Cu+ZSM-5 zeolites”, J. Mol. Catal. 220, p247-255(2004).
2. Anderson ,S.A. and T. W. Root, “ Kinetic studies of carbonylationof methanol to dimethyl carbonate over Cu+X zeolite catalyst”, J. Catal. 217, p396-405 (2003).
3. Beard, R. L., M. E. Garst and R. A. Chandraratna, “ Organosilyl compounds having nuclear hormone receptor modulating activity”, U. S. Patent 4,131,521 (1978).
4. Boehm, H. P. in Advances in Catalysis, vol. 16, Academic Press, N. Y. p179 (1966).
5. Cavinato, G. and L. Toniolo, “New aspects of the synthesis of dimethyl carbonate via carbonylation of methyl alcohol promoted by methoxycarbonyl complexes of palladium(Ⅱ)” J. Org. Chem 444, pC65-C66 (1993).
6. Cella, J. A. and S. W. Bacon, “Preparation of Dialkyl Carbonates via the Phase-Transfer-Catalyzed Alkylation of Alkali Metal Carbonate and Bicarbonate Salts”, J. Org. Chem. 49, p1122-1125 (1984).
7. Chin, C. S., D. Shin, G. Won, J. Ryu, H. S. Kim, and B. G. Lee, “The effects of catalytic production of dimethyl carbonate”, J. Mol. Catal. A: Chemical 160, p315-321 (2000).
8. Chin, Y. R. and N. F. Shin, “Dimethyl carbonate from methanol by non-phosgenation processes”, SRI Int. PEP Review No.87-1-4 (1988)
9. Choi, K. I. and M.A.Vannice, “CO Oxidation over Pd and Cu Catalysts Ⅰ. Unreduced PdCl2 and CuCl2 Dispersed on Alumina or Carbon ”, J. Catal. 127,p465-488 (1991).
10. Cipris, D. and I. L. Mador, “Electrochemical synthesis of organic carbonates”, U. S. Patent 4,131,521 (1978).
11. Cullity, B. D., in Directions of Diffracted Beams, Elements of x-ray diffraction, p105 (1978).
12. Curnutt, G. L. and A. D. Harley, “Copper Catalyzed Oxidative Carbonylation of Methanol to Dimethyl Carbonate”, Oxygen Complexes and Oxygen Activation by Transition Metals Plenum Press•New York and London p215-232 (1987).
13. Curnutt, G. L. “Process for Preparing Dihydrocarbyl Carbonates Using a Nitrogen-Containing Coordination Compound Supported on Activated Carbon”, U. S. Patent 4,625,044 (1986).
14. Drake,I. J., K.L. Fujdala, A.T. Bell and T.D. Tilley, “ Dimethyl carbonate production via the oxidative carbonylation of methanol over Cu/SiO2 catalysts prepared via molecular precursor grafting and chemical vapor deposition approaches ”, J. Catal. 230,p14-27(2005).
15. Fang, D. and F. Cao, “Intrinsic kinetics of direct oxidative carbonylation of vapour phase methanol to dimethyl carbonate over Cu-based catalysts”, Chem. Eng. J. 78, p237-241 (2000).
16. Fang, S. and K. Fujimoto, “Direct synthesis of Dimethyl carbonate from carbon dioxide and methanol catalyzed by base”, Appl. Catal. A: General 142 p L1-L3 (1996).
17. Feton, D. M. and C. Anaheim, “Preparation of alkyl carbonates”, U. S. Patent 3,227,740 (1966).
18. Feton, D. M. and P. J. Steinwand, “Noble Metal Catalysis. Ⅲ. Preparation of Dialkyl Oxalate by Oxidative Carbonylation”, J. Org. Chem. 39, p701-704 (1974).
19. Fleet, M. E. “The Crystal Structure of Paratacamite, Cu2(OH)3Cl”, Acta Cryst. B31, 183 (1975).
20. Fogler, H. S., “Elements of Chemical Reaction Engineering”, 3rd , p758(1997)
21. Franklin, R. E., Proc. Roy. Soc. A209, p196 (1951).
22. Garten, V. A., D. E. Weiss, Rev. Pure Appl. Chem. 7, p69 (1957).
23. Harder, W., F. Merger, and F. Towae, “Preparation of carbonates”, U. S. Patent 4,436,668 (1984).
24. Lue, T. F., C. S. Liu, Y. W. Kan and P. Carroll, “Methods and compositions for preventing and treating male erectile dysfunction and female sexual arousal disorder”, U. S. Patent 20,030,096,747.
25. Kim, J. I., M. D. Cho and Y. G. Ryu, “Organic electrolytic solution and lithium battery using the same”, U. S. Patent 20,040,096,749.
