簡易檢索 / 詳目顯示

研究生: 邱健佳
Jian-Jia Chiu
論文名稱: 利用磁共振頻譜影像考慮T2校正估算肝脂肪含量
Assessment of Liver Fat With T2 Correction Using Magnetic Resonance Spectroscopic Image
指導教授: 林益如
Yi-Ru Lin
口試委員: 黃騰毅
Teng-Yi Huang
蔡尚岳
Shang-Yueh Tsai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 36
中文關鍵詞: 非酒精性脂肪肝肝臟核磁共振頻譜影像質子迴訊磁共振頻譜影像T2效應T2校正
外文關鍵詞: Non-alcoholic fatty liver disease (NAFLD), Liver, MR spectroscopic imaging (MRSI), T2 relaxation effect, T2 correction, PEPSI
相關次數: 點閱:298下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非酒精性肝脂肪病的早期檢測可以防止進一步的併發症如脂肪肝炎,脂肪纖維化到脂肪肝硬化。目前在檢測肝脂肪的含量,使用肝臟切片為診斷上的標準,但一般民眾接受肝臟穿刺檢查的意願不高,因此非侵入式的脂肪肝檢查診斷已成為重要的研究。核磁共振影像以及核磁共振頻譜,是一種目前非侵入式用來檢驗肝脂肪含量最好的方式。以往使用核磁共振頻譜來檢驗肝脂肪已有一定的發展,但是僅限於單點的量測,如今我們使用核磁共振頻譜影像,掃描時序列使用面質子迴訊磁共振頻譜影像方式收取資料,此脈衝序列可檢測肝脂肪含量的空間分佈,且在收取資料的時間上有很大的加速,完成一次收取資料只需要18秒,這個時間是在一般人可以閉氣的範圍內達成,在這裡我們進一步的調查T2弛緩效應的影響。我們使用迴訊磁共振頻譜影像量取不同TE的資料,並重覆掃描八次,觀察T2校正的重複性,我們的結果顯示,在測量脂肪含量是有很高的重現性,但因為肝臟脂肪有很大的T2弛緩時間變動範圍,若沒有考慮T2校正,在定量肝脂肪上會有很大的誤差,因此在定量肝脂肪含量上說明了T2校正的重要性。


    Early detection of non-alcoholic fatty liver disease (NAFLD) can prevent further complications such as steatohepatitis, fibrosis and cirrhosis. Currently quantification of liver fat content relies on liver biopsy which is highly invasive method is still the gold standard for the evaluation of hepatic steatosis, but invasive method had a lot of disadvantages. Noninvasive study will become important. For noninvasive, magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are the good methods in lipid content test. There had a lot of outstanding research in MRS, But there focused in single voxel spectroscopy (SVS). In previous study, we used a fast magnetic resonance spectroscopic imaging (MRSI) techniques, acquisition sequence is proton echo-planar spectroscopic imaging (PEPSI) to measure lipid fat content. PEPSI is able to detect spatial distribution, and this is a fast acquisition sequence. In this thesis, we further investigated the influence of T2 relaxation effects. PEPSI scans with different TE were repeated 8 times to observe the reproducibility of T2 correction. Our results showed that the measured fat content is highly reproducible and the liver lipid T2 range is wide, so T2-correction is necessary in fat content quantified.

    Introduction Methods Phantom Subjects MRS Acquisition Data Analysis Lorentzian function curve fitting RESULTS Phantoms Subjects Discussion Conclusion References

    [1] J. B. Schwimmer, et al., "Prevalence of fatty liver in children and adolescents," Pediatrics, vol. 118, pp. 1388-93, Oct 2006.
    [2] N. A. Johnson, et al., "Noninvasive assessment of hepatic lipid composition: Advancing understanding and management of fatty liver disorders," Hepatology, vol. 47, pp. 1513-23, May 2008.
    [3] E. S. Siegelman and M. A. Rosen, "Imaging of hepatic steatosis," Semin Liver Dis, vol. 21, pp. 71-80, 2001.
    [4] A. E. Bohte, et al., "The diagnostic accuracy of US, CT, MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis," Eur Radiol, vol. 21, pp. 87-97, Jan 2011.
    [5] R. Longo, et al., "Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis," J Magn Reson Imaging, vol. 5, pp. 281-5, May-Jun 1995.
    [6] J. Machann, et al., "Hepatic lipid accumulation in healthy subjects: a comparative study using spectral fat-selective MRI and volume-localized 1H-MR spectroscopy," Magn Reson Med, vol. 55, pp. 913-7, Apr 2006.
    [7] G. J. Cowin, et al., "Magnetic resonance imaging and spectroscopy for monitoring liver steatosis," J Magn Reson Imaging, vol. 28, pp. 937-45, Oct 2008.
    [8] G. Hamilton, et al., "Effect of PRESS and STEAM sequences on magnetic resonance spectroscopic liver fat quantification," J Magn Reson Imaging, vol. 30, pp. 145-52, Jul 2009.
    [9] M. Yamaguchi, et al., "In vivo localized 1H MR spectroscopy of rat testes: stimulated echo acquisition mode (STEAM) combined with short TI inversion recovery (STIR) improves the detection of metabolite signals," Magn Reson Med, vol. 55, pp. 749-54, Apr 2006.
    [10] A. Chu, et al., "Proton echo-planar spectroscopic imaging with highly effective outer volume suppression using combined presaturation and spatially selective echo dephasing," Magn Reson Med, vol. 49, pp. 817-21, May 2003.
    [11] S. Y. Tsai, et al., "Accelerated proton echo planar spectroscopic imaging (PEPSI) using GRAPPA with a 32-channel phased-array coil," Magn Reson Med, vol. 59, pp. 989-98, May 2008.
    [12] F. H. Lin, et al., "Sensitivity-encoded (SENSE) proton echo-planar spectroscopic imaging (PEPSI) in the human brain," Magn Reson Med, vol. 57, pp. 249-57, Feb 2007.
    [13] P. Sharma, et al., "Quantitative analysis of T2-correction in single-voxel magnetic resonance spectroscopy of hepatic lipid fraction," J Magn Reson Imaging, vol. 29, pp. 629-35, Mar 2009.

    QR CODE