簡易檢索 / 詳目顯示

研究生: 紀品睿
Pin-Rui Ji
論文名稱: 層狀過渡性金屬硫屬化合物W1-xNbxSe2(0 ≤ x≤ 0.2 ), MoTe2 與 WTe2之單晶成長與特性研究
Crystal growth and characterization of niobium incorporated W1-xNbxSe2(0 ≤ x≤ 0.2 ), MoTe2 and WTe2 layered semiconductors
指導教授: 何清華
Ching-Hwa Ho
口試委員: 陳瑞山
Ruei-San Chen
李奎毅
Kuei-Yi Lee 
薛宏中
Hung-Chung Hsueh
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 109
中文關鍵詞: 層狀結構過渡性金屬硫屬化合物調制光譜拉曼散射光譜電壓-電流量測霍爾電壓量測
外文關鍵詞: Layered structure, Transition metal dichalcogenides, modulation spectroscopy, Raman scattering, voltage-current measurement, Hall measurement
相關次數: 點閱:679下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

中文摘要
本論文是以化學氣相傳導法 (Chemical Vapor Transport method,CVT)以碘作為傳導劑成長鈮摻雜之二硒化鎢 (W1-xNbxSe2,x=0, 0.01, 0.05, 0.1, 0.2) 系列單晶以及二碲化鎢(WTe2)和二碲化鉬(MoTe2)層狀材料。
利用XRD 我們發現W1-xNbxSe2(0 ≤ x≤ 0.2 )隨著Nb的摻雜繞射峰會往高角度位移導致晶格常數會遞減且為2H (Two layer hexagonal)結構;並透過電阻率量測發現WSe2半導體會因Nb的參雜變成偏金屬導電性且透過熱電及霍爾量測發現W1-xNbxSe2為退化型P型半導體,且透過拉曼光學量測W1-xNbxSe2隨著Nb的參雜會使E12g=248.17cm-1和A1g=256.85cm-1振動模態往低波數位移。
同時利用XRD我們可以證明二碲化鎢(WTe2)和二碲化鉬(MoTe2)為2H (Two layer hexagonal)結構,且透過電阻量測發現其有高導電度且透過熱電及霍爾量測其材料導電N型半導體特性,並且透過拉曼發現WTe2其厚度變薄會使振動模態A51=161cm-1和A21=212cm-1有增強趨勢且有極化特性,MoTe2其厚度變薄也會使振動模態E2g=234cm-1和B2g=301cm-1有增強趨勢且有極化特性,最後透過壓電調制及穿透 光學我們可以發現二碲化鉬(MoTe2)它為間接能隙且有A、B、C激子躍遷且在室溫間接能隙為0.91 eV而直接能隙為1.06 eV。

關鍵詞: 層狀結構、過渡性金屬硫屬化合物、X射線光電子能譜儀、X-ray晶格繞射分析儀、拉曼散射光譜、調制光譜、電壓-電流量測、霍爾電壓量測、掃描式顯微鏡、穿透式電子顯微鏡、原子力顯微鏡。


Abstract

In this thesis, we have successfully grown W1-xNbxSe2 (Tungsten-doped Niobium diselenides,0 ≤ x≤ 0.2 ) series layered crystals, MoTe2 (molybdenum ditelluride) and WTe2 (Tungsten ditelluride) layer compounds by chemical vapor transport method using I2 as the transport agent.
Using XRD, we find that W1-xNbxSe2 (0 ≤ x ≤ 0.2) with a Nb doping peak shifts to a high angle, resulting in a decrease in the lattice constant and a forming 2H (Two layer hexagonal) structure. Through the resistivity measurement WSe2 semiconductors become metallic and high conductivity due to Nb doping. Thermoelectric and Hall measurements, showed W1-xNbxSe2 is a degenerate P-type semiconductor, and Raman optical measurement revealed W1-xNbxSe2 with Nb impurity displayed E12g and A1g vibration modes shift to lower wave numbers.
At the same time, using XRD, we can prove that WTe2 and MoTe2 are 2H (Two layer hexagonal) structures, and through the resistivity measurement, they are found to be high conductive. The characteristics of conductive N-type semiconductors and the thinning of WTe2 by Raman reveals that the vibration modes A51 = 161cm-1 and A21 = 212cm-1 have a tendency to increase intensity and have a polarization characteristic. The thickness of MoTe2 becomes thinning to make a vibration mode states E2g = 234cm-1 and B2g = 301cm-1 have a tendency to increase intensity and have polarization characteristics. Finally, through piezoelectric modulation and transmittance, we can find that MoTe2 is an indirect semiconductor which has A, B and C excitons. The indirect energy gap at room temperature is 0.91 eV and the direct energy gap is 1.06 eV.
Keywords: Layered structure, Transition metal dichalcogenides , X-ray photoelectron spectrometer, X-ray lattice diffraction analyzer, Raman scattering, modulation spectroscopy, voltage-current measurement, Hall measurement, scanning electron microscope, Transmission electron microscope , an atomic force microscope.

