簡易檢索 / 詳目顯示

研究生: 陳紹宇
Shao-Yu Chen
論文名稱: 具數位校正技術及突波降低技術之5-GHz頻率合成器晶片設計
A 5-GHz Frequency Synthesizer Chip Design Using Frequency Calibration and Spur Compression Techniques
指導教授: 黃進芳
Jhin-Fang Huang
口試委員: 徐敬文
Ching-Wen Hsue
溫俊瑜
Jiun-Yu WEN
張勝良
Sheng-Lyang Jang
劉榮宜
Rong-Yi Liou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 96
中文關鍵詞: 鎖相迴路頻率合成器
外文關鍵詞: PLL, frequency Synthesizer
相關次數: 點閱:203下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在傳統頻率合成器架構之Charge pump phase lock loop(CPPLL)電路,因其相位頻率偵測器(PFD)之靜態相位誤差以及充電汞電流不匹配,將造成參考頻率突波。本文使用降低靜態相位誤差技術,防止頻率合成器在靜態相位誤差產生時對迴路充放電之機制,並搭配頻率校正系統以降低震盪器之增益(Kvco)與達到抑制雜訊以及參考頻率突波之效果。

    兩個晶片設計使用TSMC 0.18um 1.8V製程完成,在晶片一主要是使用快速數位校正技術以降低震盪器增益且相對降低相位雜訊及參考信號突波,並利用降低電流不匹配技術之充電汞以降低電流不匹配所產生之參考信號突波。使用快速校正技術之優點為校正時間較短,並搭配具Op Amp負回授之充電汞達成降低電流不匹配之優點,但晶片功耗較大,使用快速校正技術測試參考頻率突波為-52.5 dBc,數位電路供應在1.8V,頻率合成器在1MHz的相位雜訊為-114.82 dBc/Hz,功率消耗為20.1mW,晶片面積為0.83 mm2。

    在晶片二主要是設計一個在鎖相迴路中,因頻率偵測器之靜態相位誤差,以及充電汞電流不匹配,而造成參考頻率突波,因此使用輔助充電幫浦(AUXCP)技術做為補償機制,設計上主要是利用TDC偵測相位誤差,並利用輔助充電幫浦注入反向電流以降低電流不匹配現象且加入數位校正迴路以達到降低Kvco又可增加諧調範圍,且使用SAR logic數位校正降低功耗以及增加較正準確度,利用這些優點降低參考頻率突波。量測結果顯示頻率鎖定於5.0GHz時,距離主頻10KHz至100KHz的相位雜訊低於-60 dBc/Hz,而距離主頻1MHz處的相位雜訊為-113.23 dBc/Hz測試參考頻率突波為-58.57 dBc,晶片面積包含pad為1.11mm2。總消耗功率為22.8mW。


    In the traditional charge pump circuit of phase locked loop (CPPLL), the reference spur is caused by static phase error of the phase frequency detector (PFD) and current mismatch by charge pump. This thesis will use the technology of reducing static phase error, preventing to charge and discharge on the loop when static phase error generated. It also matches with the frequency calibration system to reduce Kvco of an oscillator, so as to reduce phase noise and reference spur.

    These two chips are fabricated by TSMC 0.18um 1.8V process. In the Chip 1 of this thesis, the digital calibration technology is used to reduce Kvco of an oscillator and phase noise as well as reference spur, and the technology of reducing current mismatch of charge pump is utilized to reduce reference spur generated from current mismatch. The advantage of using fast calibration technology is its short calibration time but it results in more power consumption. It matches with a negative feedback Op Amp of charge pump to reduce current mismatch. When the circuit is supplied with 1.8V, the measurement results are: reference spur is -52.5 dBc, phase noise of the frequency synthesizer at 1MHz is-114.82dBc/Hz, power consumption is 20.1mW, and chip area is 0.83 mm2.

    In the Chip 2, reference spur will be caused due to static phase error of the frequency detector and mismatch of the charge pump in the phase lock loop, while Chip 2 uses AUXCP technology as compensation mechanism. In the design, it mainly utilizes TDC detection phase error, uses AUXCP to input reversed current to reduce current mismatch, adds digital calibration loop to reduce Kvco and add tuning range, wherein the digital calibration circuit uses SAR logic circuit to reduce power consumption and improve precision of calibration as well as reduce reference spur via these above methods. The final measurement results show that when frequency is locked at 5.0GHz, phase noise at 10KHz~100KHz is lower than -60 dBc/Hz, phase noise of the frequency synthesizer at 1MHz is-113.23dBc/Hz, reference spur is -58.57 dBc, chip area is 1.11mm2, and total power consumption is 22.8mW.