26. Kim, K. D., I. S. Nam, J. S. Chung, J. S. Lee, S. G. Ryu, and Y. S. Yang, “Supported PdCl2-CuCl2 catalysts for carbon momoxide oxidation and reaction conditions”, Appl. Catal. B: Eniviornmental 5, p103-115 (1994).
27. King, S. T. “Reaction Mechanism of Oxidative Carnonylation of Methanol to Dimethyl Carbonate in Cu-Y Zeolite”, J. Catal. 161, p530-538 (1996).
28. King, S. T. “Oxidative Carbonylation of methanol to dimethyl carbonate by solid-state ion-exchanged CuY catalysts”, Catal. Today 33, p173-182 (1997).
29. Kricsfalussy, Z., H. Waldmann, and H. J. Traenckner, “Oxycarbony- lation of Methanol to Dimethyl Carbonate Using Molten Salts as Catalyst”, Ind. Eng. Chem. Res 37, p865-866 (1998).
30. Kroschwitz, J. I., and M. H. Grant, “Carbonic and carbonochloridic Esters” Encyclopedia of Chemical Technology 4th Vol.5, p77-96.
31. Ma, X., R. Zhao, G. Xu, F. He and H. Chen, “Physico-chemical properties of supported Cu catalysts for production of dimethyl carbonate”, Catalysis Today 30, p201-206 (1996)..
32. Mador, I. L. and A. U. Blackham, “Preparation of carbonates”, U. S. Patent 3,114,762 (1963).
33. Mayer, H. D. “Integrated process for the production of dimethyl carbonate”, U. S. Patent 5,183,920 (1993).
34. Mears, D. E. “Tests for Transport Limitations in Experimental Catalytic Reactors”, Ind. Eng. Chem. Process Des. Dev. 10, p541-547 (1971)
35. Morris, G. E., and G. Wainhouse, “Process dor the coproduction of dialkyl carbonate and tertiary butanol”, U. S. Patent 4,644,078 (1987)
36. Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc. Minnesota, 220,(1995).
37. Nishimura, k., S. Uchiumi, K. Fujii, K. Nishihira, and M. Yamashita, “Process for preparing a diester of oxalic acid”, U. S. Patent 4,229,589 (1980).
38. Nishihira,K., S. I. Yoshida, S. Tanaka, “Continuous process for preparing dimethyl carbonate”, U. S. Patent 5,214,185 (1993).
39. Ono, Y. “Review Catalysis in the production and reactions of dimethyl carbonate, an environmentally begin building block”, Appl. Catal. A: General 155, p133-166 (1997).
40. Pacheco, M. A. and C. L. Marshall, “Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as a fuel Additive”, Energy and Fuels 11, p2-29 (1997).
41. Puri, B. R., “In Chemistry and Physics of Carbon”, P. L. Walker, Jr., Ed., Macel Dekker, N. Y. p191 (1970).
42. Rivetti, F. and U. Romano, “Alcohol carbonylation with palladium (Ⅱ) complexes, effects of ligands, carbon monoxide, pressure and added base”, J. Org. Chem. 174, p221-226 (1979).
43. Rivetti, F. and U. Romano, “Procedure for the production of alkyl carbonates”, EP 0,534,545 (1992).
44. Roh, N.S., B.C. Dunn, E.M. Eyring, R.J. Pugmire, H.L.C. Meuzelaar, “Production of diethyl carbonate from ethanol and carbon monooxide over a heterogeneous catalytic flow reactor”, Fuel Processing Technology”, 83 , p27-38(2003).
45. Romano, U. and F. Rivetti, “Continuous process for preparing di-alkyl carbonates”, EP 0,365,083 (1989).
46. Romano, U., F. Rivetti, N. D. Muzio, and P. Borromeo, “Process for producing dimethylcarbonate”, U. S. Patent 4,318,862 (1982).
47. Romano, U., R. Tesel, G. Cipriant, and L. Micucci, “Method for the preparation of esters of carbonic acid”, U. S. Patent 4,218,391 (1980).
48. Romano, U., R. Tesel, M. M. Mauri, and P. Rebora, “Synthesis of Dimethyl Carbonate from Methanol, Carbon Monoxide, and Oxygen Catalyzed by Copper Compounds”, Ind. Eng. Chem. Prod. Res. Dev. 19, p396-403 (1980).
49. Sato, Y., M. Kagotani, T. Yamamoto, and Y. Souma, “Novel effective poly(2,2’-bipryridine-5,5’-diyl)-CuCl2 Catalyst for synthesis of dimethyl carbonate (DMC) by oxidative carbonylation of methyl”, Appl. Catal. A: General 185, p219-226 (1999).
50. Selva, M, and P. Tundo, “Synthesis of mono-N-substituted functionalized anilines”, U. S. Patent 20,040,127,747.
51. Sowa, F. J. and N. J. Cranford, “Methods of producing esters of carbamic and carbonic acids”, U. S. Patent 2,834,799 (1958).
52. Tahara, S., K. Fujii, K. Nishihira, M. Matsuda, and K. Mizutare, “Process for continuous preparation of diester of oxalic acid”, U. S. Patent 4,467,109 (1984).
53. Tomishige, K., T. Sakaihori, S. I. Sakai, snd K. Fujimoto, “Dimethyl Carbonate Synthesis by Oxidative Carbonylation on Actived Carbon Supported CuCl2 Catalysis: Catalytic Properties and Structural Change ”, Appl. Catal. A: General 181, p95-102 (1999).
54. Tomishige, K., T. Sakaihori, Y. Ikeda, K. Fujimoto, “A Novel Method of Direct Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide Catalyzed by Zirconia”, Catal. Lett. 58, p225- 229 (1999).
55. Yamamoto, Y., T. Matsuzaki, K. Ohdan, and Y. Okamoto, “Structure and Electronic State of PdCl2-CuCl2 Catalysts Supported on Activated Carbon”, J. Catal. 16, p577-586 (1996).
56. Yasushi, Y., M. Tokuo, O. Kyoji and O. Yasuski, “Structure and Electronic State of PdCl2–CuCl2Catalysts Supported on Activated Carbon”, J. Catal. 161, p577-586 (1996).
57. Zaid, G. H. and B. A. Wolf, “Synthesis of dialkyl carbonates”, U. S. Patent 6,452,036 (2002).
58. 工業技術研究院編輯部 “非光氣法製造PC樹脂”, 化工資訊 9 p64 (1996).
59. 朱淑娟 “無鉛汽油含致癌物 環保署評估風險”, 聯合報 民國89年12月21日 第六頁.
60. 李光興 王克洪 向興源 楊曉利 “液相氧化羰化合成碳酸二甲酯中試研究”, 華中理工大學學報 27 No.3, p37-39 (1999).
61. 李光興 朱治良 許漢昌 陳兵 “甲醇液相氧化羰基化合成碳酸二甲酯研究”, 華中理工大學學報 24 No.3, p105-108 (1996).
62. 李盈潔 林文淇 姚品全 陳柏宇 “羰基化觸媒應用-碳酸二甲酯合成法之研究”, 第十八屆台灣區觸媒及反應工程研討會論文集 (2000).
63. 李盈潔 林文淇 姚品全 陳柏宇 “固定化觸媒催化甲醇碳基化反應之合成研究”, 第十九屆台灣區觸媒及反應工程研討會論文集 (2001).
64. 松崎德雄 “碳酸二甲酯新規製造法”, 觸媒經濟 41 No1. p53-56 (1999).
65. 姚品全 “碳酸二甲酯製程分析及其應用”, 觸媒與製程 vol.8, 1(1999).
66. 孫予罕 “從CO2出發經碳酸二甲酯合成聚碳酸酯的反應產業鍊研究”, 第三屆海峽兩岸催化學術會議 p36-37 (2002).
67. 陳坤濯 “碳酸二甲酯-新的低污染泛用基礎化學原料”, 化工資訊 1, p44-51 (1993).
68. 陳柏宇 “綠色環保化學品-碳酸二甲酯”, 化工技術第8卷第11期 p150-163 (2000).
69. 陳柏宇 李盈傑 林文淇 姚品全 許希彥 “Oxidative Carbonylation of Methanol over Polymer-immobilized Copper Complexes”, 第二十屆台灣區觸媒及反應工程研討會論文集 p560-566 (2002).
70. 陳義融和范素斐 “開創明日化學的碳酸二甲酯”, 化工資訊 8, p58-67 (1993).
71. 陳禮甫 “以疏水性Ni/C觸媒進行醋酸合成”, 台灣科技大學化學工程技術研究所碩士論文 (2000).
72. 楊長榮 “二次鋰電池有機電解液之碳極表面鈍性膜研究”, 清華大學化學工程研究所碩士論文 (1997).
73. 楊佳憲 “攜錫型高分子催化合成碳酸二苯酯之研究”, 成功大學化學工程研究所碩士論文 (1994).
74. 衛子健 “鋰電池之PMMA系膠態高分子電解質之研究”, 清華大學化學工程研究所碩士論文 (1999).
75. 鍾文正 “碳酸二甲酯之氣相合成研究”, 台灣科技大學化學工程技術研究所碩士論文 (2001).
76. 許哲榮 “活性碳改質對CuCl2/C觸媒於碳酸二甲酯合成活性的影響”, 台灣科技大學化學工程技術研究所碩士論文 (2002).

QR CODE