目錄 中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 Ⅵ 表目錄 Ⅸ 第一章 緒論 1 1.1 材料結構介紹 4 第二章 晶體成長 6 2.1 材料晶體成長方法 6 2.2 晶體的系統配置 7 2.2.1 高真空系統 7 2.2.2 長晶反應系統 8 2.3 長晶程序 10 2.3.1元素重量莫爾法配置及石英管清洗 10 2.3.2 晶體化合及成長 10 第三章 實驗方法與量測系統 14 3.1 X-ray繞射儀(XRD) 14 3.2 掃描式電子顯微鏡(SEM) 13 3.3 EDS(能量色散X-射線光譜) 19 3.4 穿透式電子顯微鏡(TEM) 20 3.5 X射線電子能譜儀(XPS) 23 3.6拉曼散射光譜(Raman) 25 IV 3.7 原子力顯微鏡(Atomic Force Microscope) 28 3.8光穿透PT (Phototransmission) 29 3.9 調制光譜(Thermoreflectance) 32 3.9.1壓電量測原理介電函數與反射率關係 33 3.9.2 壓電調制實驗介紹 36 3.9.3真空低溫系統 37 3.10 電壓-電流(V-I) 39 3.11熱電量測(Hot probe) 41 3.12霍爾量測(Hall effect) 42 第四章 結果與討論 49 4.1 W1-xNbxSe2, WTe2 and MoTe2 (XRD) 分析 49 4.2 W1-xNbxSe2, WTe2 and MoTe2掃描式電子顯微鏡(SEM)分析 55 4.3 W1-xNbxSe2, WTe2 and MoTe2 EDS(能量色散X-射線光譜)分析 56 4.4 W1-xNbxSe2 and MoTe2穿透式電子顯微鏡(TEM)分析 59 4.5 W1-xNbxSe2, WTe2 and MoTe2 X射線電子能譜儀(XPS)分析 61 4.6 W1-xNbxSe2, WTe2 and MoTe2拉曼散射光譜(Raman)分析 65 4.7 WTe2 and MoTe2原子力顯微鏡(Atomic Force Microscope)分析 74 4.8 MoTe2光穿透PT (Phototransmission)量測分析 76 4.9 MoTe2調制光譜PZR(Thermoreflectance)量測分析 78 4.10 WSe2, WTe2 and MoTe2電壓-電流(V-I)量測 82 4.11 W1-xNbxSe2, WTe2 and MoTe2 熱電量測(Hot probe) 83 4.12 W1-xNbxSe2, WTe2 and MoTe2霍爾量測(Hall effect) 86 第五章 結論 93 參考文獻 95