    List of Figures IV List of Tables VII Chapter 1 Introduction 1 1.1Motivation 1 1.2 Focus and Contributions 2 1.3 Organization of This Thesis 2 Chapter 2 The Basics of Frequency Synthesizers 4 2.1 Wireless Transceiver 4 2.2 Phase-Locked Loop 5 2.2.1 Integer-N Frequency Synthesizer 5 2.2.2 Fractional-N Frequency synthesizer 6 2.3 General Considerations 7 2.3.1 Figures of Merit of a Frequency Synthesizer 7 2.3.2 Phase Noise 8 2.3.3 Spurs 9 2.4 Building Blocks of Frequency Synthesizer 9 2.4.1Voltage-Controlled Oscillator Circuit 9 2.4.1.1General Operation Principles 10 2.4.1.2Ring Oscillator Circuit 11 2.4.1.3LC-Tank Switched-Capacitors VCO Circuit 12 2.4.2 Phase Frequency Detector (PFD) 14 2.4.3Charge Pump Circuit 16 2.4.4Loop Filter 16 2.5Frequency Synthesizer Paper Survey 21 2.6 Summary 32 Chapter 3 Digital Calibration and Spur Reduction Technology 33 3.1 Digital Calibration and Spur Reduction Technology 33 3.1.1 Integer Digital Calibration 33 3.1.2 SAR Logic Calibration 35 3.2 Spur 36 3.2.1Spur 36 3.2.2Spur reduction using charge pump with negative feedback op 37 3.2.3Spur reduction using charge pump calibration 38 Chapter 4 An Integer-N Frequency Synthesizer using Digital Calibration and Spur Reduction Technology 41 4.1 Introduction 41 4.2 System Block Diagram 41 4.3 Building Block and Simulation 41 4.3.1 Voltage-Controlled Oscillator Circuit (VCO) 41 4.3.2 Frequency and Phase Detector Circuit (PFD) 44 4.3.3 Charge Pump Circuit (CP) 45 4.3.4 Programmable Divider Circuit 46 4.3.5 Digital Frequency Detector(DFD) 51 4.3.6 The Overall PLL System Simulation Results 53 4.4 Frequency Synthesizer Chip Measurements 54 4.4.1 Chip Floor Plan and PCB Design 54 4.4.2 Test Environment Setup 55 4.4.3 Measurement Results 56 4.4.4 Specifications and Performance Comparison 59 4.5 Summary 59 Chapter 5 AFractional-N Frequency Synthesizer with Frequency Calibration and Charge Pump Calibration Technology 60 5.1 Introduction 60 5.2 System Block Diagram 60 5.3Building Block 61 5.3.1 Voltage-Controlled Oscillator Circuit (VCO) 61 5.3.2 Phase Frequency Detector (PFD) 62 5.3.3 Charge Pump (CP) 64 5.3.4 Performance of Charge Pump 65 5.3.5 Performance of Voltage-Controlled Oscillator 66 5.3.6 Frequency Divider 66 5.3.7 SAR Calibration Circuit 71 5.3.7 Time to Digital Converter and AUXCP 73 5.3.7 Sampling LPF 74 5.3.7 Higher-Order -Modulator 75 5.4 Frequency Synthesizer Simulation 77 5.5 Frequency Synthesizer Chip Measurements 78 5.5.1Chip Measurement Considerations 79 5.5.2 Chip Floor Plan and PCB Design 79 5.5.3 Test Environment Setup 81 5.5.4 Measurement Results 82 5.5 Performance Summary and Comparison 83 5.6 Summary 84 Chapter 6 Conclusions and Future Work 85 6.1 Conclusions 85 6.1.1 Chip1: A Integer-N Frequency Synthesizer using Digital Calibration and Spur Reduction Technology 85 6.1.2 Chip2: A Fractional-N Frequency Synthesizer using Frequency Calibration and Charge Pump Calibration Technology 85 6.2 Future Work 86 Reference 87