參考文獻
[1] Z. Y. Zhang, Y. Li, Z. Chen, H. Zeng, "Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and Indirect–Direct Band‐Gap Transitions," Angew. Chem. vol.127 p.10 (2015).
[2] J. A. Wilson and A. D. Yoffe, "The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties," Adv. Phys. vol.18 pp.193-335 (1969).
[3] S. Cincotti and J. P. Rabe, "Self‐assembled alkane monolayers on MoSe2 and MoS2," Appl. Phys. Lett. vol.62 pp.3531-3533 (1993).
[4] 李建祥, "單層過度金屬硫屬化物之參雜與電子元件" 國立清華大學研究所碩士論文 (2011).
[5] Q. H Whang, K. K. Zadeh, A. Kis, N. C. Jonathan and S. S. Michael, "Electronics and optoelectronics of two dimension transition metal dichalcogenides" Nat. Nanotech. vol.7 pp.699-712 (2012)
[6] C. Manish, H. S. Shin, G. Eda, L. J. Li, K. P. Loh and H. Zhang "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets," Nat. Chem. vol.5 pp.263–275 ( 2013).
[7] S. Raman, G. N. Rao, I. P. Muthuselvam, C. Butler, N. Kumar, G. S. Murugan, C. Shekhar, T. R. Chang, C. Y. Wen, C. W. Chen, W. L. Lee, M. T. Lin, H. T. Jeng, C. Felser and F. C. Chou, "Polymorphic Layered MoTe2 from Semiconductor," Chem. Mater. vol. 29 pp.699−707 (2017).
[8] C. H. Lee, E. C. Silva, L. Calderin, M. A. T. Nguyen, M. J. Hollander, B. Brian, E. M. Thomas and J. A. Robinson "Tungsten Ditelluride: A layered semimetal," Sci Rep. vol.5 p.10013 (2005).
[9] 陳威豪,"鉻摻雜層狀二硒化鎢之晶體成長特性研究"國立台灣海洋大學研究所碩士論文 (2016).
[10] 何清華, "二硫化鐵之單晶成長與特性研究" 國立台灣工業技術學院工程技術研究所碩士論文 (1991).

[11] 陳映岑, "硒化銦之晶體成長及結構特性與光學應用研究" 國立台灣科技大學研究所碩士論文 (2014).
[12] 郭偉立, "三硒化二鎵之晶體成長及特性研究" 國立台灣海洋大學研究所碩士論文 (2015).
[13] 朱韻儒, "硒化銦系列半導體之晶體成長與特性研究" 國立台灣科技大學研究所碩士論文 (2014).
[14] A. Beiser, E. C. D. Mark "Concepts of Modern Physics" Publisher: McGraw Hill Education; 6th edition pp.68-74 (2009).

[15] S. S. Zumdahl, "Chemical Principles" Publisher: Houghton Mifflin Co; Special 5th Edition pp.196-19 (2002).
[16] D. Yang and R. F. Frindt, "Powder x‐ray diffraction of two‐dimensional materials," J. Appl. Phys. vol.79 pp.2376-2385 (1996).
[17] 柯宗佑, "二硒化鉬鎢層狀半導體之晶體成長與光學特性研究" 國立台灣科技大學研究所碩士論文 (2014).
[18] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, M. C. Hersam "Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides," ACS Nano. vol.8 pp.1102–1120 (2014)
[19] J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. L. Echlin, E. Sawyer, L. Michael, "Scanning Electron Microscopy and X-ray Microanalysis" Publisher: Springer; 3rd Edition pp.29-37 (2003)
[20] P. E. J. Flewitt, K. W. Robert, "Physical methods for materials characterization" Institute of Physics Publishing; 2nd Edition pp.463-501 (2003)
[21] R. F. Egerton, "Physical principles of electron microscopy" Publisher: Springer; 1st Edition pp.89-120 (2005).
[22] H. H. Rose, "Optics of high-performance electron Microscopes," Sci. Technol. Adv. Mater. vol.9 p.14107 (2008).

[23] S. David, "Surface Chemical Analysis" Publisher: Springer; 1st Edition pp.81-103 (2001).
[24] D. J. Gardiner, "Practical Raman spectroscopy " Publisher: Springer-Verlag Berlin Heidelberg; 1st Edition pp.55-76 (1989 )
[25] G. Placzek, "Rayleigh Streeung und Raman Effekt," Sci. Res. vol.3 pp.205 (1934).
[26] C. Kittel, "Introduction to Solid state Physics" Publisher: John wiley and Sons 6th edition pp.23-562 (1986).
[27] D. Neamen, "Semiconductor Physics and Devices" Publisher: McGraw-Hill; 4th Edition pp.618-664 (2012).
[28] L. Gupta, A. Mansingh, P. K. Srivastava, "Band gap narrowing and the band structure of tin-doped indium oxide films," Thin Solid Films 176 pp.33-44 (1989).
[29] C. H. Ho, Y. S. Huang, K. K. Tiong and P. C. Liao, "In-plane anisotropy of the optical and electrical properties of layered ReS2 crystals," J. Phys. Condens. Mat. vol.11 pp.5367-5375 (1999).
[30] M. Cardona, "Solid State Physics: Modulation Spectroscopy" Publisher: Academic Press; 1st Edition pp.175-187 (1969).
[31] D. E. Aspnes, "Handbook on Semiconductors: Modulation Spectroscopy Electric Field Effects on the Dielectric Function of Semiconductors," North Holland Publishing Compamny. vol.2 pp.109-154 (1980).
[32] D. K. Gaskill, G. T. Stauf and N. Bottka, "Photoreflectance of semi-insulating InP: resistivity effects on the exciton phase," Appl. Phys. Lett. pp.2824-2826 (1991).
[33] L. Mark, "Electrical and Computer Engineering," Purdue University, West Lafayette, pp.494-4600 (2006).
[34] L. J. Vander Pauw, "A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape," Appl. Sci. Res. vol.5 pp.220-224 (1958).
[35] L. J. Vander Pauw, "A method of measuring specific resistivity and Hall Effect of discs of arbitrary shape," Appl. Sci. Res. vol.13 pp.1-9 (1958).
[36] J. M. Michal, R. Xu, O. Kye, H. H. Kuo, R. F. Ian, H. S. P. Wong, Y. Nishi, P. Eric, "High Current Density and Low Thermal Conductivity of Atomically Thin Semi metallic WTe2," ACS. Nano. vol.10 pp.7225-8120 (2016).

[37] S. Cheng, L. Yang, J. Li, Z. Liu, W. Zhang and H. Chang, "Large area , Phase-controlled growth of few-layer, two-dimensional MoTe2 and lateral 1T′–2H heterostructures by chemical vapor deposition," CrystZngComm. vol.19 p.1045 (2017).
[38] J. L. Verble and T. J. Wieting, "Lattice mode degeneracy in MoS2 and other layer compounds," Appl. Phys. Lett. vol.25 pp.362-365 (1970).
[39] T. J. Wieting and J. L. Verble, "Infrared and Raman studies of long-wavelength optical phonons in hexagonal MoS2," Phys. Rev. B vol.3 pp.4286-4292 (1971).
[40] T. Sekine, M. Izumi, T. Nakashizu, K. Uchinokura, and E. Matsuura, "Raman scattering and Infrared reflectance in 2H-MoSe2," J. Phys. Soc. Jpn. vol.49 pp.1069-1077 (1980).
[41] Q. Song, X. C. Pan, H. Wang , K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song and L. Dai, "The In-Plane Anisotropy of WTe2 Investigated by Angle-Dependent and Polarized Raman Spectroscopy," Sci. Rep. vol.6 p.105 (2016).
[42] B. Ryan, L. G. Cançado, S. Krylyuk, I. Kalish, B. Kalanyan, A. K. Singh, K. Choudhary, A. Bruma, M. V. Patrick, T. Francesca, V. D. Albert and J. S. Stephan, "Characterization of Few-Layer 1T´MoTe2 by Polarization-Resolved Second Harmonic Generation and Raman Scattering," ACS. Nano. vol.10 pp.9626-9636 (2016).
[43] R. Claudia, B. A. Ozgur and F. H. Tony, "Optical Properties and Band Gap of Single and Few-Layer MoTe2 Crystals," Nano. Lett. vol.14 pp.6231-6236 (2014).
[44] S. J. Zelewski, "Photoacoustic and modulated reflectance studies of indirect and direct band gap in van der Waals crystals," Sci. Rep. vol.7 p.15365 (2017).
[45] I. G. Lezama, A. Arora, A. Ubaldini, C. Barreteau, E. Giannini, M. Potemski and A. F. Morpurgo, "Indirect-to-direct band-gap crossover in few-layer MoTe2," Nano. Lett. vol.4 pp.2336-2342 (2015).
[46] 林建豪, "硒化銦單晶之成長及光學特性研究" 國立台灣科技大學研究所碩士論文 (2012).

QR CODE