    [1] S.-I. Liu, “Design and Realization of CMOS RF Frequency Synthesizer,” Master Thesis, 2001.
    [2] A. L. Lacaita, S. Levantino and C. Samori, “Integrated Frequency Synthesizers for Wireless Systems,” Cambridge University Pres, 2007.
    [3] A. Mohammadi, A. Ayatollahi, A. Abrishamifar and A. Beygi, “Frequency Synthesizer Settling Time and Phase Noise Issues For WLAN Transceiver Application in IEEE 802.11n Standard,” Int. ICEE '07 Conf., no. 4,pp.1–5, Apr. 2007.
    [4] P. J.Shie, “UWB RF Receiver Front-end Chip Design with On-Chip Transformer Circuit,” Master Thesis, 2008.
    [5] H.Bellescize, “La receptionsynchrone,” L’ondeelectrique, vol. 11, no. 5,pp.225–240, May 1932.
    [6] H. J. Finden, “The Frequency Synthesizer,” IEEE J. Part III, vol. 90, no. 5, pp.165-80, May. 1943.
    [7] M.Kozak and I. Kale, “A Pipelined Noise Shaping Coder for Fractional-N Frequency Synthesis,” IEEE Trans. Instrum. Meas., vol. 50, no. 10, pp. 1154–1161, Oct. 2001.
    [8] KeliuShu Edgar Sanchez-Sinencio, “CMOS PLL Synthesizers: Analysis and Design,” New York, N.Y., Springer, 2005.
    [9] A.Hajimiri and T. H. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [10] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” Proc. Custom IC Conf. Orlando, FL, 2000, pp. 569-572.
    [11] A. Hajimiri and T. H. Lee,“Design Issues in CMOS Differential LC Oscillators,”IEEE J. Solid-State Circuits, vol. 34, no. 5, pp.717–724, May. 1999.
    [12] S. Levantino, et. al., “Frequency Dependence on Bias Current in 5-GHz CMOS VCOs: Impact on Tuning Range and Flicker Noise Upconversion,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp.1003–1011, Aug. 2002.
    [13] M.Tiebout, “Low-Power Low-Phase-Noise Differentially Tuned Quadrature VCO Design in Standard CMOS,” IEEE J. Solid-State Circuits, vol. 36, no. 11, pp.1018–1024, July 2001.
    [14] A. Goel, and H. Hashemi, “Frequency Switching in Dual-Resonance Oscillators,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp.571–582, Mar. 2007.
    [15] C.-T. Kuo, J.-Y. Chang, and S.-I. Liu, “A Spur-Reduction Technique for 5-GHz Frequency Synthesizer,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 3, pp.526–533, Mar. 2006.
    [16] A. Kral, F.Behbahani, and A. A. Abidi, “RF-CMOS Oscillators with Switched Tuning,” IEEE Custom IC Conference, no. 5, pp. 555–558,May. 1998.
    [17] Z. Li and K. K. O., “A 1-V Low Phase Noise Multi-Band CMOS Voltage-Controlled Oscillator with Switched Inductors and Capacitors,” IEEE RFIC Symposium, no. 6, pp.467–470, June 2004.
    [18] I-Ting Lee, Yun-Ta Tsai, and Shen-Iuan Liu, “A Wide-Range PLL Using Self-Healing Prescaler/VCO in 65-nm CMOS,” IEEE TransactionsonVery LargeScale integration (VLSI) systems, vol. 21, no. 2, pp. 250-258, Feb 2013.
    [19] Wei-Hao Chiu, Yu-Hsiang Huang, and Tsung-Hsien Lin, “A Dynamic Phase Error Compensation Technique for Fast-Locking Phase-Locked Loops,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1137-1148, June 2010.
    [20] Jaewook Shin, and Hyunchol Shin, “A 1.9–3.8 GHz ΔΣ Fractional-N PLL Frequency Synthesizer With Fast Auto Calibration of Loop Bandwidth and VCO Frequency,” IEEE J. Solid-State Circuits, vol. 47, no. 3, pp. 665-675, March2012.
    [21] Chao-Ching, Shen-Iuan Liu“A Noise Filtering Technique for Fractional-NFrequency Synthesizers,” IEEE Transaction on Circuits and Systems II: Express Briefs. vol. 58, no. 3, pp. 139-143, March, 2011.
    [22] In-Chul Hwang, Sang-Hum Song, and Soo-Won Kim, ‘’A Digitally Controlled PLL with a Digital Phase-Frequency Detector for Fast Acquisition,” IEEE J. Solid-State Circuits, vol. 36, no. 10, Oct. 2001.
    [23] B. Razavi, RF Microelectronics 2nd Edition, Prentice Hall, 2012
    [24] Vaucher C., Kasperkovitz. D, “A wide-band tuning system for fully integrated satellite receivers,” IEEE Journal of Solid-State Circuits, vol. 33, no. 7, pp. 987–997, July 1998.
    [25] Vaucher C.S. , Ferencic I. , Locher M. , Sedvallson S. , Voegeli U. , Wang Z, “A family of low-power truly modular programmable dividers in standard 0.35-μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 35, no. 7, pp. 1039–1045, July 2000.
    [26] Y. H. Kao, RF Phase-Locked Loop Integrated Circuit Design, Tsang Hai Book Publishing Co, 2004.
    [27] Q. Hunag and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-465, Mar. 1996
    [28] G. K. Dehng, C. Y. Yang, J. M. Hsu and S. I. Liu, “Clock-deskew buffer using a SAR-controlled delay-lock loop,” IEEE J. Solid-State Circuits, vol. 35, no. 8 pp. 1128-1136, Aug2000
    [29] G. K. Dehng, J. W. Lin and S. I. Liu, “A fast-lock mixed-mode DLL Using a 2-b SAR Algorithm,” IEEE J. Solid-State Circuits, vol. 36, pp. 1464-1471, Oct2001
    [30] K. Woo, Y. Liu, E. Nam and D. Ham, “Fast-Lock Hybrid PLL Combining Fractional-N and Integer Modes of Differing Bandwidths,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 379-389, Feb. 2008.
    [31] T. A. D. Riley, M. A. Copeland, T. A. Kwasniewski, "Delta-Sigma Modulation in Fractional-N Frequency Synthesis," IEEE J. Solid-State Circuits, vol. 28, no. 5, pp. 553-559, May 1993.

    無法下載圖示 全文公開日期 2019/07/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE